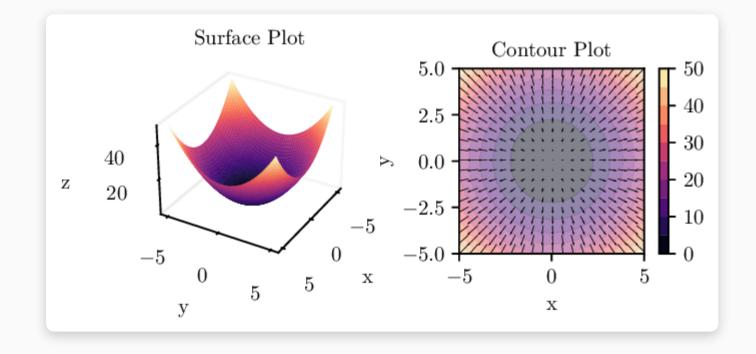
Gradient Descent

Nipun Batra, IIT Gandhinagar

Revision: Contour Plot And Gradients

 $z = f(x, y) = x^2 + y^2$



Gradient denotes the direction of steepest ascent or the direction in which there is a maximum increase in fx, y

Optimization Algorithms

Core Concepts

- We often want to minimize/maximize a function
- We wanted to minimize the cost function:

$$f(heta) = (y - X heta)^T (y - X heta)$$

- Note: here heta is the parameter vector

General Components

- Maximize or Minimize a function subject to some constraints
- Today, we focus on **unconstrained optimization** noconstraints
- We focus on minimization

Introduction to Gradient Descent

Key Properties

- Gradient descent is an optimization algorithm
- Used to find the minimum of a function in unconstrained settings
- It is an **iterative algorithm**
- It is a **first order** optimization algorithm
- It is a local search algorithm/greedy

Algorithm Steps

- **1. Initialize** $\boldsymbol{\theta}$ to some random value
- **2.** Compute the gradient of the cost function at θ : abla f(heta)
- **3.** For Iteration i where i = 1, 2, ..., s or until convergence:

Taylor's Series Foundation

Basic Form

Taylor's series approximates a function f(x) around point x_0 using a polynomial:

$$f(x)=f(x_0)+rac{f'(x_0)}{1!}(x-x_0)+rac{f''(x_0)}{2!}(x-x_0)^2+\dots$$

Vector Form

$$f(ec{x}) = f(ec{x_0}) +
abla f(ec{x_0})^T (ec{x} - ec{x_0}) + rac{1}{2} (ec{x} - ec{x_0})^T
abla^2 f(ec{x_0}) (ec{x} - ec{x_0}) + \dots$$

where $\nabla^2 f(\vec{x_0})$ is the **Hessian matrix** and $\nabla f(\vec{x_0})$ is the **gradient vector**

From Taylor's Series to Gradient Descent

Minimization Logic

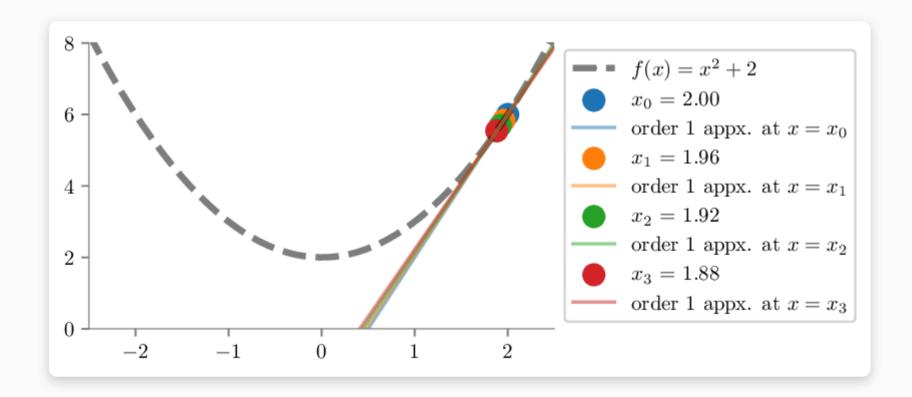
- ullet Goal: Find \Deltaec{x} such that $f(ec{x_0}+\Deltaec{x})$ is minimized
- This is equivalent to minimizing $f(ec{x_0}) +
 abla f(ec{x_0})^T \Delta ec{x}$
- This happens when vectors $abla f(ec{x_0})$ and \Deltaec{x} are at phase angle of $180\,\degree$
- Solution: $\Delta ec{x} = -lpha
 abla f(ec{x_0})$ where lpha is a scalar

The Gradient Descent Update Rule

$$ec{x_1} = ec{x_0} - lpha
abla f(ec{x_0})$$

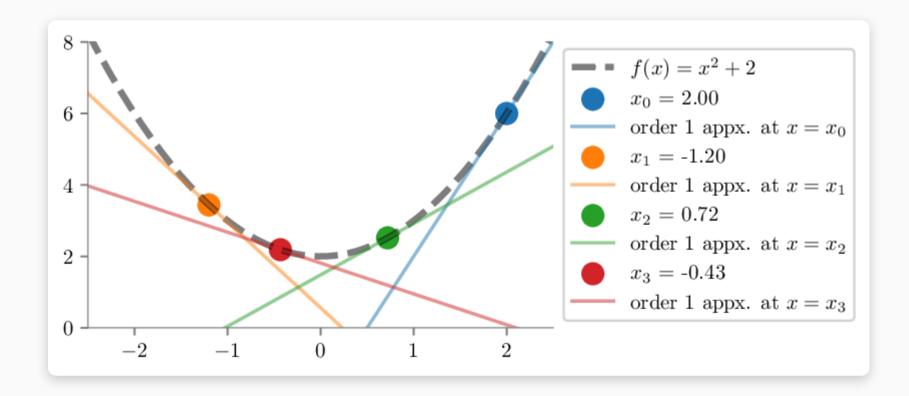
Low Learning Rate lpha = 0.01\$

Converges slowly



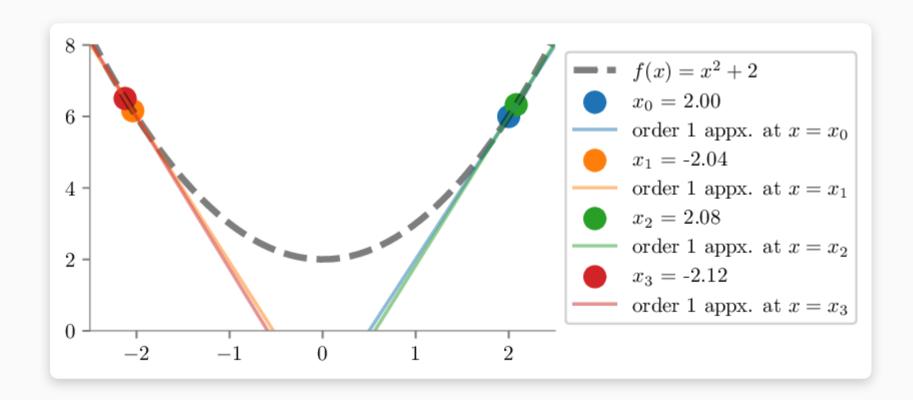
High Learning Rate lpha = 0.8\$

Converges quickly, but might overshoot



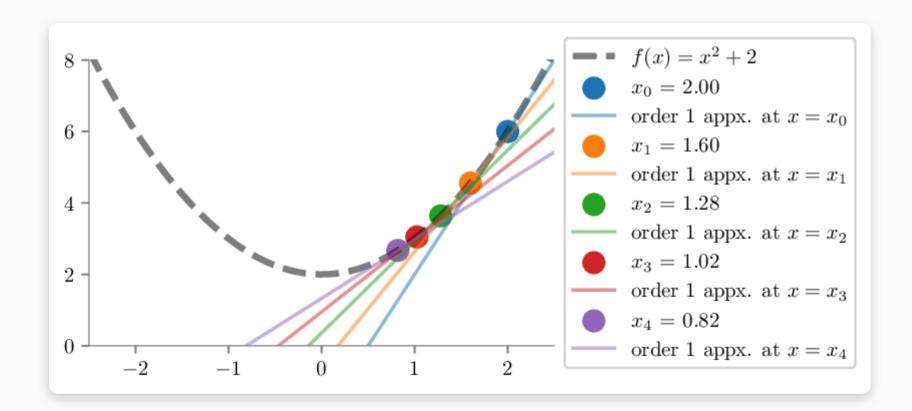
Very High Learning Rate lpha = 1.01\$

Diverges



Appropriate Learning Rate lpha = 0.1\$

Just right



Terminology: Loss vs Cost vs Objective

Loss Function

- Usually defined on a data point, prediction and label
- Measures the penalty
- Example: Square loss $l(f(x_i| heta),y_i)=(f(x_i| heta)-y_i)^2$

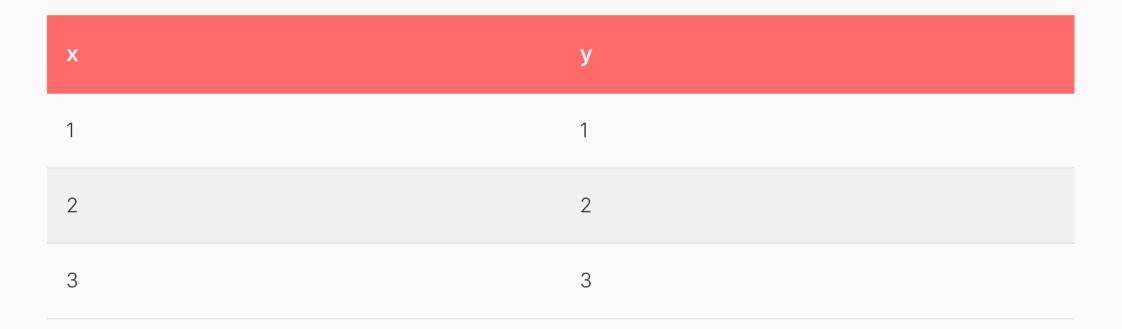
Cost Function

- More general: sum of loss functions over training set plus model complexity penalty
- Example: Mean Squared Error $MSE(heta) = rac{1}{N}\sum_{i=1}^N (f(x_i| heta) y_i)^2$

Objective Function

Gradient Descent Example

Learn $y = \theta_0 + \theta_1 x$ using gradient descent: - Initial: $(\theta_0, \theta_1) = (4, 0)$ - Step-size: $\alpha = 0.1$ - Dataset:



Error Calculation

• Predictor:
$$\hat{y} = heta_0 + heta_1 x$$

Gradient Computation

Partial Derivatives

Update Rules

$$heta_0 = heta_0 - lpha rac{\partial MSE}{\partial heta_0}$$

Algorithm Variants

Gradient Descent GD

- Dataset: D=(X,y) of size N
- For each epoch:
- Predict $\hat{y} = pred(X, heta)$
- Compute loss: $J(heta) = loss(y, \hat{y})$
- Compute gradient: abla J(heta) = grad(J)(heta)
- Update: heta = heta lpha
 abla J(heta)

Stochastic Gradient Descent SGD

- For each epoch:
- Shuffle D

SGD vs Gradient Descent

Vanilla Gradient Descent

- Updates parameters after going through all data
- Smooth curve for Iteration vs Cost
- Takes more time per update *computesgradientoverallsamples*

Stochastic Gradient Descent

- Updates parameters after seeing each point
- Noisier curve for iteration vs cost
- Less time per update gradientoveroneexample

COD Contour Vieualization

Mathematical Foundation: Unbiased Estimator

True Gradient

For dataset $\mathcal{D}=(x_1,y_1),(x_2,y_2),\ldots,(x_N,y_N)$:

$$L(heta) = rac{1}{N}\sum_{i=1}^N loss(f(x_i, heta),y_i)$$

True gradient:

$$abla L = rac{1}{n}\sum_{i=1}^n
abla \log(f(x_i),y_i)$$

16/20

SGD Estimator

Computational Complexity Analysis

Normal Equation:
$$\hat{ heta} = (X^T X)^{-1} X^T y$$

For $X \in \mathbb{R}^{N imes D}$: - $X^T X$: $\mathcal{O}(D^2 N)$ - Matrix inversion: $\mathcal{O}(D^3)$ - $X^T y$: $\mathcal{O}(DN)$ - Final multiplication: $\mathcal{O}(D^2)$

Total complexity: $\mathcal{O}(D^2N+D^3)$

Gradient Descent Complexity

Vectorized update: $heta = heta - lpha X^T (X heta - y)$

Efficient form: $heta = heta - lpha X^T X heta + lpha X^T y$

- Pre-compute X^TX and X^Ty : $\mathcal{O}(D^2N)$
- Per iteration: $\mathcal{O}(D^2)$
- For t iterations: $\mathcal{O}(D^2N+tD^2)=\mathcal{O}((N+t)D^2)$

Alternative form: $\mathcal{O}(NDt)$ per iteration

When to Use Which Algorithm?

Normal Equation

- Good when: D is small
- Advantages: Direct solution, no iterations
- Disadvantages: $\mathcal{O}(D^3)$ matrix inversion

Gradient Descent

- \bullet Good when: D is large or N is large
- Advantages: Scales well, iterative improvement
- Disadvantages: Requires tuning, local minima

Summary

Key Takeaways

- 1. Gradient Descent is a fundamental optimization algorithm
- **2. Learning rate** α is crucial too small slow, too large divergence
- **3. SGD** provides unbiased estimates with faster per-iteration updates
- 4. Computational complexity depends on problem dimensions
- 5. Taylor series provides theoretical foundation

Applications

- Linear regression
- Logistic regression
- Neural networks