
Gradient Descent
Nipun Batra, IIT Gandhinagar

1/20

Revision: Contour Plot And Gradients

Gradient denotes the direction of steepest ascent or the direction in which there is a
maximum increase in f

z = f(x, y) = x2 + y2

x, y

2/20

Optimization Algorithms

Core Concepts

• We often want to minimize/maximize a function

• We wanted to minimize the cost function:

• Note: here is the parameter vector

General Components

• Maximize or Minimize a function subject to some constraints

• Today, we focus on unconstrained optimization

• We focus on minimization

f(θ) = (y − Xθ)T (y − Xθ)

θ

noconstraints

3/20

Introduction to Gradient Descent

Key Properties

• Gradient descent is an optimization algorithm

• Used to find the minimum of a function in unconstrained settings

• It is an iterative algorithm

• It is a first order optimization algorithm

• It is a local search algorithm/greedy

Algorithm Steps

 Initialize to some random value

 Compute the gradient of the cost function at :

 For Iteration or until convergence:

θ

θ ∇f(θ)

i where$i = 1, 2, … $

4/20

Taylor's Series Foundation

Basic Form

Taylor's series approximates a function around point using a polynomial:

Vector Form

where is the Hessian matrix and is the gradient vector

f(x) x0

f(x) = f(x0) +
f ′(x0)

1!
(x − x0) +

f ′′(x0)

2!
(x − x0)2 + …

f(→x) = f(→x0) + ∇f(→x0)T (→x − →x0) +
1

2
(→x − →x0)T∇2f(→x0)(→x − →x0) + …

∇2f(→x0) ∇f(→x0)

5/20

From Taylor's Series to Gradient Descent

Minimization Logic

• Goal: Find such that is minimized

• This is equivalent to minimizing

• This happens when vectors and are at phase angle of

• Solution: where is a scalar

The Gradient Descent Update Rule

Δ→x f(→x0 + Δ→x)

f(→x0) + ∇f(→x0)TΔ→x

∇f(→x0) Δ→x 180°

Δ→x = −α∇f(→x0) α

→x1 = →x0 − α∇f(→x0)

6/20

Effect of Learning Rate

Low Learning Rate

Converges slowly

$α = 0.01$

7/20

Effect of Learning Rate

High Learning Rate

Converges quickly, but might overshoot

$α = 0.8$

8/20

Effect of Learning Rate

Very High Learning Rate

Diverges

$α = 1.01$

9/20

Effect of Learning Rate

Appropriate Learning Rate

Just right

$α = 0.1$

10/20

Terminology: Loss vs Cost vs Objective

Loss Function

• Usually defined on a data point, prediction and label

• Measures the penalty

• Example: Square loss

Cost Function

• More general: sum of loss functions over training set plus model complexity penalty

• Example: Mean Squared Error

Objective Function

l(f(xi|θ), yi) = (f(xi|θ) − yi)
2

MSE(θ) = 1
N
∑N

i=1(f(xi|θ) − yi)
2

11/20

Gradient Descent Example

Learn using gradient descent: - Initial:
- Step-size: - Dataset:

x y

1 1

2 2

3 3

Error Calculation

• Predictor:

y = θ0 + θ1x (θ0, θ1) = (4, 0)

α = 0.1

ŷ = θ0 + θ1x

12/20

Gradient Computation

Partial Derivatives

Update Rules

∂MSE

∂θ0
=

2∑i(yi − θ0 − θ1xi)(−1)

N
=

2∑i ϵi(−1)

N

∂MSE

∂θ1
=

2∑i(yi − θ0 − θ1xi)(−xi)

N
=

2∑i ϵi(−xi)

N

θ0 = θ0 − α
∂MSE

∂θ0

13/20

Algorithm Variants

Gradient Descent

• Dataset: of size

• For each epoch:

• Predict

• Compute loss:

• Compute gradient:

• Update:

Stochastic Gradient Descent

• For each epoch:

• Shuffle

GD

D = (X, y) N

ŷ = pred(X, θ)

J(θ) = loss(y, ŷ)

∇J(θ) = grad(J)(θ)

θ = θ − α∇J(θ)

SGD

D

14/20

SGD vs Gradient Descent

Vanilla Gradient Descent

• Updates parameters after going through all data

• Smooth curve for Iteration vs Cost

• Takes more time per update

Stochastic Gradient Descent

• Updates parameters after seeing each point

• Noisier curve for iteration vs cost

• Less time per update

SGD Contour Visualization

computesgradientoverallsamples

gradientoveroneexample

15/20

Mathematical Foundation: Unbiased Estimator

True Gradient

For dataset :

True gradient:

SGD Estimator

D = (x1, y1), (x2, y2), … , (xN , yN)

L(θ) =
1

N

N

∑
i=1

loss(f(xi, θ), yi)

∇L =
1

n

n

∑
i=1

∇ loss(f(xi), yi)

16/20

Computational Complexity Analysis

Normal Equation:

For : - : - Matrix inversion: - : - Final
multiplication:

Total complexity:

θ̂ = (X T X)−1X T y

X ∈ R
N×D XTX O(D2N) O(D3) XTy O(DN)

O(D2)

O(D2N + D3)

17/20

Gradient Descent Complexity

Vectorized update:

Efficient form:

• Pre-compute and :

• Per iteration:

• For iterations:

Alternative form: per iteration

θ = θ − αXT (Xθ − y)

θ = θ − αXTXθ + αXTy

XTX XTy O(D2N)

O(D2)

t O(D2N + tD2) = O((N + t)D2)

O(NDt)

18/20

When to Use Which Algorithm?

Normal Equation

• Good when: is small

• Advantages: Direct solution, no iterations

• Disadvantages: matrix inversion

Gradient Descent

• Good when: is large or is large

• Advantages: Scales well, iterative improvement

• Disadvantages: Requires tuning, local minima

D

O(D3)

D N

19/20

Summary

Key Takeaways

 Gradient Descent is a fundamental optimization algorithm

 Learning rate is crucial - too small , too large

 SGD provides unbiased estimates with faster per-iteration updates

 Computational complexity depends on problem dimensions

 Taylor series provides theoretical foundation

Applications

• Linear regression

• Logistic regression

• Neural networks

α slow divergence

20/20

