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Revision: Contour Plot And Gradients

Gradient denotes the direction of steepest ascent or the direction in which there is a
maximum increase in f

z = f(x, y) = x2 + y2

x, y
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Optimization Algorithms

Core Concepts

• We often want to minimize/maximize a function

• We wanted to minimize the cost function:

• Note: here  is the parameter vector

General Components

• Maximize or Minimize a function subject to some constraints

• Today, we focus on unconstrained optimization 

• We focus on minimization

f(θ) = (y − Xθ)T (y − Xθ)

θ

noconstraints
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Introduction to Gradient Descent

Key Properties

• Gradient descent is an optimization algorithm

• Used to find the minimum of a function in unconstrained settings

• It is an iterative algorithm

• It is a first order optimization algorithm

• It is a local search algorithm/greedy

Algorithm Steps

 Initialize  to some random value

 Compute the gradient of the cost function at : 

 For Iteration   or until convergence:

θ

θ ∇f(θ)

i where$i = 1, 2, … $

4/20



Taylor's Series Foundation

Basic Form

Taylor's series approximates a function  around point  using a polynomial:

Vector Form

where  is the Hessian matrix and  is the gradient vector

f(x) x0

f(x) = f(x0) +
f ′(x0)

1!
(x − x0) +

f ′′(x0)

2!
(x − x0)2 + …

f(→x) = f( →x0) + ∇f( →x0)T (→x − →x0) +
1

2
(→x − →x0)T∇2f( →x0)(→x − →x0) + …

∇2f( →x0) ∇f( →x0)
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From Taylor's Series to Gradient Descent

Minimization Logic

• Goal: Find  such that  is minimized

• This is equivalent to minimizing 

• This happens when vectors  and  are at phase angle of 

• Solution:  where  is a scalar

The Gradient Descent Update Rule

Δ→x f( →x0 + Δ→x)

f( →x0) + ∇f( →x0)TΔ→x

∇f( →x0) Δ→x 180°

Δ→x = −α∇f( →x0) α

→x1 = →x0 − α∇f( →x0)
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Effect of Learning Rate

Low Learning Rate 

Converges slowly

$α = 0.01$
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Effect of Learning Rate

High Learning Rate 

Converges quickly, but might overshoot

$α = 0.8$
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Effect of Learning Rate

Very High Learning Rate 

Diverges

$α = 1.01$

9/20



Effect of Learning Rate

Appropriate Learning Rate 

Just right

$α = 0.1$
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Terminology: Loss vs Cost vs Objective

Loss Function

• Usually defined on a data point, prediction and label

• Measures the penalty

• Example: Square loss 

Cost Function

• More general: sum of loss functions over training set plus model complexity penalty

• Example: Mean Squared Error 

Objective Function

l(f(xi|θ), yi) = (f(xi|θ) − yi)
2

MSE(θ) = 1
N
∑N

i=1(f(xi|θ) − yi)
2
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Gradient Descent Example

Learn  using gradient descent: - Initial: 
- Step-size:  - Dataset:

x y

1 1

2 2

3 3

Error Calculation

• Predictor: 

y = θ0 + θ1x (θ0, θ1) = (4, 0)

α = 0.1

ŷ = θ0 + θ1x
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Gradient Computation

Partial Derivatives

Update Rules

∂MSE

∂θ0
=

2∑i(yi − θ0 − θ1xi)(−1)

N
=

2∑i ϵi(−1)

N

∂MSE

∂θ1
=

2∑i(yi − θ0 − θ1xi)(−xi)

N
=

2∑i ϵi(−xi)

N

θ0 = θ0 − α
∂MSE

∂θ0
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Algorithm Variants

Gradient Descent 

• Dataset:  of size 

• For each epoch:

• Predict 

• Compute loss: 

• Compute gradient: 

• Update: 

Stochastic Gradient Descent 

• For each epoch:

• Shuffle 

GD

D = (X, y) N

ŷ = pred(X, θ)

J(θ) = loss(y, ŷ)

∇J(θ) = grad(J)(θ)

θ = θ − α∇J(θ)

SGD

D
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SGD vs Gradient Descent

Vanilla Gradient Descent

• Updates parameters after going through all data

• Smooth curve for Iteration vs Cost

• Takes more time per update 

Stochastic Gradient Descent

• Updates parameters after seeing each point

• Noisier curve for iteration vs cost

• Less time per update 

SGD Contour Visualization

computesgradientoverallsamples

gradientoveroneexample
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Mathematical Foundation: Unbiased Estimator

True Gradient

For dataset :

True gradient:

SGD Estimator

D = (x1, y1), (x2, y2), … , (xN , yN)

L(θ) =
1

N

N

∑
i=1

loss(f(xi, θ), yi)

∇L =
1

n

n

∑
i=1

∇ loss(f(xi), yi)
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Computational Complexity Analysis

Normal Equation: 

For : - :  - Matrix inversion:  - :  - Final
multiplication: 

Total complexity: 

θ̂ = (X T X)−1X T y

X ∈ R
N×D XTX O(D2N) O(D3) XTy O(DN)

O(D2)

O(D2N + D3)
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Gradient Descent Complexity

Vectorized update: 

Efficient form: 

• Pre-compute  and : 

• Per iteration: 

• For  iterations: 

Alternative form:  per iteration

θ = θ − αXT (Xθ − y)

θ = θ − αXTXθ + αXTy

XTX XTy O(D2N)

O(D2)

t O(D2N + tD2) = O((N + t)D2)

O(NDt)
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When to Use Which Algorithm?

Normal Equation

• Good when:  is small

• Advantages: Direct solution, no iterations

• Disadvantages:  matrix inversion

Gradient Descent

• Good when:  is large or  is large

• Advantages: Scales well, iterative improvement

• Disadvantages: Requires tuning, local minima

D

O(D3)

D N
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Summary

Key Takeaways

 Gradient Descent is a fundamental optimization algorithm

 Learning rate  is crucial - too small , too large 

 SGD provides unbiased estimates with faster per-iteration updates

 Computational complexity depends on problem dimensions

 Taylor series provides theoretical foundation

Applications

• Linear regression

• Logistic regression

• Neural networks

α slow divergence
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