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Revision: Contour Plot And Gradients

z:f(way):x2+y2

Surface Plot

Contour Plot

Gradient denotes the direction of steepest ascent or the direction in which there is a maximum increase in fx,y
g
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Optimization Algorithms

Core Concepts

« \We often want to minimize/maximize a function

o We wanted to minimize the cost function:

£(0) = (y— X0)" (y — X6)

» Note: here @ is the parameter vector

General Components

» Maximize or Minimize a function subject to some constraints
e Today, we focus on unconstrained optimization noconstraints

e We focus on minimization
g
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0" = argmin f(6)
0
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Introduction to Gradient Descent

Key Properties

» Gradient descent is an optimization algorithm

» Used to find the minimum of a function in unconstrained settings
e |t is an iterative algorithm

e Itis a first order optimization algorithm

e It is a local search algorithm/greedy

Algorithm Steps

1. Initialize 6 to some random value
2. Compute the gradient of the cost function at 8: V f(6)

Ay reration 7 where$i = 1,2, ...$ or until convergence:
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4. U; Y 97;_1 — OéVf(Oi_l)
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Taylor's Series Foundation

Basic Form

Taylor's series approximates a function f(ac) around point xg using a polynomial:

Vector Form

F(@) = f(@o) + Vf(20)" (2 — 2p) +

e Y72 f(zy) is the Hessian matrix and V f() is the gradient vector
e

EEEEEEEEE

First Order Approximation
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From Taylor's Series to Gradient Descent

Minimization Logic

« Goal: Find Az such that f(zo + AZ) is minimized
» This is equivalent to minimizing f(zy) + V f(zo) ! A%
« This happens when vectors V f(z() and AZ are at phase angle of 180°

» Solution: AZ = —aV f(xy) where atis a scalar

The Gradient Descent Update Rule

fl = .’E() — an(zEb)
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Effect of Learning Rate

Low Learning Rate $a = 0.01$

Converges slowly

Y
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flx) = 2% + 2
g = 2.00
order 1 appx.
r1 = 1.96

order 1 appx.

ro = 1.92
order 1 appx.
rq = 1.88

order 1 appx.

at = xg

at =1

at r = x5

at © = a3
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Effect of Learning Rate

High Learning Rate $a = 0.8%

Converges quickly, but might overshoot

flx) = 2% + 2
g = 2.00
order 1 appx.
r1 = -1.20

order 1 appx.

xo = (.72
order 1 appx.
rq = -0.43

order 1 appx.

Y
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Effect of Learning Rate

Very High Learning Rate $a = 1.01$

Diverges

Y

KNOWLEDGE

flx) = 2% + 2

g = 2.00

order 1 appx. at & = x
r1 = -2.04

order 1 appx. at x = 1

ro = 2.08
order 1 appx. at & = I
rq = -2.12

order 1 appx. at x = x3
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Effect of Learning Rate

Appropriate Learning Rate $a = 0.1%

Just right

f(z) = 2% + 2
xrg = 2.00

order 1 appx. @

r1 = 1.60

order 1 appx. &

ro = 1.28

order 1 appx. &
rq = 1.02
order 1 appx. @
ry = (.82

order 1 appx. &

Y
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Terminology: Loss vs Cost vs Objective

Loss Function

e Usually defined on a data point, prediction and label

» Measures the penalty

« Example: Square loss I(f(z;]0), y;) = (f(x;|0) — y;)?

Cost Function

e More general: sum of loss functions over training set plus model complexity penalty

« Example: Mean Squared Error MSE(6) = % Efil(f(mz|9) — y;)?

Obiective Function
Y
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- wmiust general term for any function optimized during training
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Gradient Descent Example

Learn y = Oy + 01z using gradient descent: - Intial: (6y,6071) = (4,0)

- Step-size: a = 0.1 - Dataset:

Error Calculation

ictor:y = 0p + 01z
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« Error for 3" datapoint: €; = y; — U;
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Gradient Computation

Partial Derivatives

OMSE - 2) (y; —0g — 012;)(—1) 2 €(—1)

00, n B n

OMSE o 2) (yi — 6y —01x;)(—=;) _ 2P e (— ;)

06, N N
Update Rules
OMSE
0o = 6y —
0 0 & 80,
P OMSE
EEEEEEEEE 91 :91_a
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Algorithm Variants

Gradient Descent GD

o Dataset: D = (X, y) of size N

» For each epoch:

« Predict g = pred(X, 0)

« Compute loss: J(6) = loss(y, 3)

» Compute gradient: VJ(6) = grad(J)(6)
» Update: 0 = 0 — aVJ(6)

Stochastic Gradient Descent SG.D

 For each epoch:

g le D
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- rur each sample i in [1, N|:

e Predict y; = pred(X;, 6)
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SGD vs Gradient Descent

Vanilla Gradient Descent

» Updates parameters after going through all data
» Smooth curve for Iteration vs Cost

 Takes more time per update computesgradientoverallsamples

Stochastic Gradient Descent

e Updates parameters after seeing each point
e Noisier curve for iteration vs cost

« Less time per update gradientoveroneexample

Y . . o
«wnsce yONtOUr Visualization
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Mathematical Foundation: Unbiased Estimator

True Gradient

For dataset D = (z1,v1), (z2,42),- .-, (TN, YN):

True gradient:

Q(ﬂ;‘-“ Estimator
15
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For single sample (z, y):

T Y1 AL\ _\



Computational Complexity Analysis

Normal Equation: § = (X1 X) "1 X1y
For X € RY*P. - XTX: O(D?N) - Matrix inversion: O(D?) - XTy: O(DN) - Final multiplication: O(D?)

Total complexity: O(D2N + D?3)
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Gradient Descent Complexity

Vectorized update: § = 6 — a X7 (X0 — y)
Efficient form: 0 = 0 — a X7 X0 + o X Ty

« Pre-compute X T X and XTy: O(D?N)
« Per iteration: O(D?)

« For t iterations: O(D?N + tD?) = O((N + t)D?)

Alternative form: O(IN Dt) per iteration

qg
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When to Use Which Algorithm?

Normal Equation

e Good when: D is small
o Advantages: Direct solution, no iterations

 Disadvantages: O(D3) matrix inversion

Gradient Descent

e Good when: D is large or N is large
» Advantages: Scales well, iterative improvement

e Disadvantages: Requires tuning, local minima

qg
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Summary

CCVAEVCEWEVE

1. Gradient Descent is a fundamental optimization algorithm

2. Learning rate « is crucial - too small slow, too large divergence
3. SGD provides unbiased estimates with faster per-iteration updates
4. Computational complexity depends on problem dimensions

5. Taylor series provides theoretical foundation

Applications

e Linear regression
« Logistic regression
L al networks
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- Ay differentiable optimization problem



