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Why Sequential Data Matters

Example: Sequential Data Examples

• Text: ”The quick brown fox jumps...”

• Speech: Audio waveforms over time
• Stock Prices: Daily market values
• Weather: Temperature, humidity over days

Important: Challenge

Traditional feedforward networks treat inputs inde-
pendently - they can’t capture temporal dependen-
cies.
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Simple RNN Cell

Definition: RNN Equations

ht = tanh(Whhht−1 +Wxhxt + bh) 1)
yt =Whyht + by 2)

Key Points

• Same weights shared across all time steps

• Hidden state acts as ”memory”
• Can process variable length sequences
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Pop Quiz #1

Quick Quiz 1

What happens to gradients in simple RNNs during
backpropagation?

A They remain constant

B They can explode or vanish
C They always improve
D They disappear completely
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Pop Quiz #1 - Answer

Answer: B They can explode or vanish

Important: The Gradient Problem

• Gradients multiply byWhh at each time step

• If ||Whh|| > 1: Exploding gradients
• If ||Whh|| < 1: Vanishing gradients
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Sentiment Analysis Many-to-One)

Example: Sequence Classification

• Input: ”This movie is great!”

• Process each word sequentially
• Output: Positive/Negative sentiment

Key Points

Applications: Document classification, spam detec-
tion, review analysis
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Machine Translation Many-to-Many)

Example: Sequence-to-Sequence

• Encoder: French → ”Je suis étudiant”

• Context: Hidden representation
• Decoder: English → ”I am student”
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LSTM Long Short-Term Memory

Definition: LSTM Key Idea

Use gates to control information flow:

• Forget gate: What to remove from memory

• Input gate: What new information to store
• Output gate: What parts of memory to output

Theorem: Advantage

LSTM gates solve the vanishing gradient problem by
allowing gradients to flow unchanged through time.
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GRU Gated Recurrent Unit

Key Points

GRU vs LSTM

• Simpler: Only 2 gates instead of 3

• Faster training and inference
• Often performs similarly to LSTM
• Good starting point for many applications
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From RNNs to Transformers

Theorem: Why TransformersWon

• Parallelizable: No sequential dependency

• Long-range dependencies: Attention mechanism
• Scalable: Works well with large datasets
• Transfer learning: Pre-trained models GPT,
BERT
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When to Still Use RNNs

Definition: RNN Strengths

• Memory efficiency: Constant memory usage

• Online processing: Can process streaming data
• Small datasets: Less prone to overfitting
• Simple problems: Often sufficient

Example: Modern Applications

• Real-time speech recognition
• IoT sensor data processing
• Mobile applications
• Control systems
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Key Takeaways

Key Points

What we learned:

1. RNNs process sequential data with memory

2. Simple RNNs suffer from gradient problems
3. LSTM and GRU solve long-term dependencies
4. Training uses Backpropagation Through Time
5. Transformers have largely replaced RNNs for NLP

Theorem: The Big Picture

RNNs introduced sequential processing with mem-
ory to deep learning, paving the way for modern lan-
guage models. 13 / 1
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