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n: Contour Plot And Gradients

2= f(z,y) =2 +y°

Surface Plot Contour Plot
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Gradient denotes the direction of steepest ascent or the direction in which there is a maximum increase in fz,y

of(x, of(z,
Vi(z,y) = [ e féyy)} = [2z 2y



zation Algorithms
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Core Concepts

¢ We often want to minimize/maximize a function

+ \We wanted to minimize the cost function:

£(0) = (y — X0)" (y — X0)

« Note: here 6 is the parameter vector

General Components

» Maximize or Minimize a function subject to some constraints
« Today, we focus on unconstrained optimization noconstraints
» We focus on minimization

e Goal:

0* = argminf(0)
0
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s ction to Gradient Descent
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Key Properties

» Gradient descent is an optimization algorithm

» Used to find the minimum of a function in unconstrained settings
e |t is an iterative algorithm

« It is a first order optimization algorithm

e [tis a local search algorithm/greedy

Algorithm Steps

1. Initialize 6 to some random value
2. Compute the gradient of the cost function at 8: V f(6)
3. For Iteration ¢ where$i = 1,2, ... $ or until convergence:

4.0; < 0;,_1 — an(@i_l)
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s Series Foundation

Basic Form

Taylor's series approximates a function f(w) around point &g using a polynomial:

Vector Form

where V2 f(zy) is the Hessian matrix and V f(zy) is the gradient vector

First Order Approximation

For small Az, ignoring higher order terms:
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aylor's Series to Gradient Descent

Minimization Logic

» Goal: Find Az such that f(zo + AZ) is minimized
« This is equivalent to minimizing f(zy) + Vf(zo)T AZ
» This happens when vectors V f(z() and Az are at phase angle of 180°

« Solution: AZ = —a'V f(x)) where a is a scalar

The Gradient Descent Update Rule

21?1 - CE() - OéVf(a?())
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s>t Learning Rate
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Low Learning Rate $a = 0.01$

Converges slowly

8™
\ - flz)=a"+2
G \ . xIrp = 2.00
\ = order 1 appx. at xr = xg
4 - N\ order 1 appx. at ¥ = 1
5 - ~ ~— ”’ order 1 appx. at x = x5
. Irq = 188
= order 1 appx. at x = x3
D T T T T T




s>t Learning Rate
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High Learning Rate $a = 0.8%

Converges quickly, but might overshoot

flx) =2?+2
xn = 2.00
order 1 appx.
I = —]_.2[]'
order 1 appx.
Ty = (.72
order 1 appx.
rq = -0.43

order 1 appx.

at = xg
at r©r =14
at © = x5
at © = x4
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s>t Learning Rate

KNOWLEDGE

Very High Learning Rate $a = 1.01$

Diverges

flx) =2?+2
xn = 2.00
order 1 appx.
I = —2.04
order 1 appx.
ro = 2.08
order 1 appx.
rq = -2.12

order 1 appx.

at = xg
at r©r =14
at © = x5
at © = x4
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s>t Learning Rate
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Appropriate Learning Rate $a = 0.1$

Just right

- - f(x) =a+2

6 - \ = order 1 appx. at x = x

\ . I = ]_6[]'
\ order 1 appx. at © = 1,

4- \ ® »-128
\\ order 1 appx. at & = s

g - “~ ~— o . xq = 1.02
e order 1 appx. at r = x4

. Irq — [}82
0 T T T T T order 1 appx. at x = x4



ology: Loss vs Cost vs Objective

Loss Function

» Usually defined on a data point, prediction and label

e Measures the penalty

« Example: Square loss I( f(x;]0),y:) = (f(:]0) — y;)*

Cost Function

» More general: sum of loss functions over training set plus model complexity penalty

« Example: Mean Squared Error MSE(6) = % Zfil(f(:c,|9) —y;)?

Objective Function

» Most general term for any function optimized during training
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t Descent Example

Learn y = 6 + 61z using gradient descent: - Initial: (6y,01) = (4, 0)
- Step-size: a = 0.1 - Dataset:

Error Calculation

o Predictor: § = 6y + 61z

« Error for " datapoint: €; = y; — y;
cer =1—-00—04

ey =2—0y)— 204
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t Computation

Partial Derivatives

OMSE _ 2) (yi— 6 —O1x;)(—1) 2>, (1)

00, N B N

OMSE _ 2) (yi — 00 — 012)(—x;) _ 2 €i(—x;)

96, N N
Update Rules
OMSE
90 = 90 — 000
6 — 8, — a OMSE

00,



sammbhm Variants
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Gradient Descent GD

« Dataset: D = (X, y) of size N

e For each epoch:

« Predict § = pred(X, 0)

« Compute loss: J(0) = loss(y, 9)

« Compute gradient: VJ(6) = grad(J)(6)
* Update: 0 = 0 — aV J(0)

Stochastic Gradient Descent SGD

e For each epoch:
e Shuffle D
« For each sample i in [1, N]:
e Predict y; = pred(X;, 0)
« Compute loss: J(0) = loss(yi, ¥i)

C11nhAAata- A — A _ A~ANT T(AO)
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5 Gradient Descent
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Vanilla Gradient Descent

» Updates parameters after going through all data

« Smooth curve for Iteration vs Cost

« Takes more time per update computesgradientoverallsamples

Stochastic Gradient Descent

» Updates parameters after seeing each point
 Noisier curve for iteration vs cost

* Less time per update gradientoveroneexample

SGD Contour Visualization

Contour Plot Contour Plot Contour Plot

300 135
SRR (T B (| I ([




atical Foundation: Unbiased Estimator

True Gradient

For dataset D = (x1,y1), (2,¥2),---, (TN, YN):

True gradient:

SGD Estimator

For single sample (z, y):

VL = Vlioss(f(z),y)
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tational Complexity Analysis
Normal Equation: § = (X1 X) 1 X1y
For X € RV*P: - XTX: O(D2N) - Matrix inversion: O(D?) - XTy: O(DN) - Final multiplication: O(D?)

Total complexity: O(D?N + D3)



t Descent Complexity

Vectorized update: § = § — aX T (X0 — y)
Efficientform: 0 = 0 — aXT X0+ aX Ty

« Pre-compute X7 X and XTy: O(D?N)
« Per iteration: O(D?)

« For t iterations: O(D?N + tD?) = O((N + t)D?)

Alternative form: O(IN Dt) per iteration
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o Use Which Algorithm?

Normal Equation

e Good when: D is small
» Advantages: Direct solution, no iterations

« Disadvantages: O(D?) matrix inversion

Gradient Descent

e Good when: D is large or N is large
» Advantages: Scales well, iterative improvement

» Disadvantages: Requires tuning, local minima
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Key Takeaways

1. Gradient Descent is a fundamental optimization algorithm

2. Learning rate « is crucial - too small slow, too large divergence
3. SGD provides unbiased estimates with faster per-iteration updates
4. Computational complexity depends on problem dimensions

5. Taylor series provides theoretical foundation

Applications

e Linear regression
« Logistic regression
e Neural networks

» Any differentiable optimization problem

Gradient descent: following the steepest path downhill!



