Bodh Features Showcase

Beautiful presentations from markdown


Multi-Column Layouts

Left Column

  • Feature demonstrations
  • Easy to implement
  • Professional layouts
  • Responsive design

Right Column

  • Code examples
  • Mathematical equations
  • Visual elements
  • Interactive content

Mathematics: Inline vs Display

Inline Mathematics

We can include math like \(f(x) = ax^2 + bx + c\) directly in text, or more complex expressions like \(\sum_{i=1}^{n} x_i^2\).

Display Mathematics

For more prominent equations, use display mode:

\[\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}\]

\[\nabla f(x,y) = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}\]


Lists and Formatting

Bullet Points

  • Bold text for emphasis
  • Italic text for style
  • Code snippets inline
  • Links for references

Numbered Lists

  1. First important point
  2. Second key concept
  3. Third essential element
  4. Final summary point

Mixed Lists

  • Main category
    1. Sub-item one
    2. Sub-item two
  • Another category
    • Nested bullet
    • Another nested item

Code Highlighting

Python Example

def gradient_descent(f, grad_f, x0, alpha=0.01):
    """Gradient descent optimization"""
    x = x0
    for i in range(1000):
        x = x - alpha * grad_f(x)
        if abs(grad_f(x)) < 1e-6:
            break
    return x

JavaScript Example

function createChart(data) {
    return {
        type: 'line',
        data: data,
        options: {
            responsive: true,
            animation: true
        }
    };
}

Tables and Data

Simple Table

Method Speed Accuracy
SGD Fast 85%
Adam Medium 92%
L-BFGS Slow 96%

Complex Table

Algorithm Time Complexity Space Best Use Case
Gradient Descent O(n×d×k) O(d) Convex problems
Stochastic GD O(d×k) O(d) Large datasets
Newton’s Method O(n×d²×k) O(d²) Small scale

Figures and Images

Simple Figure

Sample visualization

Figure with Caption

Beautiful landscape with mountains and trees creating a serene natural scene

Sized Image

Bodh Logo


Blockquotes and Callouts

Important Note: Gradient descent is a fundamental optimization algorithm used across machine learning, from linear regression to deep neural networks.

“The best way to learn is by doing.”
— Anonymous

Multiple Quote Levels

This is a first-level quote > This is a nested quote >> This is deeply nested


Advanced Typography

Text Styles

  • Bold emphasis
  • Italic style
  • Strikethrough text
  • Monospace code
  • Small caps: Small Caps Text

Special Characters

  • Mathematical: α, β, γ, Δ, Σ, π, ∞
  • Arrows: → ← ↑ ↓ ⟨ ⟩
  • Symbols: ★ ✓ ✗ ⚠ ℹ

Interactive Elements

Progress Indicators

Keyboard Shortcuts

Press Ctrl + C to copy
Press for next slide
Press for previous slide


Mathematical Showcases

Matrix Operations

\[A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}\]

Complex Equations

\[\mathcal{L}(\theta) = \frac{1}{N}\sum_{i=1}^{N} \ell(f(x_i; \theta), y_i) + \lambda R(\theta)\]

Multi-line Equations

\[\begin{align} \nabla_\theta \mathcal{L} &= \frac{1}{N}\sum_{i=1}^{N} \nabla_\theta \ell(f(x_i; \theta), y_i) + \lambda \nabla_\theta R(\theta) \\ &= \mathbb{E}_{(x,y) \sim \mathcal{D}}[\nabla_\theta \ell(f(x; \theta), y)] + \lambda \nabla_\theta R(\theta) \end{align}\]


Summary

What You’ve Seen

Multi-column layouts for organized content
Inline and display mathematics with LaTeX
Various list types and formatting options
Code highlighting for multiple languages
Tables for data presentation
Images and figures with flexible sizing
Typography and special characters

Ready for Real Content

Now let’s see these features in action with a complete example: Gradient Descent Tutorial

Bodh makes beautiful presentations effortless!