INDiC: Improved Non-Intrusive load monitoring using load Division and Calibration

> Nipun Batra Haimonti Dutta

Amarjeet Singh

INDRAPRASTHA INSTITUTE of INFORMATION TECHNOLOGY DELHI

11/20/2013

CCLS

2

Motivation

- Buildings contribute significantly to overall energy (electricity, gas, etc.) usage
- New buildings constructed at rapid rate

Contribution of buildings to overall energy consumption (2011)

Efficacy of appliance specific feedback

Providing appliance specific feedback to end users can save upto 15% energy.

	Enhanced Billing Household advice	4%				
	Estimated For Web-based en with info on or	eedback nergy audits 7% ngoing basis	,			
Type	Daily/ Weekly Feed Household-sp on daily or we	dback becific info, advise bekly basis	8%			
back [.]	Real-Time For Real-time pre	eedback mise level info	9%	_		
Feed	Real-Time P Real-time info	lus Appliance Fe down to the applia	edback nce level	12%		
	Appliance For Diagnostics, r	eedback, Augmen eccommendations,	n ted channeling to	programs, and select automa	ition ?%	
	Energy S	avings Poten	itial		20%+	
		Annual	Energ	y Savings	(Top 4 bars from Donnelly, & Lait	n Ehrhardt-Martinez, ner, 2010)

3

Systems for providing appliance specific feedback

Appliance monitors

- Provide appliance specific information
- Scale poorly
- Cost increases with each appliance
- Intrusive

Smart meter

- Give whole home power information
- Information must somehow be broken into different appliances
- Non intrusive
- Cost effective

Non Intrusive Load Monitoring (NILM)

Breaking down aggregate power observed at meter into different appliances

Why NILM works?

- Each appliance has a unique signature
- This is based on the appliance circuitry

Borrowed from Empirical Characterization and Modeling of Electrical Loads in Smart Homes, Barker et. al

Key Idea I-Load division

Different loads are assigned to different mains

Smart meter capable of measuring individual mains

- Instead of doing NILM on Mains 1+ Mains 2, as done before, perform NILM on both separately
- Intuition:
 - Separating out independent components
 - Less noise (as noise is distributed too!)
 - More scalable

Key Idea II- Calibration

Different appliance monitors may measure different power for the same appliance

Key Idea II- Calibration

Experiments-I Load Division

- REDD dataset from MIT
- Problem complexity almost halved!

Experiment II Calibration

- Unaccounted power or noise reduces after calibration
- Should improve accuracy
- Before calibration

After calibration

Combinatorial Optimization (CO) based NILM

- Take all possible combinations of appliances in different states and match to total power
- Exponential in number of appliances
- Load division gives exponential improvements!!

Toy example illustrating CO

Fan	AC	Total Power (W)
OFF	OFF	0
OFF	ON	1000
ON	OFF	200
ON	ON	1200

Evaluation Metrics

- Mean Normalized Error (MNE)
 - Normalized error in energy assigned to an appliance
 - Given by

 $\sum_{t} |Predicted Power_t - Actual Power_t| / \sum_t |Actual Power_t|$

- RMS Error (RE (Watts))
 - RMS error in power assigned to an appliance

	Results							[i,j] entry: Number of			
_	۰R	efrigerato	instances efrigerator's accuracy improves significantly in i th state								
				Refrigerato	or Cor	fusion Matr	ix	pred	icted		\searrow
		Without	INDiC			With	n INDiC	in J ^{ui}	state		
		State 1	State 2	State 3			State 1	St	tate 2	State	3
State	1	4740	288	41		State 1	4541	4	30	98	
State	2	1775	2860	176		State 2	221	4	434	156	
State	3	112	63	25		State 3	5	4	4	151	

Both MNE and RE reduce significantly after applying INDiC

Appliance	Without INDIC		With INDiC	
	MNE (%)	RE (W)	MNE (%)	RE (W)
Refrigerator	52	91	25	67
Dishwasher	662	131	73	52
Lighting	176	64	63	43

Acknowledgments

- TCS Research and Development for supporting Nipun Batra through PhD fellowship
- NSF-DEITy for project fund

