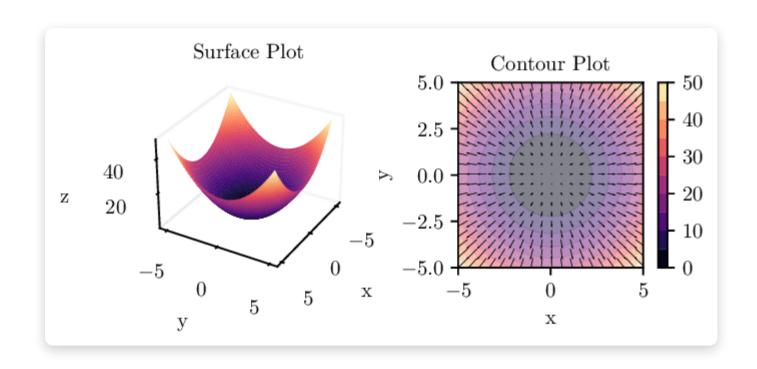


Nipun Batra, IIT Gandhinagar

n: Contour Plot And Gradients

$$z = f(x,y) = x^2 + y^2$$



Gradient denotes the direction of steepest ascent or the direction in which there is a maximum increase in fx, y

$$abla f(x,y) = \left\lceil rac{\partial f(x,y)}{\partial x} \; rac{\partial f(x,y)}{\partial y}
ight
ceil = \left[2x \; 2y
ight]$$

होध zation Algorithms

Core Concepts

- We often want to minimize/maximize a function
- We wanted to minimize the cost function:

$$f(\theta) = (y - X\theta)^T (y - X\theta)$$

 \bullet Note: here θ is the parameter vector

General Components

- Maximize or Minimize a function subject to some constraints
- ullet Today, we focus on **unconstrained optimization** noconstraints
- We focus on minimization
- Goal:

$$heta^* = \operatorname*{arg\,min}_{ heta} f(heta)$$

वोध Iction to Gradient Descent

Key Properties

- Gradient descent is an optimization algorithm
- Used to find the minimum of a function in unconstrained settings
- It is an iterative algorithm
- It is a **first order** optimization algorithm
- It is a local search algorithm/greedy

Algorithm Steps

- **1.** Initialize θ to some random value
- **2. Compute** the gradient of the cost function at θ : $\nabla f(\theta)$
- 3. For Iteration $i \ where \$i=1,2,\dots \$$ or until convergence:
- **4.** $\theta_i \leftarrow \theta_{i-1} \alpha \nabla f(\theta_{i-1})$

Basic Form

Taylor's series approximates a function f(x) around point x_0 using a polynomial:

$$f(x) = f(x_0) + rac{f'(x_0)}{1!}(x-x_0) + rac{f''(x_0)}{2!}(x-x_0)^2 + \dots$$

Vector Form

$$f(ec{x}) = f(ec{x_0}) +
abla f(ec{x_0})^T (ec{x} - ec{x_0}) + rac{1}{2} (ec{x} - ec{x_0})^T
abla^2 f(ec{x_0}) (ec{x} - ec{x_0}) + \dots$$

where $abla^2 f(ec{x_0})$ is the **Hessian matrix** and $abla f(ec{x_0})$ is the **gradient vector**

First Order Approximation

For small Δx , ignoring higher order terms:

aylor's Series to Gradient Descent

Minimization Logic

- ullet Goal: Find $\Delta ec{x}$ such that $f(ec{x_0} + \Delta ec{x})$ is minimized
- ullet This is equivalent to minimizing $f(ec{x_0}) +
 abla f(ec{x_0})^T \Delta ec{x}$
- ullet This happens when vectors $abla f(ec{x_0})$ and $\Delta ec{x}$ are at phase angle of $180\,^\circ$
- ullet Solution: $\Delta ec{x} = -lpha
 abla f(ec{x_0})$ where lpha is a scalar

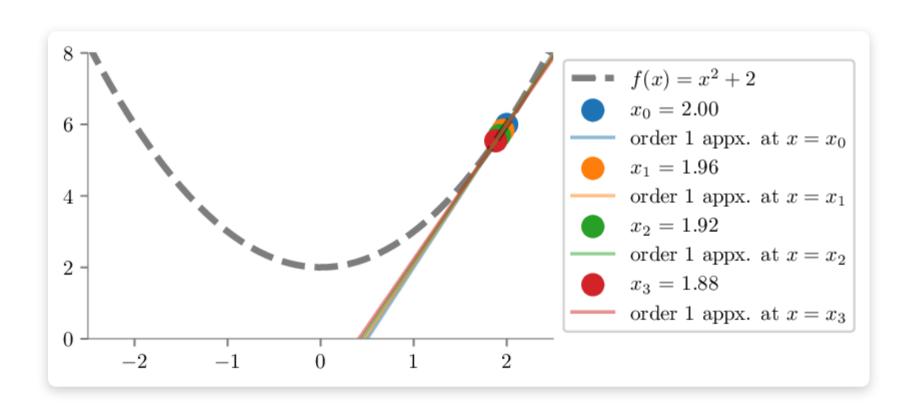
The Gradient Descent Update Rule

$$\vec{x_1} = \vec{x_0} - \alpha \nabla f(\vec{x_0})$$

नेध pf Learning Rate

Low Learning Rate $stan = 0.01 \$

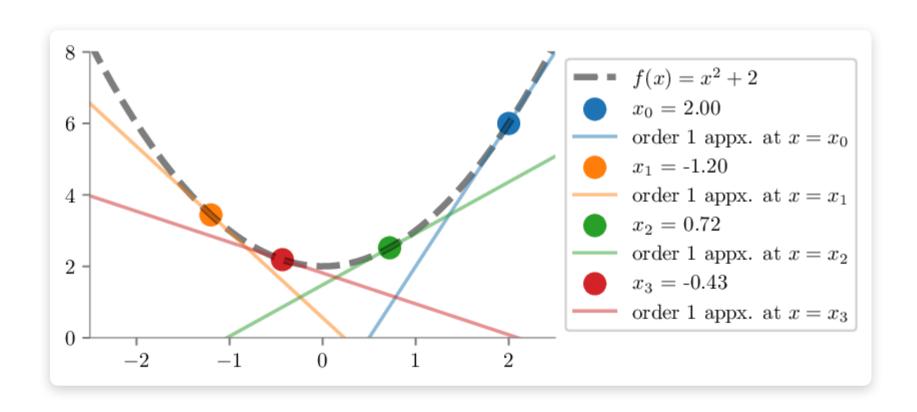
Converges slowly



नेध pf Learning Rate

High Learning Rate $\$\alpha=0.8\$$

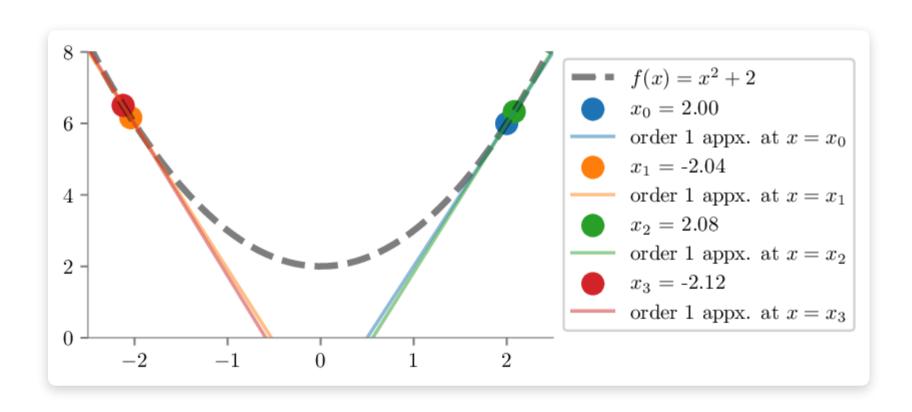
Converges quickly, but might overshoot



निध pf Learning Rate

Very High Learning Rate $\$\alpha=1.01\$$

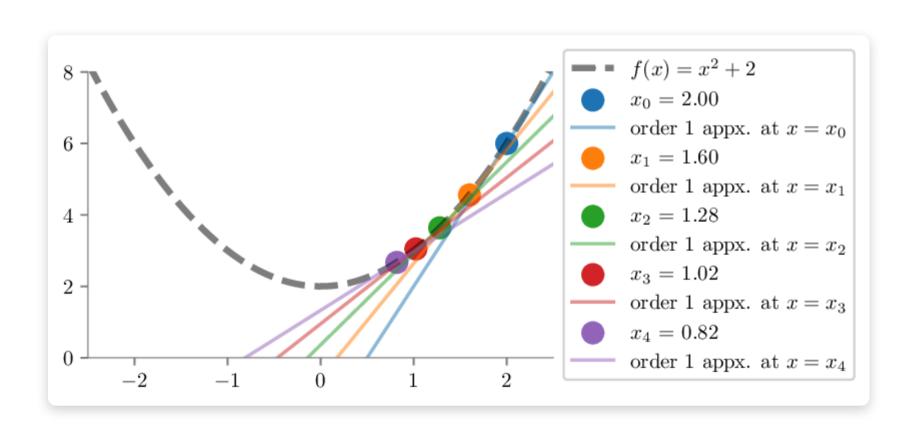
Diverges



निध pf Learning Rate

Appropriate Learning Rate $stantomarrow lpha = 0.1 \$

Just right



Loss Function

- Usually defined on a data point, prediction and label
- Measures the penalty
- ullet Example: Square loss $l(f(x_i| heta),y_i)=(f(x_i| heta)-y_i)^2$

Cost Function

- More general: sum of loss functions over training set plus model complexity penalty
- ullet Example: Mean Squared Error $MSE(heta) = rac{1}{N} \sum_{i=1}^{N} (f(x_i| heta) y_i)^2$

Objective Function

• Most general term for any function optimized during training

nt Descent Example

Learn $y = \overline{\theta}_0 + \overline{\theta}_1 x$ using gradient descent: - Initial: $(\overline{\theta}_0, \overline{\theta}_1) = (4, 0)$

- Step-size: lpha=0.1 - Dataset:

x	у
1	1
2	2
3	3

Error Calculation

- ullet Predictor: $\hat{y}= heta_0+ heta_1 x$
- ullet Error for i^{th} datapoint: $\epsilon_i=y_i-\hat{y_i}$
- $\epsilon_1 = 1 \theta_0 \theta_1$
- $\bullet \ \epsilon_2 = 2 \theta_0 2\theta_1$

नेध nt Computation

Partial Derivatives

$$rac{\partial MSE}{\partial heta_0} = rac{2\sum_i (y_i - heta_0 - heta_1 x_i)(-1)}{N} = rac{2\sum_i \epsilon_i(-1)}{N}$$

$$rac{\partial MSE}{\partial heta_1} = rac{2\sum_i (y_i - heta_0 - heta_1 x_i)(-x_i)}{N} = rac{2\sum_i \epsilon_i (-x_i)}{N}$$

Update Rules

$$\theta_0 = \theta_0 - \alpha \frac{\partial MSE}{\partial \theta_0}$$

$$heta_1 = heta_1 - lpha rac{\partial MSE}{\partial heta_1}$$

Gradient Descent GD

- ullet Dataset: D=(X,y) of size N
- For each epoch:
- Predict $\hat{y} = pred(X, \theta)$
- Compute loss: $J(\theta) = loss(y, \hat{y})$
- Compute gradient: $\nabla J(\theta) = grad(J)(\theta)$
- Update: $\theta = \theta \alpha \nabla J(\theta)$

Stochastic Gradient Descent SGD

- For each epoch:
- ullet Shuffle D
- ullet For each sample i in [1,N]:
 - Predict $\hat{y_i} = pred(X_i, \theta)$
 - Compute loss: $J(\theta) = loss(y_i, \hat{y_i})$
 - Undate: $\theta \theta = \alpha \nabla I(\theta)$

Vanilla Gradient Descent

- Updates parameters after going through all data
- Smooth curve for Iteration vs Cost
- Takes **more time** per update computes gradient over all samples

Stochastic Gradient Descent

- Updates parameters after seeing each point
- Noisier curve for iteration vs cost
- Less time per update gradientoverone example

SGD Contour Visualization

matical Foundation: Unbiased Estimator

True Gradient

For dataset $\mathcal{D}=(x_1,y_1),(x_2,y_2),\ldots,(x_N,y_N)$:

$$L(heta) = rac{1}{N} \sum_{i=1}^{N} loss(f(x_i, heta), y_i)$$

True gradient:

$$abla L = rac{1}{n} \sum_{i=1}^n
abla \operatorname{loss}(f(x_i), y_i)$$

SGD Estimator

For single sample (x, y):

$$abla ilde{L} =
abla \operatorname{loss}(f(x), y)$$

ाtational Complexity Analysis

Normal Equation: $\hat{ heta} = (X^TX)^{-1}X^Ty$

For $X\in\mathbb{R}^{N imes D}$: - X^TX : $\mathcal{O}(D^2N)$ - Matrix inversion: $\mathcal{O}(D^3)$ - X^Ty : $\mathcal{O}(DN)$ - Final multiplication: $\mathcal{O}(D^2)$

Total complexity: $\mathcal{O}(D^2N+D^3)$

nt Descent Complexity

Vectorized update: $\theta = \theta - \alpha X^T (X\theta - y)$

Efficient form:
$$\theta = \theta - \alpha X^T X \theta + \alpha X^T y$$

- ullet Pre-compute X^TX and X^Ty : $\mathcal{O}(D^2N)$
- ullet Per iteration: $\mathcal{O}(D^2)$
- ullet For t iterations: $\mathcal{O}(D^2N+tD^2)=\mathcal{O}((N+t)D^2)$

Alternative form: $\mathcal{O}(NDt)$ per iteration

Normal Equation

ullet Good when: D is small

• Advantages: Direct solution, no iterations

ullet Disadvantages: $\mathcal{O}(D^3)$ matrix inversion

Gradient Descent

ullet Good when: D is large or N is large

• Advantages: Scales well, iterative improvement

• Disadvantages: Requires tuning, local minima

Key Takeaways

- 1. Gradient Descent is a fundamental optimization algorithm
- **2. Learning rate** lpha is crucial too small slow, too large divergence
- 3. SGD provides unbiased estimates with faster per-iteration updates
- 4. Computational complexity depends on problem dimensions
- **5. Taylor series** provides theoretical foundation

Applications

- Linear regression
- Logistic regression
- Neural networks
- Any differentiable optimization problem