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Inspiration and Relevance

Inspired by the great lecture from Andrej Karpathy

• Search for ”Neural Networks: Zero to Hero” to find the
original lecture

• This approach is fundamental to modern language
models

• Direct connection to ChatGPT

◦ Same core principle: predict the next token
◦ Scaled up from characters to words/subwords
◦ Uses transformer architecture instead of MLP

Understanding this simple version helps grasp
ChatGPT’s foundation!
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What is the Next Character?

app ?

What is the next character?
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Classification Task

app ?
We can pose this as a classification task

Input:
app

Output: Probability Distribution
Char Prob Char Prob
a 0.01 n 0.01
b 0.01 o 0.01
c 0.01 p 0.01
... ... ... ...
l 0.45 z 0.01
m 0.01 - 0.05
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Generate Indian Names

Specific Problem: Generate Indian Names

Dataset:

Abid
Abhidha
Adesh
Aditya
Agam
...
...
Yash
Yogesh
Zara

• Collection of Indian
names

• Each name represents a
sequence

• Goal: Learn to generate
similar names
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Assumptions

We’ll make a few assumptions:

1. Character set: Only use 26 lowercase characters (a-z)

2. End marker: A hyphen (-) indicates the end character
3. Length constraint: Names are between 4 and 10

characters

Total vocabulary size: 26 + 1 = 27 characters
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Generate Training Dataset

Creating Training Data from ”abid”

Using history/context of 3 characters:

X Input Y Target
[-, -, -] → a a>-, a

→ b a, b>a, b
→ i a, b, i>a, b, i
→ d b, i, d>b, i, d
→ -

Result: 5 training examples from one name ”abid”
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Representation Learning

Important Idea: Representation Learning

• Learn a vector representation for each character

• Hope that similar characters will be closer in vector
space

Dimension 1

Dimension 2

a
ei o

u

b c
d

f

-

Vowels

Consonants
End
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Word2Vec Reference

Classic Word2Vec Relationship

Dimension 1

Dimension 2

king

queen

man

woman

Relationship: queen ≈ king - man + woman
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Analogy with Smileys

Emotional Expression Analogy

Age

Emotion

:) adult smiling

:( adult crying

Dchild smiling

;(child crying

Relationship: child crying = child smiling + adult crying -
adult smiling
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Embedding Matrix/Table

Main Idea: Embedding Matrix/Table

char
Embedding

Table
Vector

Representation

Process: Character→ Lookup in Embedding Table→
Dense Vector
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27 × K Embedding Matrix

Embedding Table Structure

Char D1 D2 ... DK
a 0.2 0.1 ... 0.8
b 0.3 0.5 ... 0.2
c 0.1 0.3 ... 0.4
...

...
... . . . ...

z 0.7 0.4 ... 0.1
- 0.0 0.9 ... 0.5

This overall becomes a 27 × K dimensional matrix
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Learnable Matrix

This matrix is learnable!

• Initially: Random values

• During training: Updated via backpropagation
• After training: Contains meaningful character
representations

• Similar characters: Will have similar embedding
vectors

The network learns both the embeddings AND the
classification weights!
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Overall Architecture 2D Example)

Example with X = ”abi” and 2D embeddings

Input: X = [”a”, ”b”, ”i”]
Embedding Matrix 27 × 2

D1 D2
a0.2 0.1
b0.3 0.5... ... ...
i 0.1 0.3... ... ...

0.2, 0.1
0.3, 0.5
0.1, 0.3
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Concatenate the Embeddings

Feature Vector Creation for X = ”abi”

0.2, 0.1a:

0.3, 0.5b:

0.1, 0.3i:

concat
0.2, 0.1, 0.3, 0.5, 0.1, 0.3

6D feature vector

The feature vector pulls up embeddings and
concatenates them
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Multi-Layer Perceptron

Neural Architecture

Input
6D vector

Layer 1 Layer 2 Output
27 classes

...
a
b...
z
-

Eventually shows 27-class output vector
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Cross-Entropy Loss

Learning Process

• Loss Function: Use cross-entropy loss to learn

• We are learning two things:

1. The embedding matrix 27 × K parameters)
2. The MLP weights (neural network parameters)

• Training Process:

◦ Forward pass: Input → Embeddings → Concatenate →
MLP → Probabilities

◦ Compute cross-entropy loss against true next character
◦ Backward pass: Update both embeddings and MLP
weights
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Generate/Sample from Learned Model

Test Input: ”abi”

Probability vector for next character:

Next Char Probability Next Char Probability
a 0.01 n 0.05
b 0.01 o 0.02
c 0.03 p 0.01
d 0.60 ... ...
... ... z 0.01

• ABIA would be 1%

• ABIB would be 1%
• ABID would be 60%
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Tree Structure

Generation as Tree Structure

abi

abia

abial abiad abia-

abid

abida abidh abid-

abis

abish abisa abis-

1% 60% 8%

Had we chosen A, it starts a new branch. Had we
chosen D, it starts a new branch, etc.
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Temperature Term

Temperature in Softmax

• Standard Softmax:

P(yi) =
ezi∑27
j=1 ezj

1)

• Temperature-scaled Softmax:

P(yi) =
ezi/T∑27
j=1 ezj/T

2)

• Temperature Effects:

◦ T = 1: Default/standard probabilities
◦ T→ 0: Very low temperature → more peaked
(deterministic)

◦ T→ ∞: Very high temperature → more uniform
(random)
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Temperature Variations

How sampling differs across temperatures

Next Char Default Low T High T
T1.0 T0.5 T2.0

a 0.01 0.001 0.08
d 0.60 0.95 0.25
s 0.08 0.01 0.12
h 0.03 0.005 0.09
- 0.05 0.02 0.11

others 0.23 0.015 0.35

• Low Temperature: Conservative, predictable
generation

• High Temperature: Creative, diverse generation
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