Bodh Features Showcase
Beautiful presentations from markdown
Multi-Column Layouts
Left Column
- Feature demonstrations
- Easy to implement
- Professional layouts
- Responsive design
Right Column
- Code examples
- Mathematical equations
- Visual elements
- Interactive content
Mathematics: Inline vs Display
Inline Mathematics
We can include math like \(f(x) = ax^2 + bx + c\) directly in text, or more complex expressions like \(\sum_{i=1}^{n} x_i^2\).
Display Mathematics
For more prominent equations, use display mode:
\[\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}\]
\[\nabla f(x,y) = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}\]
Lists and Formatting
Bullet Points
- Bold text for emphasis
- Italic text for style
Code snippets
inline- Links for references
Numbered Lists
- First important point
- Second key concept
- Third essential element
- Final summary point
Mixed Lists
- Main category
- Sub-item one
- Sub-item two
- Another category
- Nested bullet
- Another nested item
Code Highlighting
Python Example
def gradient_descent(f, grad_f, x0, alpha=0.01):
"""Gradient descent optimization"""
= x0
x for i in range(1000):
= x - alpha * grad_f(x)
x if abs(grad_f(x)) < 1e-6:
break
return x
JavaScript Example
function createChart(data) {
return {
type: 'line',
data: data,
options: {
responsive: true,
animation: true
};
} }
Tables and Data
Simple Table
Method | Speed | Accuracy |
---|---|---|
SGD | Fast | 85% |
Adam | Medium | 92% |
L-BFGS | Slow | 96% |
Complex Table
Algorithm | Time Complexity | Space | Best Use Case |
---|---|---|---|
Gradient Descent | O(n×d×k) | O(d) | Convex problems |
Stochastic GD | O(d×k) | O(d) | Large datasets |
Newton’s Method | O(n×d²×k) | O(d²) | Small scale |
Figures and Images
Simple Figure
Figure with Caption
Sized Image
Blockquotes and Callouts
Important Note: Gradient descent is a fundamental optimization algorithm used across machine learning, from linear regression to deep neural networks.
“The best way to learn is by doing.”
— Anonymous
Multiple Quote Levels
This is a first-level quote > This is a nested quote >> This is deeply nested
Advanced Typography
Text Styles
- Bold emphasis
- Italic style
Strikethrough textMonospace code
- Small caps: Small Caps Text
Special Characters
- Mathematical: α, β, γ, Δ, Σ, π, ∞
- Arrows: → ← ↑ ↓ ⟨ ⟩
- Symbols: ★ ✓ ✗ ⚠ ℹ
Interactive Elements
Progress Indicators
Keyboard Shortcuts
Press Ctrl + C to copy
Press → for next slide
Press ← for previous slide
Mathematical Showcases
Matrix Operations
\[A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}\]
Complex Equations
\[\mathcal{L}(\theta) = \frac{1}{N}\sum_{i=1}^{N} \ell(f(x_i; \theta), y_i) + \lambda R(\theta)\]
Multi-line Equations
\[\begin{align} \nabla_\theta \mathcal{L} &= \frac{1}{N}\sum_{i=1}^{N} \nabla_\theta \ell(f(x_i; \theta), y_i) + \lambda \nabla_\theta R(\theta) \\ &= \mathbb{E}_{(x,y) \sim \mathcal{D}}[\nabla_\theta \ell(f(x; \theta), y)] + \lambda \nabla_\theta R(\theta) \end{align}\]
Summary
What You’ve Seen
✓ Multi-column layouts for organized content
✓ Inline and display mathematics with LaTeX
✓ Various list types and formatting options
✓ Code highlighting for multiple languages
✓ Tables for data presentation
✓ Images and figures with flexible sizing
✓ Typography and special characters
Ready for Real Content
Now let’s see these features in action with a complete example: Gradient Descent Tutorial
Bodh makes beautiful presentations effortless!