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Minimax Inequality

• Minimax inequality

states:maxy minx q(x , y) 6 minx maxy q(x , y)

• We first prove For all x , y minx q(x , y) 6 maxy q(x , y)
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Minimax Inequality

• Let us choose q(x , y) = xy

• Let us first find maxy q(x , y)

x 1 1 2 3 4

⇓ 2 2 4 6 8

3 3 6 9 12

4 4 8 12 16

1 2 3 4

y ⇒
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Minimax Inequality

• For each value of x , we find y that maximizes q(x , y)

• y = 4 maximizes q(x , y) ∀x
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Minimax Inequality

• For each value of y , we find x that minimizes q(x , y)

• x = 1 minimizes q(x , y) ∀y
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Minimax Inequality
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Minimax Inequality

• We just showed For all x , y minx q(x , y) 6 maxy q(x , y)

• The equality occurs at x = 1, y = 4

x 1 1 2 3 4

⇓ 2 2 4 6 8

3 3 6 9 12

4 4 8 12 16

1 2 3 4

y ⇒

5



Minimax Inequality

• We just showed For all x , y minx q(x , y) 6 maxy q(x , y)

• The equality occurs at x = 1, y = 4

x 1 1 2 3 4

⇓ 2 2 4 6 8

3 3 6 9 12

4 4 8 12 16

1 2 3 4

y ⇒

5



Minimax Inequality

• Let us now find maxy minx q(x , y)
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Minimax Inequality

• Similarly, let us now find minx maxy q(x , y)

• We can thus see our Minimax inequality

maxy minx q(x , y) 6 minx maxy q(x , y)
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Revisiting the Lagrange multipliers

Our problem is of the form

minx f (x)

subject to gi (x) 6 0 for all i = 1, . . . ,m

Idea: Convert constrained problem to an unconstrained problem

J(x) = f (x) +
m∑

i=1

1 (gi (x))

where 1(z) is an infinite step function

1(z) =

{
0 if z 6 0

∞ otherwise

This would give infinte penalty if constraint is not satisfied. But,

this formulation is hard to solve too.
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Revisiting the Lagrange multipliers

Idea: Introduce Lagrange multipliers (λi ≥ 0) to “approximate”

J(x)

L(x ,λ) = f (x) +
m∑

i=1

λigi (x)

What is the relationship between L(x ,λ) and J(x) given λi ≥ 0?

When λ > 0, the Lagrangian L(x , λ) is a lower bound of J(x).

Hence, the maximum of L(x ,λ) with respect to λ is

J(x) = max
λ>0

L(x ,λ)
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Revisiting the Lagrange multipliers

J(x) = max
λ>0

L(x ,λ)

But, our original problem was minimizing J(x), which is equivalent

to:

min
x∈Rd

max
λ>0

L(x ,λ)

Using the Minimax inequality, we can write:

min
x∈Rd

max
λ>0

L(x ,λ) > max
λ>0

min
x∈Rd

L(x ,λ)

We can write the dual objective as a function of λ as

D(λ) = minx∈Rd L(x ,λ)
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Revisiting the Lagrange multipliers

• Primal objective:

minx f (x)

subject to gi (x) 6 0 for all i = 1, . . . ,m

• Or, primal objective = J(x) ≥ maxλD(λ)

• Or, primal objective (in terms of x) ≥ dual objective (in terms

of λ)

• For SVM like formulations, primal objective is the same as

dual objective (strong duality)

• For some problems, there is a “daulity-gap” between the two

objectives
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