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Revision: Contour Plot And Gradients

Z:f(iE,y):CE2+y2

Surface Plot

Contour Plot

Gradient denotes the direction of steepest ascent or the direction in which there is a
maximum increase in fx, y
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Optimization Algorithms il

Core Concepts

o We often want to minimize/maximize a function

» We wanted to minimize the cost function:

f(6) = (y — X6)" (y — X0)

» Note: here @ is the parameter vector

General Components

e Maximize or Minimize a function subject to some constraints
e Today, we focus on unconstrained optimization noconstraints

e We focus on minimization



Introduction to Gradient Descent

Key Properties

e Gradient descent is an optimization algorithm

e Used to find the minimum of a function in unconstrained settings
e |t is an iterative algorithm

e ltis a first order optimization algorithm

e It is a local search algorithm/greedy

Algorithm Steps

1. Initialize 6 to some random value
2. Compute the gradient of the cost function at : V f(6)

3. For Iteration ¢ where$i = 1,2, ... % or until convergence:
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Taylor's Series Foundation

Basic Form

Taylor's series approximates a function f(w) around point x g using a polynomial:

f@) = flwe) + 2

Vector Form

1

f(&) = f(2o) + Vf(20)" (& — 20) + - (Z — £0)" V*f(20)(Z — &o) + . ..

2

where V2 f(xp) is the Hessian matrix and V f(Zy) is the gradient vector
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From Taylor's Series to Gradient Descent
Minimization Logic

e Goal: Find AZ such that f(xo + AZ) is minimized
» This is equivalent to minimizing f(zy) + V f(zo)? AZ
» This happens when vectors V f(zy) and Az are at phase angle of 180°

e Solution: AZ = —a'V f(xy) where acis a scalar

The Gradient Descent Update Rule

T] = Tg — an(a?o)

EEEEEEEEE



Effect of Learning Rate

Low Learning Rate $a = 0.01$

Converges slowly

- f(x)=x%+2

rg = 2.00

order 1 appx. at x

r1 = 1.96

order 1 appx. at x

ro = 1.92

order 1 appx. at x

rs = 1.88

order 1 appx. at x
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Effect of Learning Rate

High Learning Rate $a = 0.8$

Converges quickly, but might overshoot

/ - flz) =22+ 2

rg = 2.00

order 1 appx. at x

r1 = -1.20

order 1 appx. at x

Ty = 0.72

order 1 appx. at x

rqa = -0.43

order 1 appx. at x
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Effect of Learning Rate

Very High Learning Rate $a = 1.019$

Diverges

order 1 appx. at x = xy
T = -2.04
order 1 appx. at r = x4
Ty = 2.08
order 1 appx. at x = x5
rq = -2.12

order 1 appx. at r = x3




Effect of Learning Rate il

Appropriate Learning Rate $a = 0.19$

Just right

, wmm f(r)=g%+2

/' @ =200
order 1 appx. at x
r1 = 1.60
order 1 appx. at x
ro = 1.28
order 1 appx. at x
ry = 1.02

order 1 appx. at x

ry = (.82

order 1 appx. at x




Terminology: Loss vs Cost vs Objective |«

Loss Function

e Usually defined on a data point, prediction and label

» Measures the penalty

- Example: Square loss I( f(z:]0),v;) = (f(x:]0) — y;)*

Cost Function

e More general: sum of loss functions over training set plus model complexity penalty

« Example: Mean Squared Error MSE(6) = % Zfil(f(wz\@) — 1y;)?

Objective Function
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Gradient Descent Example

Learn y = 6y + 61z using gradient descent: - Initial: (0o, 81) = (4, 0)
- Step-size: a = 0.1 - Dataset:

Error Calculation

e Predictor: y = 0y + 61«



Gradient Computation [

Partial Derivatives

OMSE _ 2> (yi — 60— O1z;)(—1) 2> .ei(—1)

80, N N

OMSE 2 ,(yi— 00— b1z;)(—x:) _ 2) ;€i(—z;)

004 N N

Update Rules

OMSE
00,

HOZHO—CV



Algorithm Variants

Gradient Descent GD

« Dataset: D = (X, y) of size N

e For each epoch:

o Predict y = pred(X, 0)

 Compute loss: J(0) = loss(y, 4)

» Compute gradient: VJ(0) = grad(J)(0)
e Update: 0 = 0 — aVJ(0)

Stochastic Gradient Descent SG D

» For each epoch:

» Shuffle D
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SGD vs Gradient Descent

Vanilla Gradient Descent

o Updates parameters after going through all data
e Smooth curve for Iteration vs Cost

 Takes more time per update computesgradientoverallsamples

Stochastic Gradient Descent

o Updates parameters after seeing each point
e Noisier curve for iteration vs cost

o Less time per update gradientoveroneexample

SGD Contour Visualization
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Mathematical Foundation: Unbiased Estimato

True Gradient

For dataset D = (z1,v1), (€2,Y2),---, (TN, YN):

True gradient:

SGD Estimator
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Computational Complexity Analysis [

Normal Equation: 6 = (XTX) 1 X1y

For X € RV*P: - XTX: O(D?N) - Matrix inversion: O(D3) - X1y: O(DN) - Final
multiplication: O(D?)

Total complexity: O(D?N + D?3)



Gradient Descent Complexity
Vectorized update: § = § — aX1(X0 — y)
Efficientform: 0 = 0 — aX? X0 + a Xy

e Pre-compute X¥' X and XT'y: O(D?N)
- Per iteration: O(D?)
« For t iterations: O(D*N + tD?) = O((N + t)D?)

Alternative form: O(NN Dt) per iteration
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When to Use Which Algorithm?

Normal Equation

e Good when: D is small
o Advantages: Direct solution, no iterations

- Disadvantages: O(D?) matrix inversion

Gradient Descent

« Good when: D is large or N is large
o Advantages: Scales well, iterative improvement

e Disadvantages: Requires tuning, local minima

o
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Summary ol

Key Takeaways

1. Gradient Descent is a fundamental optimization algorithm

2. Learning rate « is crucial - too small slow, too large divergence
3. SGD provides unbiased estimates with faster per-iteration updates
4. Computational complexity depends on problem dimensions

5. Taylor series provides theoretical foundation

Applications

e Linear regression
 Logistic regression

e Neural networks



