Recurrent Neural Networks

Nipun Batra and teaching staff

IIT Gandhinagar

August 3, 2025

Table of Contents

Example: Sequential Data Examples

Text: "The quick brown fox jumps..."

Important: Challenge

Example: Sequential Data Examples

- Text: "The quick brown fox jumps..."
- Speech: Audio waveforms over time

Important: Challenge

Example: Sequential Data Examples

- Text: "The quick brown fox jumps..."
- Speech: Audio waveforms over time
- Stock Prices: Daily market values

Important: Challenge

Example: Sequential Data Examples

- Text: "The quick brown fox jumps..."
- · Speech: Audio waveforms over time
- Stock Prices: Daily market values
- Weather: Temperature, humidity over days

Important: Challenge

Simple RNN Cell

Definition: RNN Equations

$$h_t = \tanh(W_{hh}h_{t-1} + W_{xh}x_t + b_h)$$
 (1)

$$y_t = W_{hy}h_t + b_y \tag{2}$$

Key Points

Same weights shared across all time steps

Simple RNN Cell

Definition: RNN Equations

$$h_t = \tanh(W_{hh}h_{t-1} + W_{xh}x_t + b_h)$$
 (1)

$$y_t = W_{hy}h_t + b_y \tag{2}$$

Key Points

- · Same weights shared across all time steps
- Hidden state acts as "memory"

Simple RNN Cell

Definition: RNN Equations

$$h_t = \tanh(W_{hh}h_{t-1} + W_{xh}x_t + b_h)$$
 (1)

$$y_t = W_{hy}h_t + b_y \tag{2}$$

Key Points

- · Same weights shared across all time steps
- Hidden state acts as "memory"
- · Can process variable length sequences

Quick Quiz 1

What happens to gradients in simple RNNs during backpropagation?

A) They remain constant

Quick Quiz 1

What happens to gradients in simple RNNs during backpropagation?

- A) They remain constant
- B) They can explode or vanish

Quick Quiz 1

What happens to gradients in simple RNNs during backpropagation?

- A) They remain constant
- B) They can explode or vanish
- C) They always improve

Quick Quiz 1

What happens to gradients in simple RNNs during backpropagation?

- A) They remain constant
- B) They can explode or vanish
- C) They always improve
- D) They disappear completely

Pop Quiz #1 - Answer

Answer: B) They can explode or vanish

Important: The Gradient Problem

• Gradients multiply by W_{hh} at each time step

Pop Quiz #1 - Answer

Answer: B) They can explode or vanish

Important: The Gradient Problem

- Gradients multiply by W_{hh} at each time step
- If $||W_{hh}|| > 1$: Exploding gradients

Pop Quiz #1 - Answer

Answer: B) They can explode or vanish

Important: The Gradient Problem

- Gradients multiply by W_{hh} at each time step
- If $||W_{hh}|| > 1$: Exploding gradients
- If $||W_{hh}|| < 1$: Vanishing gradients

Sentiment Analysis (Many-to-One)

Example: Sequence Classification

Input: "This movie is great!"

Key Points

Applications: Document classification, spam detection, review analysis

Sentiment Analysis (Many-to-One)

Example: Sequence Classification

- Input: "This movie is great!"
- Process each word sequentially

Key Points

Applications: Document classification, spam detection, review analysis

Sentiment Analysis (Many-to-One)

Example: Sequence Classification

- Input: "This movie is great!"
- Process each word sequentially
- Output: Positive/Negative sentiment

Key Points

Applications: Document classification, spam detection, review analysis

Machine Translation (Many-to-Many)

Example: Sequence-to-Sequence

Encoder: French → "Je suis étudiant"

Machine Translation (Many-to-Many)

Example: Sequence-to-Sequence

• Encoder: French → "Je suis étudiant"

• Context: Hidden representation

Machine Translation (Many-to-Many)

Example: Sequence-to-Sequence

• **Encoder**: French → "Je suis étudiant"

• Context: Hidden representation

Decoder: English → "I am student"

LSTM: Long Short-Term Memory

Definition: LSTM Key Idea

Use gates to control information flow:

Forget gate: What to remove from memory

Theorem: Advantage

LSTM gates solve the vanishing gradient problem by allowing gradients to flow unchanged through time.

LSTM: Long Short-Term Memory

Definition: LSTM Key Idea

Use **gates** to control information flow:

- Forget gate: What to remove from memory
- Input gate: What new information to store

Theorem: Advantage

LSTM gates solve the vanishing gradient problem by allowing gradients to flow unchanged through time.

LSTM: Long Short-Term Memory

Definition: LSTM Key Idea

Use **gates** to control information flow:

- Forget gate: What to remove from memory
- Input gate: What new information to store
- Output gate: What parts of memory to output

Theorem: Advantage

LSTM gates solve the vanishing gradient problem by allowing gradients to flow unchanged through time.

Key Points

GRU vs LSTM:

Simpler: Only 2 gates instead of 3

Key Points

GRU vs LSTM:

- Simpler: Only 2 gates instead of 3
- Faster training and inference

Key Points

GRU vs LSTM:

- Simpler: Only 2 gates instead of 3
- Faster training and inference
- Often performs similarly to LSTM

Key Points

GRU vs LSTM:

- Simpler: Only 2 gates instead of 3
- Faster training and inference
- Often performs similarly to LSTM
- Good starting point for many applications

Theorem: Why Transformers Won

• Parallelizable: No sequential dependency

Theorem: Why Transformers Won

- Parallelizable: No sequential dependency
- Long-range dependencies: Attention mechanism

Theorem: Why Transformers Won

- Parallelizable: No sequential dependency
- Long-range dependencies: Attention mechanism
- Scalable: Works well with large datasets

Theorem: Why Transformers Won

- Parallelizable: No sequential dependency
- Long-range dependencies: Attention mechanism
- Scalable: Works well with large datasets
- Transfer learning: Pre-trained models (GPT, BERT)

Definition: RNN Strengths

Memory efficiency: Constant memory usage

Definition: RNN Strengths

- Memory efficiency: Constant memory usage
- Online processing: Can process streaming data

Definition: RNN Strengths

- Memory efficiency: Constant memory usage
- Online processing: Can process streaming data
- Small datasets: Less prone to overfitting

Definition: RNN Strengths

- Memory efficiency: Constant memory usage
- Online processing: Can process streaming data
- Small datasets: Less prone to overfitting
- Simple problems: Often sufficient

Definition: RNN Strengths

- Memory efficiency: Constant memory usage
- Online processing: Can process streaming data
- Small datasets: Less prone to overfitting
- Simple problems: Often sufficient

Example: Modern Applications

Real-time speech recognition

Definition: RNN Strengths

- Memory efficiency: Constant memory usage
- Online processing: Can process streaming data
- Small datasets: Less prone to overfitting
- Simple problems: Often sufficient

- Real-time speech recognition
- IoT sensor data processing

Definition: RNN Strengths

- Memory efficiency: Constant memory usage
- Online processing: Can process streaming data
- Small datasets: Less prone to overfitting
- Simple problems: Often sufficient

- · Real-time speech recognition
- IoT sensor data processing
- Mobile applications

Definition: RNN Strengths

- Memory efficiency: Constant memory usage
- Online processing: Can process streaming data
- Small datasets: Less prone to overfitting
- Simple problems: Often sufficient

- · Real-time speech recognition
- IoT sensor data processing
- Mobile applications
- Control systems

Key Points

What we learned:

1. RNNs process sequential data with memory

Theorem: The Big Picture

Key Points

What we learned:

- 1. RNNs process sequential data with memory
- 2. Simple RNNs suffer from gradient problems

Theorem: The Big Picture

Key Points

What we learned:

- 1. RNNs process sequential data with memory
- 2. Simple RNNs suffer from gradient problems
- 3. LSTM and GRU solve long-term dependencies

Theorem: The Big Picture

Key Points

What we learned:

- 1. RNNs process sequential data with memory
- 2. Simple RNNs suffer from gradient problems
- 3. LSTM and GRU solve long-term dependencies
- 4. Training uses Backpropagation Through Time

Theorem: The Big Picture

Key Points

What we learned:

- 1. RNNs process sequential data with memory
- 2. Simple RNNs suffer from gradient problems
- 3. LSTM and GRU solve long-term dependencies
- 4. Training uses Backpropagation Through Time
- Transformers have largely replaced RNNs for NLP

Theorem: The Big Picture