Constrained Optimization II

Nipun Batra July 26, 2025

IIT Gandhinagar

Lagrangian and Duality

Nipun Batra June 28, 2020

IIT Gandhinagar Lectures heavily inspired by the Maths for Machine learning book Minimax inequality states:max_y min_x q(x, y) ≤ min_x max_y q(x, y)

- Minimax inequality states:max_y min_x $q(x, y) \leq \min_x \max_y q(x, y)$
- We first prove For all $x, y = \min_{x} q(x, y) \leq \max_{y} q(x, y)$

• Let us choose
$$q(x, y) = xy$$

- Let us choose q(x, y) = xy
- Let us first find $\max_{y} q(x, y)$

- Let us choose q(x, y) = xy
- Let us first find $\max_{y} q(x, y)$

- Let us choose q(x, y) = xy
- Let us first find $\max_{y} q(x, y)$

• For each value of x, we find y that maximizes q(x, y)

- For each value of x, we find y that maximizes q(x, y)
- y = 4 maximizes $q(x, y) \forall x$

• For each value of y, we find x that minimizes q(x, y)

x	1	1	2	3	4
\Downarrow	2	2	4	6	8
	3	3	6	9	12
	4	4	8	12	16
		1	2	3	4
		y	\Rightarrow		

- For each value of y, we find x that minimizes q(x, y)
- x = 1 minimizes $q(x, y) \forall y$

X	1	1	2	3	4
₩	2	2	4	6	8
	3	3	6	9	12
	4	4	8	12	16
		1	2	3	4
		y	\Rightarrow		

• We just showed For all $x, y = \min_{x} q(x, y) \leqslant \max_{y} q(x, y)$

x	1	1	2	3	4
₩	2	2	4	6	8
	3	3	6	9	12
	4	4	8	12	16
		1	2	3	4
		y	\Rightarrow		

- We just showed For all $x, y = \min_{x} q(x, y) \leqslant \max_{y} q(x, y)$
- The equality occurs at x = 1, y = 4

x	1	1	2	3	4
₩	2	2	4	6	8
	3	3	6	9	12
	4	4	8	12	16
		1	2	3	4
		y	\Rightarrow		

• Let us now find $\max_{y} \min_{x} q(x, y)$

X	1	1	2	3	4
\Downarrow	2	2	4	6	8
	3	3	6	9	12
	4	4	8	12	16
		1	2	3	4
		y	\Rightarrow		

• Similarly, let us now find $\min_{x} \max_{y} q(x, y)$

- Similarly, let us now find $\min_{x} \max_{y} q(x, y)$
- We can thus see our Minimax inequality $\max_{y} \min_{x} q(x, y) \leq \min_{x} \max_{y} q(x, y)$

x	1	1	2	3	4
\Downarrow	2	2	4	6	8
	3	3	6	9	12
	4	4	8	12	16
		1	2	3	4
		V	\Rightarrow		

 $\begin{array}{ll} \min_{\boldsymbol{x}} & f(\boldsymbol{x}) \\ \text{subject to} & g_i(\boldsymbol{x}) \leqslant 0 \quad \text{for all} \quad i=1,\ldots,m \end{array}$

$$\begin{array}{ll} \min_{\boldsymbol{x}} & f(\boldsymbol{x}) \\ \text{subject to} & g_i(\boldsymbol{x}) \leqslant 0 \quad \text{for all} \quad i=1,\ldots,m \\ \end{array}$$

Idea: Convert constrained problem to an unconstrained problem

$$J(\boldsymbol{x}) = f(\boldsymbol{x}) + \sum_{i=1}^{m} \mathbf{1}(g_i(\boldsymbol{x}))$$

$$\begin{array}{ll} \min_{\boldsymbol{x}} & f(\boldsymbol{x}) \\ \text{subject to} & g_i(\boldsymbol{x}) \leqslant 0 \quad \text{for all} \quad i=1,\ldots,m \end{array}$$

Idea: Convert constrained problem to an unconstrained problem

$$J(\boldsymbol{x}) = f(\boldsymbol{x}) + \sum_{i=1}^{m} \mathbf{1}(g_i(\boldsymbol{x}))$$

where 1(z) is an infinite step function

$$\mathbf{1}(z) = \left\{egin{array}{cc} 0 & ext{if } z \leqslant 0 \ \infty & ext{otherwise} \end{array}
ight.$$

$$\begin{array}{ll} \min_{\boldsymbol{x}} & f(\boldsymbol{x}) \\ \text{subject to} & g_i(\boldsymbol{x}) \leqslant 0 \quad \text{for all} \quad i=1,\ldots,m \end{array}$$

Idea: Convert constrained problem to an unconstrained problem

$$J(\boldsymbol{x}) = f(\boldsymbol{x}) + \sum_{i=1}^{m} \mathbf{1}(g_i(\boldsymbol{x}))$$

where 1(z) is an infinite step function

$$\mathbf{1}(z) = \left\{egin{array}{cc} 0 & ext{if } z \leqslant 0 \ \infty & ext{otherwise} \end{array}
ight.$$

This would give infinite penalty if constraint is not satisfied. But, this formulation is hard to solve too.

Idea: Introduce Lagrange multipliers ($\lambda_i \ge 0$) to "approximate" J(x)

$$\mathfrak{L}(\mathbf{x}, \boldsymbol{\lambda}) = f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x})$$

Idea: Introduce Lagrange multipliers $(\lambda_i \ge 0)$ to "approximate" J(x)

$$\mathfrak{L}(\mathbf{x}, \boldsymbol{\lambda}) = f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x})$$

What is the relationship between $\mathfrak{L}(\mathbf{x}, \lambda)$ and $J(\mathbf{x})$ given $\lambda_i \geq 0$?

Idea: Introduce Lagrange multipliers ($\lambda_i \ge 0$) to "approximate" J(x)

$$\mathfrak{L}(\mathbf{x}, \boldsymbol{\lambda}) = f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x})$$

What is the relationship between $\mathfrak{L}(\mathbf{x}, \lambda)$ and $J(\mathbf{x})$ given $\lambda_i \ge 0$? When $\lambda \ge 0$, the Lagrangian $\mathcal{L}(\mathbf{x}, \lambda)$ is a lower bound of $J(\mathbf{x})$. Hence, the maximum of $\mathfrak{L}(\mathbf{x}, \lambda)$ with respect to λ is

$$J(\mathbf{x}) = \max_{\mathbf{\lambda} \geqslant 0} \mathfrak{L}(\mathbf{x}, \mathbf{\lambda})$$

$$J(\mathbf{x}) = \max_{\mathbf{\lambda} \ge 0} \mathfrak{L}(\mathbf{x}, \mathbf{\lambda})$$

$$J(\mathbf{x}) = \max_{\mathbf{\lambda} \geqslant 0} \mathfrak{L}(\mathbf{x}, \mathbf{\lambda})$$

$$\min_{\boldsymbol{x} \in \mathbb{R}^d} \max_{\boldsymbol{\lambda} \geqslant \boldsymbol{0}} \mathfrak{L}(\boldsymbol{x}, \boldsymbol{\lambda})$$

$$J(\mathbf{x}) = \max_{\mathbf{\lambda} \geqslant 0} \mathfrak{L}(\mathbf{x}, \mathbf{\lambda})$$

 $\min_{\pmb{x}\in\mathbb{R}^d}\max_{\pmb{\lambda}\geqslant\pmb{0}}\mathfrak{L}(\pmb{x},\pmb{\lambda})$

Using the Minimax inequality, we can write:

$$J(\mathbf{x}) = \max_{\mathbf{\lambda} \geqslant 0} \mathfrak{L}(\mathbf{x}, \mathbf{\lambda})$$

 $\min_{\pmb{x}\in\mathbb{R}^d}\max_{\pmb{\lambda}\geqslant\pmb{0}}\mathfrak{L}(\pmb{x},\pmb{\lambda})$

Using the Minimax inequality, we can write:

$$\min_{\boldsymbol{x} \in \mathbb{R}^d} \max_{\boldsymbol{\lambda} \geqslant \boldsymbol{0}} \mathfrak{L}(\boldsymbol{x}, \boldsymbol{\lambda}) \geqslant \max_{\boldsymbol{\lambda} \geqslant \boldsymbol{0}} \min_{\boldsymbol{x} \in \mathbb{R}^d} \mathfrak{L}(\boldsymbol{x}, \boldsymbol{\lambda})$$

$$J(\mathbf{x}) = \max_{\mathbf{\lambda} \geqslant 0} \mathfrak{L}(\mathbf{x}, \mathbf{\lambda})$$

 $\min_{\boldsymbol{x} \in \mathbb{R}^d} \max_{\boldsymbol{\lambda} \geqslant \boldsymbol{0}} \mathfrak{L}(\boldsymbol{x}, \boldsymbol{\lambda})$

Using the Minimax inequality, we can write:

$$\min_{\boldsymbol{x} \in \mathbb{R}^d} \max_{\boldsymbol{\lambda} \geqslant \boldsymbol{0}} \mathfrak{L}(\boldsymbol{x}, \boldsymbol{\lambda}) \geqslant \max_{\boldsymbol{\lambda} \geqslant \boldsymbol{0}} \min_{\boldsymbol{x} \in \mathbb{R}^d} \mathfrak{L}(\boldsymbol{x}, \boldsymbol{\lambda})$$

We can write the dual objective as a function of λ as $\mathfrak{D}(\lambda) = \min_{\mathbf{x} \in \mathbb{R}^d} \mathfrak{L}(\mathbf{x}, \lambda)$

$$\begin{array}{ll} \min_{\boldsymbol{x}} & f(\boldsymbol{x}) \\ \text{subject to} & g_i(\boldsymbol{x}) \leqslant 0 \quad \text{for all} \quad i=1,\ldots,m \end{array}$$

• Primal objective:

$$\begin{array}{ll} \min_{\boldsymbol{x}} & f(\boldsymbol{x}) \\ \text{subject to} & g_i(\boldsymbol{x}) \leqslant 0 \quad \text{for all} \quad i=1,\ldots,m \end{array}$$

• Or, primal objective = $J(x) \ge \max_{\lambda} \mathfrak{D}(\lambda)$

$$\begin{array}{ll} \min_{\boldsymbol{x}} & f(\boldsymbol{x}) \\ \text{subject to} & g_i(\boldsymbol{x}) \leqslant 0 \quad \text{for all} \quad i=1,\ldots,m \end{array}$$

- Or, primal objective $= J(x) \ge \max_{\lambda} \mathfrak{D}(\lambda)$
- Or, primal objective (in terms of x) ≥ dual objective (in terms of λ)

$$\begin{array}{ll} \min_{\boldsymbol{x}} & f(\boldsymbol{x}) \\ \text{subject to} & g_i(\boldsymbol{x}) \leqslant 0 \quad \text{for all} \quad i=1,\ldots,m \end{array}$$

- Or, primal objective = $J(x) \ge \max_{\lambda} \mathfrak{D}(\lambda)$
- Or, primal objective (in terms of x) ≥ dual objective (in terms of λ)
- For SVM like formulations, primal objective is the same as dual objective (strong duality)

$$\begin{array}{ll} \min_{\boldsymbol{x}} & f(\boldsymbol{x}) \\ \text{subject to} & g_i(\boldsymbol{x}) \leqslant 0 \quad \text{for all} \quad i=1,\ldots,m \end{array}$$

- Or, primal objective = $J(x) \ge \max_{\lambda} \mathfrak{D}(\lambda)$
- Or, primal objective (in terms of x) ≥ dual objective (in terms of λ)
- For SVM like formulations, primal objective is the same as dual objective (strong duality)
- For some problems, there is a "daulity-gap" between the two objectives