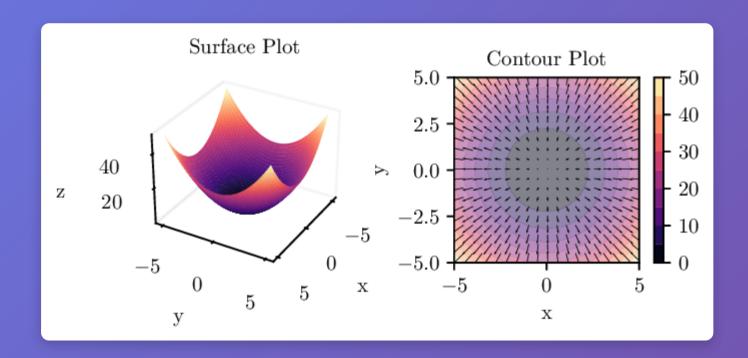
Gradient Descent

Nipun Batra, IIT Gandhinagar

Revision: Contour Plot And Gradients

$$z = f(x, y) = x^2 + y^2$$



Gradient denotes the direction of steepest ascent or the direction in which there is a maximum increase in fx,y

बोध KNOWLEDGE

$$iglta f(x,y) = \left \lceil rac{\partial f(x,y)}{\partial x}
ight. \left \lceil rac{\partial f(x,y)}{\partial y}
ight
ceil = \left \lceil 2x \ 2y
ight
ceil$$

Optimization Algorithms

Core Concepts

- We often want to minimize/maximize a function
- We wanted to minimize the cost function:

$$f(heta) = (y - X heta)^T (y - X heta)$$

ullet Note: here $\overline{ heta}$ is the parameter vector

General Components

- Maximize or Minimize a function subject to some constraints
- Today, we focus on unconstrained optimization noconstraints
- We focus on minimization

बोध KNOWLEDGE

$$heta^* = rg \min_{ heta} f(heta)$$

Introduction to Gradient Descent

Key Properties

- Gradient descent is an optimization algorithm
- Used to find the minimum of a function in unconstrained settings
- It is an iterative algorithm
- It is a first order optimization algorithm
- It is a local search algorithm/greedy

Algorithm Steps

- **1.** Initialize θ to some random value
- **2.** Compute the gradient of the cost function at θ : $\nabla f(\theta)$
- ৰাঘ teration $i~where \$i=1,2,\dots \$$ or until convergence:
- $\theta_{i-1} \alpha
 abla f(heta_{i-1})$

Taylor's Series Foundation

Basic Form

Taylor's series approximates a function f(x) around point x_0 using a polynomial:

$$f(x) = f(x_0) + rac{f'(x_0)}{1!}(x-x_0) + rac{f''(x_0)}{2!}(x-x_0)^2 + \ldots$$

Vector Form

$$f(ec{x}) = f(ec{x_0}) +
abla f(ec{x_0})^T (ec{x} - ec{x_0}) + rac{1}{2} (ec{x} - ec{x_0})^T
abla^2 f(ec{x_0}) (ec{x} - ec{x_0}) + \dots$$

where $abla^2 f(ec{x_0})$ is the **Hessian matrix** and $abla f(ec{x_0})$ is the **gradient vector**

First Order Approximation

From Taylor's Series to Gradient Descent

Minimization Logic

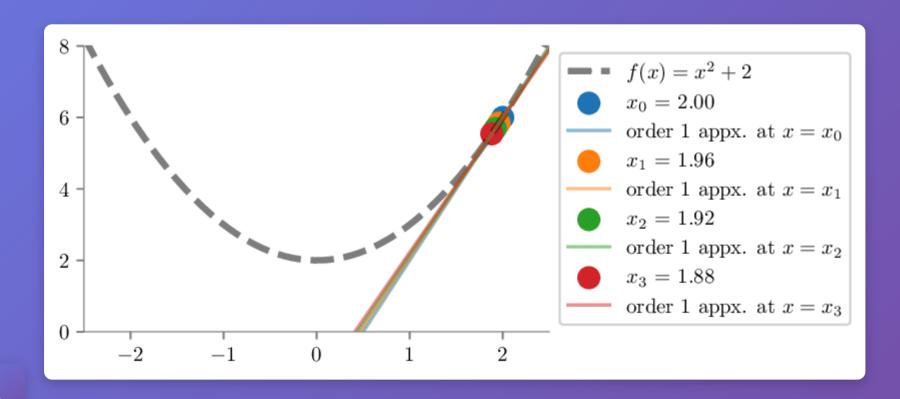
- ullet Goal: Find $\Delta ec{x}$ such that $f(ec{x_0} + \Delta ec{x})$ is minimized
- ullet This is equivalent to minimizing $f(ec{x_0}) +
 abla f(ec{x_0})^T \Delta ec{x}$
- ullet This happens when vectors $abla f(ec{x_0})$ and $\Delta ec{x}$ are at phase angle of $180\degree$
- ullet Solution: $\Delta ec{x} = -lpha
 abla f(ec{x_0})$ where lpha is a scalar

The Gradient Descent Update Rule

$$ec{x_1} = ec{x_0} - lpha
abla f(ec{x_0})$$

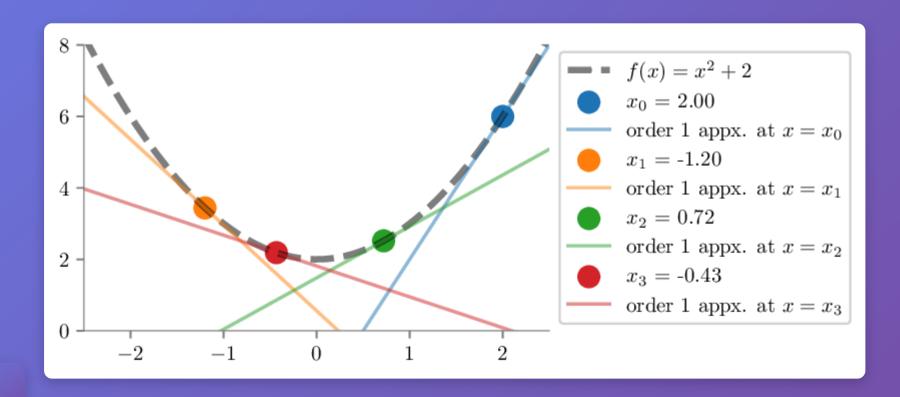
Low Learning Rate $\$\alpha=0.01\$$

Converges slowly



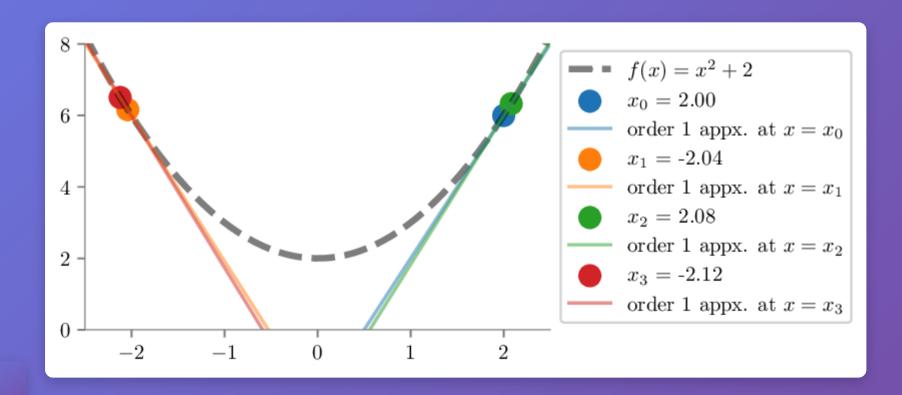
High Learning Rate $\$\alpha=0.8\$$

Converges quickly, but might overshoot



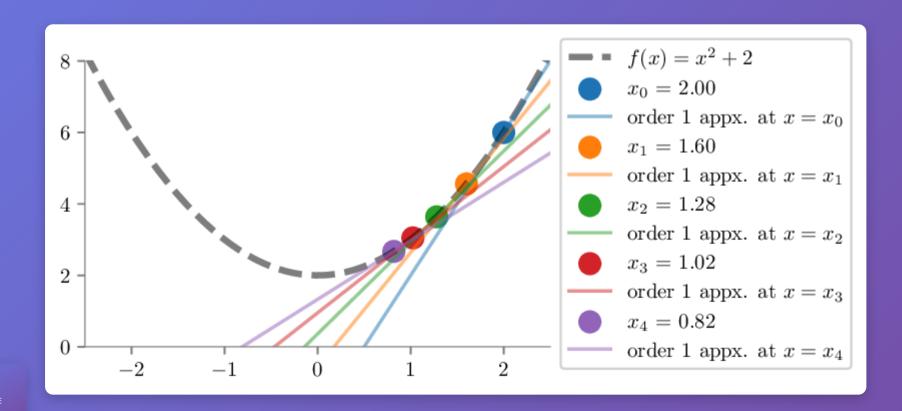
Very High Learning Rate \$ lpha = 1.01\$

Diverges



Appropriate Learning Rate \$ lpha = 0.1 \$

Just right



Terminology: Loss vs Cost vs Objective

Loss Function

- Usually defined on a data point, prediction and label
- Measures the penalty
- ullet Example: Square loss $l(f(x_i| heta),y_i)=(f(x_i| heta)-y_i)^2$

Cost Function

- More general: sum of loss functions over training set plus model complexity penalty
- ullet Example: Mean Squared Error $MSE(heta) = rac{1}{N} \sum_{i=1}^{N} (f(x_i| heta) y_i)^2$

Objective Function

बोध

KNOWLEDGE

wost general term for any function optimized during training

Gradient Descent Example

Learn $y= heta_0+ heta_1 x$ using gradient descent: - Initial: $(heta_0, heta_1)=(4,0)$

- Step-size: lpha=0.1 - Dataset:

Х	у
1	1
2	2
3	3

Error Calculation

बोध ictor:

ictor:
$$\hat{y} = heta_0 + heta_1 x$$

ullet Error for i^{th} datapoint: $\epsilon_i = y_i - \hat{y_i}$

$$\bullet \ \epsilon_1 = 1 - \theta_0 - \theta_1$$

Gradient Computation

Partial Derivatives

$$rac{\partial MSE}{\partial heta_0} = rac{2\sum_i (y_i - heta_0 - heta_1 x_i)(-1)}{N} = rac{2\sum_i \epsilon_i (-1)}{N}$$

$$rac{\partial MSE}{\partial heta_1} = rac{2\sum_i (y_i - heta_0 - heta_1 x_i)(-x_i)}{N} = rac{2\sum_i \epsilon_i (-x_i)}{N}$$

Update Rules

$$egin{aligned} heta_0 &= heta_0 - lpha rac{\partial MSE}{\partial heta_0} \ & \ heta_1 &= heta_1 - lpha rac{\partial MSE}{\partial heta_1} \end{aligned}$$

$$heta_1 = heta_1 - lpha rac{\partial MSE}{\partial heta_1}$$

Algorithm Variants

Gradient Descent GD

- ullet Dataset: D=(X,y) of size N
- For each epoch:
- Predict $\hat{y} = pred(X, \theta)$
- ullet Compute loss: $J(heta) = loss(y,\hat{y})$
- ullet Compute gradient: $abla J(heta) = grad(\overline{J})(heta)$
- Update: $\theta = \theta \alpha \nabla J(\theta)$

Stochastic Gradient Descent SGD

For each epoch:

- ullet ror each sample i in [1,N]:
 - Predict $\hat{y_i} = pred(X_i, \theta)$

SGD vs Gradient Descent

Vanilla Gradient Descent

- Updates parameters after going through all data
- Smooth curve for Iteration vs Cost
- Takes more time per update computes gradient over all samples

Stochastic Gradient Descent

- Updates parameters after seeing each point
- Noisier curve for iteration vs cost
- Less time per update gradientover one example

Mathematical Foundation: Unbiased Estimator

True Gradient

For dataset $\mathcal{D}=(x_1,y_1),(x_2,y_2),\ldots,(x_N,y_N)$:

$$L(heta) = rac{1}{N} \sum_{i=1}^{N} loss(f(x_i, heta), y_i)$$

True gradient:

$$abla L = rac{1}{n} \sum_{i=1}^n
abla \operatorname{loss}(f(x_i), y_i)$$

SGD Estimator

KNOWLEDGE

For single sample (x, y):

Computational Complexity Analysis

Normal Equation:
$$\hat{ heta} = (X^TX)^{-1}X^Ty$$

For $X\in\mathbb{R}^{N imes D}$: - X^TX : $\mathcal{O}(D^2N)$ - Matrix inversion: $\mathcal{O}(D^3)$ - X^Ty : $\mathcal{O}(DN)$ - Final multiplication: $\mathcal{O}(D^2)$

Total complexity: $\mathcal{O}(D^2N+D^3)$

Gradient Descent Complexity

Vectorized update: $\theta = \theta - \alpha X^T (X\theta - y)$

Efficient form: $\theta = \theta - \alpha X^T X \theta + \alpha X^T y$

- ullet Pre-compute X^TX and X^Ty : $\mathcal{O}(D^2N)$
- Per iteration: $\mathcal{O}(D^2)$
- ullet For t iterations: $\mathcal{O}(D^2N+tD^2)=\mathcal{O}((N+t)D^2)$

Alternative form: $\mathcal{O}(NDt)$ per iteration

When to Use Which Algorithm?

Normal Equation

ullet Good when: D is small

Advantages: Direct solution, no iterations

ullet Disadvantages: $\mathcal{O}(D^3)$ matrix inversion

Gradient Descent

ullet Good when: D is large or N is large

• Advantages: Scales well, iterative improvement

• Disadvantages: Requires tuning, local minima

Summary

Key Takeaways

- 1. Gradient Descent is a fundamental optimization algorithm
- **2.** Learning rate lpha is crucial too small slow, too large divergence
- **3. SGD** provides unbiased estimates with faster per-iteration updates
- 4. Computational complexity depends on problem dimensions
- 5. Taylor series provides theoretical foundation

Applications

- Linear regression
- Logistic regression

बोध

al networks

• Any differentiable optimization problem