Contour Plots & Gradients

Nipun Batra and teaching staff

IIT Gandhinagar

August 22, 2025

Table of Contents

1. Understanding Contour Plots

2. Gradients and Contour Plots

Understanding Contour Plots

Introduction to Contour Plots

Definition: What is a Contour Plot?

Concept: A contour plot shows curves where a function f(x, y) = K for different constant values K

Example: Function: $z = f(x, y) = x^2 + y^2$

Circular Contours

Introduction to Contour Plots

Key Points:

Key Insight: Each contour line represents all points (x,y) where f(x,y)=K for a specific constant K

Contour Example: Parabolic Function

Example: Function: $z = f(x, y) = x^2$

Note: This function depends only on x, not on y!

Contour Example: Parabolic Function

Key Points:

Observation: Contour lines are vertical because $f(x, y) = x^2$ is constant for all y values when x is fixed

Important: ML Connection

This represents: A loss function that doesn't depend on one of the parameters!

Contour Example: Manhattan Distance

Example: Function: z = f(x, y) = |x| + |y|

Also known as: Manhattan distance or L1 norm

Contour Example: Manhattan Distance

Key Points:

Shape: Diamond-shaped contours due to absolute value functions

Important: ML Connection

This represents: L1 regularization in machine learning (promotes sparsity!)

Contour Example: Polynomial Function

Example: Function: $z = f(x, y) = x^2 \cdot y$

Type: Mixed polynomial (quadratic in x, linear in y)

Contour Example: Polynomial Function

Key Points:

Key Features:

- Asymmetric contours
- Different behavior above and below y = 0
- Non-linear interaction between variables

Important: ML Connection

This represents: Complex loss surfaces with variable interactions

Contour Example: Hyperbolic Function

Example: Function: z = f(x, y) = xy

Type: Bilinear function (linear in each variable separately)

Contour Example: Hyperbolic Function

Key Points:

Shape: Hyperbolic contours with saddle point at the origin

Important: ML Significance

Saddle points: Common in neural network optimization - neither minimum nor maximum!

Gradients and Contour Plots

Understanding Gradients

Definition: What is a Gradient?

Gradient ∇f : Vector pointing in the direction of steepest increase of function f

Key Points: Key Properties

- Direction: Points toward steepest ascent
- · Magnitude: Rate of steepest change
- Contour relationship: Always perpendicular to contour lines

Understanding Gradients

Example: Fundamental Insight

All points on the same contour have identical f(x, y) values Moving along a contour: No change in function value Moving perpendicular to contour: Maximum change in function value

Important: ML Application

Gradient descent: Move opposite to gradient direction to minimize loss!

Gradients Visualized: Circular Contours

Example: Function: $z = f(x, y) = x^2 + y^2$

Gradient: $\nabla f = \begin{bmatrix} 2x \\ 2y \end{bmatrix}$

Gradients Visualized: Circular Contours

Key Points:

Observations:

- · Gradient arrows point radially outward
- Arrows are perpendicular to circular contours
- Magnitude increases away from origin
- · All arrows point toward steepest ascent

Important: Perfect for Optimization

This is an ideal optimization landscape: Single global minimum at origin!

Gradient Properties: Key Insights

Important: Direction Interpretation

Steepest Ascent: Gradient ∇f points toward maximum increase

in f(x, y)

Steepest Descent: $-\nabla f$ points toward maximum decrease in

f(x, y)

Key Points: Contour Relationship

- Same contour: All points have identical f(x, y) values
- Gradient direction: Always perpendicular to contour lines
- Zero gradient: Occurs at critical points (minima, maxima, saddle points)

Gradient Properties: Key Insights

Definition: Machine Learning Connection

Optimization algorithms use gradients to:

- Find minimum loss (gradient descent: $\theta_{new} = \theta_{old} \alpha \nabla L$)
- Navigate complex parameter spaces
- Escape saddle points
- Converge to optimal solutions

Summary: Contours and Gradients in ML

Key Points: What We Learned

- Contour plots: Visualize function behavior in 2D
- Different shapes: Circular, diamond, hyperbolic, asymmetric
- **Gradients:** Point toward steepest function increase
- **Perpendicular relationship:** Gradients ⊥ contours

Summary: Contours and Gradients in ML

Important: ML Applications

- Loss landscapes: Understanding optimization challenges
- Gradient descent: Following steepest descent direction
- Regularization: L1/L2 penalties create different contour shapes
- Saddle points: Common in deep learning optimization

Definition: Next Steps

These concepts enable understanding of:

- Advanced optimization algorithms
- Learning rate selection
- · Convergence analysis