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Maths for ML

1. Given a vector of ϵ, we can calculate
∑

ϵ2i using ϵTϵ

ϵ =


ϵ1
ϵ2
. . .
ϵN


N×1

ϵT =
[
ϵ1, ϵ2, . . . , ϵN

]
1×N

ϵTϵ =
∑

ϵ2i
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Maths for ML

2.
(AB)T = BTAT

3. For a scalar s
s = sT
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Maths for ML

4. Derivative of a scalar s wrt a vector θ

θ =


θ1
θ2
...
θN



∂s
∂θ

=


∂s
∂θ1
∂s
∂θ2...
∂s
∂θN


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Linear Functions: Row Vector Times Column Vector

Definition: Setup

Configuration:

• AT is a row vector (1× n matrix)
• θ is a column vector (n × 1 matrix)
• ATθ produces a scalar

Example: Concrete Example

θ =

[
θ1
θ2

]
2×1

, AT =
[
A1 A2

]
1×2
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Linear Functions: Row Vector Times Column Vector

Key Points: Matrix Multiplication Result

ATθ = A1θ1 + A2θ2

This is a scalar! (Linear combination of parameters)

Important: ML Relevance

This form appears everywhere in ML:

• Linear regression: wTx
• Neural networks: wTh + b
• Loss functions: cTθ
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Gradient of Linear Function: Key Result

Key Points: Computing the Gradient

Goal: Find ∂ATθ
∂θ where ATθ = A1θ1 + A2θ2

Example: Step-by-Step Calculation

∂ATθ

∂θ
=

[
∂

∂θ1
(A1θ1 + A2θ2)

∂
∂θ2

(A1θ1 + A2θ2)

]

=

[
A1

A2

]
2×1

= A
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Gradient of Linear Function: Key Result

Important: Fundamental Rule

∂ATθ

∂θ
= A

This is one of the most important rules in ML opti-
mization!
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Quadratic Forms and
Their Derivatives



Quadratic Forms: Introduction

Definition: Quadratic Form Derivative Rule

Key Result: For matrix Z of form XTX:

∂

∂θ
(θTZθ) = 2ZTθ

Example: Understanding XTX Matrices

Starting with:

X =

[
a b
c d

]
, XT =

[
a c
b d

]
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Quadratic Forms: Introduction

Key Points: Computing Z = XTX

Z = XTX =

[
a2 + c2 ab + cd
ab + cd b2 + d2

]
2×2

Important: Symmetric Property

Key Observation: Zij = Zji ⇒ ZT = Z (symmetric matrix)
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Maths for ML
Let

Z = XTX =

[
e f
f g

]
2×2

θ =

[
θ1
θ2

]
2×1

θTZθ =
[
θ1 θ2

]
1×2

[
e f
f g

]
2×2

[
θ1
θ2

]
2×1

θTZθ =
[
θ1 θ2

]
1×2

[
eθ1 + fθ2
fθ1 + gθ2

]
2×1

θTZθ = eθ21 + 2fθ1θ2 + gθ22
The term θTZθ is a scalar.
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∂

∂θ
θTZθ =

∂

∂θ
(eθ21 + 2fθ1θ2 + gθ22)

=


∂

∂θ1
(eθ21 + 2fθ1θ2 + gθ22)

∂

∂θ2
(eθ21 + 2fθ1θ2 + gθ22)


=

[
2eθ1 + 2fθ2
2fθ1 + 2gθ2

]
= 2

[
e f
f g

] [
θ1
θ1

]
= 2Zθ = 2ZTθ
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Matrix Rank and
Invertibility



Matrix Rank: Fundamental Concept

Definition: What is Matrix Rank?

Rank = Maximum number of linearly independent rows (or
columns)

Key Points: Two Equivalent Perspectives

For an r × c matrix:

• Row perspective: r row vectors, each with c elements
• Column perspective: c column vectors, each with r

elements
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Matrix Rank: Fundamental Concept

Example: Maximum Rank Rules

• If r < c: Maximum rank = r (more columns than rows)
• If r > c: Maximum rank = c (more rows than columns)
• If r = c: Maximum rank = r = c (square matrix)
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Maths for ML: Matrix Rank

• Given a matrix A:  0 1 2
1 2 1
2 7 8


• What is the rank?
• r = c = 3. Thus, rank is <= 3

• Row(3) = 3 × Row(1) + 2 × Row(2).
• Thus, Row(3) is linearly dependent on Row(1) and Row(2).
• rank(A)=2
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Maths for ML: Matrix Rank

What is the rank of

X =

[
1 2 4 4
3 4 8 0

]
Since X has fewer rows than columns, its maximum rank is
equal to the maximum number of linearly independent rows.
And because neither row is linearly dependent on the other row,
the matrix has 2 linearly independent rows; so its rank is 2.
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Pop Quiz #1

Answer this!
What is the rank of a 3×3 matrix A formed by the outer product
of two non-zero vectors, u (3× 1) and vT (1× 3)?

A = uvT =

u1

u2

u3

 [
v1 v2 v3

]

A) 0
B) 1
C) 2
D) 3

Answer: B) 1
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Maths for ML: Rank of an Outer Product

Key Points: Matrix Formation

First, let’s construct the matrix A = uvT:

A =

u1
u2
u3

 [
v1 v2 v3

]
=

u1v1 u1v2 u1v3
u2v1 u2v2 u2v3
u3v1 u3v2 u3v3


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Maths for ML: Rank of an Outer Product

• Look at the columns: Each column is just a scalar multiple of the
original vector u.

Column 1 = v1u, Column 2 = v2u, Column 3 = v3u

• Look at the rows: Similarly, each row is a scalar multiple of the original
vector vT.

Row 1 = u1vT, Row 2 = u2vT, Row 3 = u3vT

Important: Conclusion

Since all rows and columns are linearly dependent on a single vector,
the maximum number of linearly independent rows (or columns) is one.
Therefore, the rank of the matrix is 1.
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Maths for ML: Matrix Inverse

Suppose A is an n × n matrix. The inverse of A is another n × n
matrix, denoted A−1, that satisfies the following conditions.

AA−1 = A−1A = In

where In is the identity matrix.
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Maths for ML: Matrix Inverse

There are two ways to determine whether the inverse of a square
matrix exists.

• If the rank of an n × n matrix is less than n, the matrix does
not have an inverse.

• When the determinant for a square matrix is equal to zero,
the inverse for that matrix does not exist.

A square matrix that has an inverse is said to be nonsingular or
invertible; a square matrix that does not have an inverse is said
to be singular.
Not every square matrix has an inverse; but if a matrix does
have an inverse, it is unique.
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Generalizing Derivatives:
Gradients and Jacobians



Derivatives of Rn → R: The Gradient

Definition: Recap: Derivative of a Scalar Function

For a function f : Rn → R that takes a vector θ ∈ Rn and returns a
scalar, its derivative is the gradient.

∇f(θ) = ∂f
∂θ

=


∂f
∂θ1
∂f
∂θ2
...
∂f
∂θn


n×1

Note: By convention in ML, the gradient is a column vector.

Important: Geometric Intuition

The gradient vector ∇f(θ) points in the direction of the steepest as-
cent of the function f at point θ. The magnitude ||∇f(θ)|| gives the
rate of that increase.
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From Rn → R to Rn → Rm

Important: Handling Vector Outputs

What if our function takes a vector and also outputs a vec-
tor?

Let f : Rn → Rm. We can think of f as a stack of m
scalar-valued functions:

f(θ) =


f1(θ)
f2(θ)

...
fm(θ)


m×1

Question: How do we differentiate f with respect to θ?
We need to track how every output changes with respect
to every input.
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The Jacobian Matrix

Definition: The Derivative of a Vector Function

The derivative of f : Rn → Rm is the Jacobian matrix J,
an m × n matrix of all first-order partial derivatives.

J =
∂f
∂θ

=


∂f1
∂θ1

∂f1
∂θ2

· · · ∂f1
∂θn

∂f2
∂θ1

∂f2
∂θ2

· · · ∂f2
∂θn... ... . . . ...

∂fm
∂θ1

∂fm
∂θ2

· · · ∂fm
∂θn


m×n

Key Structure: Row i of the Jacobian is the transpose of
the gradient of the i-th output function, fi.

(J)[i,:] = (∇fi(θ))T
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Jacobian: A Concrete Example

Example: Let’s Compute a Jacobian

Consider f : R2 → R2 with θ = [θ1, θ2]
T.

f(θ) =
[
f1(θ1, θ2)
f2(θ1, θ2)

]
=

[
θ21θ2

5θ1 + sin(θ2)

]
The Jacobian J will be a 2× 2 matrix.

J =

[
∂f1
∂θ1

∂f1
∂θ2

∂f2
∂θ1

∂f2
∂θ2

]

J =

[
2θ1θ2 θ21
5 cos(θ2)

]
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Visualizing Functions: Graphs and Level Sets

Definition: The Graph of a Function

For a function f : Rn → R, its graph is the set of all input-output pairs.

Graph(f) = {(θ, f(θ)) | θ ∈ Rn}

This graph lives in one higher dimension, Rn+1.
Example: For f : R2 → R, the graph is a surface in 3D space.

Definition: Level Sets (Contours)

A level set (or contour) is the set of all points in the domain where the
function’s output is a constant value, c.

Level Setc = {θ ∈ Rn | f(θ) = c}

This set lives in the original domain space, Rn.
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Surplus - Directional Derivative

Important: Why the Gradient is the Steepest Direction

• Let’s define a line through x ∈ Rn on the function
f : Rn → R in direction v as c(t) = x + tv. The rate of
change of f along this line is d

dt f(c(t)).
• Using the chain rule, this derivative is ∇f(c(t)) · c′(t).

At our point x (where t = 0), this becomes ∇f(x) · v.
• From geometry, we know
∇f(x) · v = ||∇f(x)|| ||v|| cos(θ). Since ||v|| = 1, this
value is maximized when cos(θ) = 1.

• This occurs when v points in the same direction as
∇f(x). Thus, the gradient points in the direction of
steepest ascent.
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