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Univariate Normal Distribution

The probability density of univariate Gaussian is given as:

f(x) = 1

σ
√
2π
e−

1
2(

x−µ
σ )

2

also, given as
f(x) ∼ N (µ, σ2)

with mean µ ∈ R and variance σ2 > 0
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Univariate Normal Distribution
Pop Quiz: Why is the denominator the way it is? Let the
normalizing constant be c and let g(x) = e−

1
2(

x−µ
σ )

2

.

1 =

∫ ∞

−∞
c · g(x)dx

1 =

∫ ∞

−∞
ce−

(x−u)2
2σ2 dx

Let’s substitute x−u√
2σ
with t.

1 =

∫ ∞

−∞
ce−t2dt×

√
2σ

1 =
√
2σc× 2

∫ ∞

0
e−t2dt
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Univariate Normal Distribution

2√
π

∫ ∞

0
e−t2dt

The above expression is called error function and is it’s
value is denoted by erf(t). In our case, we want erf(∞)
which is equal to 1.

1 =
√
2πσc× 2√

π

∫ ∞

0
e−t2dt

1 =
√
2πσc× 1

1√
2πσ

= c
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Bivariate Normal Distribution

Bivariate normal distribution of two-dimensional random
vector X =

[
X1

X2

]

X =

(
X1

X2

)
∼ N2(µ, �)

where, mean vector µ =

[
µ1

µ2

]
=

[
E[X1]
E[X2]

]
and, covariance matrix Σ

Σi,j := E[(Xi − µi)(Xj − µj)] = Cov[Xi,Xj]
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Bivariate Normal Distribution

Question: What is Cov(X, X?

Answer: Var(X = Cov(X, X = E[(X− E[X])]2
In the case of univariate normal, Var(X is written as σ2

Question: What is the relation between Σi,j and Σj,i?
Answer: They are the same!
Question: What can we say about the covariance matrix
Σ?
Answer: It is symmetric. Thus Σ = ΣT

9 / 20



Bivariate Normal Distribution

Question: What is Cov(X, X?
Answer: Var(X = Cov(X, X = E[(X− E[X])]2
In the case of univariate normal, Var(X is written as σ2

Question: What is the relation between Σi,j and Σj,i?
Answer: They are the same!
Question: What can we say about the covariance matrix
Σ?
Answer: It is symmetric. Thus Σ = ΣT

9 / 20



Bivariate Normal Distribution

Question: What is Cov(X, X?
Answer: Var(X = Cov(X, X = E[(X− E[X])]2
In the case of univariate normal, Var(X is written as σ2

Question: What is the relation between Σi,j and Σj,i?

Answer: They are the same!
Question: What can we say about the covariance matrix
Σ?
Answer: It is symmetric. Thus Σ = ΣT

9 / 20



Bivariate Normal Distribution

Question: What is Cov(X, X?
Answer: Var(X = Cov(X, X = E[(X− E[X])]2
In the case of univariate normal, Var(X is written as σ2

Question: What is the relation between Σi,j and Σj,i?
Answer: They are the same!

Question: What can we say about the covariance matrix
Σ?
Answer: It is symmetric. Thus Σ = ΣT

9 / 20



Bivariate Normal Distribution

Question: What is Cov(X, X?
Answer: Var(X = Cov(X, X = E[(X− E[X])]2
In the case of univariate normal, Var(X is written as σ2

Question: What is the relation between Σi,j and Σj,i?
Answer: They are the same!
Question: What can we say about the covariance matrix
Σ?

Answer: It is symmetric. Thus Σ = ΣT

9 / 20



Bivariate Normal Distribution

Question: What is Cov(X, X?
Answer: Var(X = Cov(X, X = E[(X− E[X])]2
In the case of univariate normal, Var(X is written as σ2

Question: What is the relation between Σi,j and Σj,i?
Answer: They are the same!
Question: What can we say about the covariance matrix
Σ?
Answer: It is symmetric. Thus Σ = ΣT

9 / 20



Correlation and Covariance

If X and Y are two random variables, with means
(expected values) µX and µY and standard deviations σX
and σY, respectively, then their covariance and
correlation are as follows:

covXY = σXY = E[(X− µX) (Y− µY)]

corrXY = ρXY = E[(X− µX) (Y− µY)]/(σXσY)

so that
ρXY = σXY/(σXσY)

where E is the expected value operator.
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PDF of bivariate normal distribution

We might have seen that

fX(X1,X2) =
exp(−1

2 (X− µ)TΣ−1(X− µ))

2π|Σ|
1
2

How do we get such a weird looking formula?!

11 / 20



PDF of bivariate normal with no cross-correlation

Let us assume no correlation between X1 and X2.
We have Σ =

[
σ2
1 0
0 σ2

2

]
We have fX(X1,X2) = fX(X1)fX(X2)

=
1

σ1
√
2π
e−

1
2

(
X1−µ1

σ1

)2

× 1

σ2
√
2π
e−

1
2

(
X2−µ2

σ2

)2

=
1

σ1σ22π
e−

1
2
{
(
X1−µ1

σ1

)2
+
(
X2−µ2

σ2

)2
}
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PDF of bivariate normal with no cross-correlation

Let us consider only the exponential part for now
Q =

(
X1−µ1

σ1

)2
+

(
X2−µ2

σ2

)2

Question: Can you write Q in the form of vectors X and µ?

=
[
X1 − µ1 X2 − µ2

]
1×2

g(Σ)2×2

[
X1 − µ1

X2 − µ2

]
2×1

Here g(Σ) is a matrix function of Σ that will result in σ2
1

like terms in the denominator; also there is no
cross-terms indicating zeros in right diagonal!

g(Σ) =
[

1
σ2
1

0

0 1
σ2
2

]
2×2

= 1
σ2
1σ

2
2

[
σ2
2 0
0 σ2

1

]
2×2

= 1
|Σ| adj(�) = Σ−1

13 / 20



PDF of bivariate normal with no cross-correlation

Let us consider the normalizing constant part now.
M = 1

σ1σ22π
= 1

2π×|Σ|
1
2
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Bivariate Gaussian samples with cross-correlation
̸= 0
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Bivariate Gaussian samples with cross-correlation
= 0
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Intuition for Multivariate Gaussian

Let us assume no correlation between the elements of X.
This means Σ is a diagonal matrix.

We have Σ =

σ
2
1 0

. . .
0 σ2

n


And,

p(x;µ,Σ) = 1

(2π)
n
2 |Σ|

1
2

exp
(
−1

2
(x − µ)TΣ−1(x − µ)

)
As seen in the case for univariate Gaussians, we can
write the following for the multivariate case,
We have fX(X1, · · · ,Xn) = fX(X1)× · · · × fX(Xn)
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Intuition for Multivariate Gaussian

Now,

=
1

σ1
√
2π
e−

1
2

(
X1−µ1

σ1

)2

× · · · × 1

σn
√
2π
e−

1
2

(
Xn−µn

σn

)2

=
1

σ1 · · ·σn(2π)
n
2

e−
1
2
{
(
X1−µ1

σ1

)2
+···+

(
Xn−µn

σn

)2
}

Taking all
√
2π together, we get (2π) n2 .

Similarly, taking all σ together, we get σ1 · · ·σn. Which can
be written as |Σ|

1
2 , given the determinant of a digonal

matrix is the multiplication of its diagonal elements.
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Now, let us remove the assumption of no covariance
among the elements of X
Main idea: A correlated Gaussian is a rotated
independent Gaussian1
Rotate input space using rotation matrix R.

p(x;µ,Σ) = 1

(2π)
n
2 |Σ|

1
2

exp
(
−1

2
(RTx − RTµ)TΣ−1(RTx − RTµ)

)

p(x;µ,Σ) = 1

(2π)
n
2 |Σ|

1
2

exp
(
−1

2
(x − µ)TRΣ−1RT(x − µ)

)

1Neil Lawrence GPSS 2016
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C = RΣ−1RT

p(x;µ,Σ) = 1

(2π)
n
2 |C| 12

exp
(
−1

2
(x − µ)TC−1(x − µ)

)
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