Numpy Pandas Basics

ML
Tutorial
Author

R Yeeshu Dhurandhar, Nipun Batra

Published

December 31, 2023

# importing necessary libraries
import numpy as np
import pandas as pd
import time
import matplotlib.pyplot as plt
%matplotlib inline
%config InlineBackend.figure_format = 'retina'

Lists

# Creating lists
list_a = [1, 2, 3, 4, 5]
list_b = [6, 7, 8, 9, 10]
# Operations on lists
# Adding lists
list_sum = [a + b for a, b in zip(list_a, list_b)]
print("List Sum:", list_sum)

# Vector product using lists    
vector_product = [a * b for a, b in zip(list_a, list_b)]
print("Vector Product:", vector_product)
List Sum: [7, 9, 11, 13, 15]
Vector Product: [6, 14, 24, 36, 50]

Numpy Array

# Creating numpy arrays
numpy_array_a = np.array(list_a)
numpy_array_b = np.array(list_b)
# Operations on numpy arrays
# Adding numpy arrays
numpy_sum = numpy_array_a + numpy_array_b
print("Numpy Sum:", numpy_sum)

# Vector product using numpy arrays
numpy_vector_product = np.multiply(numpy_array_a, numpy_array_b)
print("Numpy Vector Product:", numpy_vector_product)
Numpy Sum: [ 7  9 11 13 15]
Numpy Vector Product: [ 6 14 24 36 50]
np.allclose(list_sum, numpy_sum), np.allclose(vector_product, numpy_vector_product)
(True, True)

Time comparison between list and numpy array

# Creating large arrays and lists for time comparison
numpy_array_a = np.random.randint(0, 100, size=10000)
numpy_array_b = np.random.randint(0, 100, size=10000)

list_a = list(numpy_array_a)
list_b = list(numpy_array_b)
# Time for list addition
start_time = time.time()
for _ in range(1000):
    list_sum = [a + b for a, b in zip(list_a, list_b)]
end_time = time.time()
print("Time taken for lists addition:", end_time - start_time)

# Time for numpy addition
start_time = time.time()
for _ in range(1000):
    numpy_sum = numpy_array_a + numpy_array_b
end_time = time.time()
print("Time taken for numpy addition:", end_time - start_time)
Time taken for lists addition: 0.5500102043151855
Time taken for numpy addition: 0.0038487911224365234
# Time for list vector product
start_time = time.time()
for _ in range(10000):
    list_product = [a * b for a, b in zip(list_a, list_b)]

end_time = time.time()
print("Time taken for list vector product:", end_time - start_time)

# Time for numpy vector product 
start_time = time.time()
for _ in range(10000):
    numpy_product = np.multiply(numpy_array_a, numpy_array_b)

end_time = time.time()
print("Time taken for numpy vector product:", end_time - start_time)
Time taken for list vector product: 5.371699571609497
Time taken for numpy vector product: 0.047417640686035156
np.allclose(list_sum, numpy_sum), np.allclose(vector_product, numpy_vector_product)
(True, True)
timeit_add_list = %timeit -o [a + b for a, b in zip(list_a, list_b)]
542 µs ± 593 ns per loop (mean ± std. dev. of 7 runs, 1,000 loops each)
timeit_add_numpy = %timeit -o numpy_array_a + numpy_array_b
3.5 µs ± 6.1 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each)

Code clarity

# Numpy code is often more concise and readable than list comprehensions
# Example: Calculate the element-wise product of two lists
list_product = [a * b for a, b in zip(list_a, list_b)]
numpy_product = np.multiply(numpy_array_a, numpy_array_b)
numpy_product
array([5950, 1995,  264, ..., 2436,  928,  665])
numpy_array_a@numpy_array_b
24470992

Reading CSV file using Numpy

!head ../datasets/tennis-discrete-output.csv
Day,Outlook,Temp,Humidity,Windy,Play
D1,Sunny,Hot,High,Weak,No
D2,Sunny,Hot,High,Strong,No
D3,Overcast,Hot,High,Weak,Yes
D4,Rain,Mild,High,Weak,Yes
D5,Rain,Cool,Normal,Weak,Yes
D6,Rain,Cool,Normal,Strong,No
D7,Overcast,Cool,Normal,Strong,Yes
D8,Sunny,Mild,High,Weak,No
D9,Sunny,Cool,Normal,Weak,Yes
np.genfromtxt?
Signature:
np.genfromtxt(
    fname,
    dtype=<class 'float'>,
    comments='#',
    delimiter=None,
    skip_header=0,
    skip_footer=0,
    converters=None,
    missing_values=None,
    filling_values=None,
    usecols=None,
    names=None,
    excludelist=None,
    deletechars=" !#$%&'()*+,-./:;<=>?@[\\]^{|}~",
    replace_space='_',
    autostrip=False,
    case_sensitive=True,
    defaultfmt='f%i',
    unpack=None,
    usemask=False,
    loose=True,
    invalid_raise=True,
    max_rows=None,
    encoding='bytes',
    *,
    ndmin=0,
    like=None,
)
Docstring:
Load data from a text file, with missing values handled as specified.

Each line past the first `skip_header` lines is split at the `delimiter`
character, and characters following the `comments` character are discarded.

Parameters
----------
fname : file, str, pathlib.Path, list of str, generator
    File, filename, list, or generator to read.  If the filename
    extension is ``.gz`` or ``.bz2``, the file is first decompressed. Note
    that generators must return bytes or strings. The strings
    in a list or produced by a generator are treated as lines.
dtype : dtype, optional
    Data type of the resulting array.
    If None, the dtypes will be determined by the contents of each
    column, individually.
comments : str, optional
    The character used to indicate the start of a comment.
    All the characters occurring on a line after a comment are discarded.
delimiter : str, int, or sequence, optional
    The string used to separate values.  By default, any consecutive
    whitespaces act as delimiter.  An integer or sequence of integers
    can also be provided as width(s) of each field.
skiprows : int, optional
    `skiprows` was removed in numpy 1.10. Please use `skip_header` instead.
skip_header : int, optional
    The number of lines to skip at the beginning of the file.
skip_footer : int, optional
    The number of lines to skip at the end of the file.
converters : variable, optional
    The set of functions that convert the data of a column to a value.
    The converters can also be used to provide a default value
    for missing data: ``converters = {3: lambda s: float(s or 0)}``.
missing : variable, optional
    `missing` was removed in numpy 1.10. Please use `missing_values`
    instead.
missing_values : variable, optional
    The set of strings corresponding to missing data.
filling_values : variable, optional
    The set of values to be used as default when the data are missing.
usecols : sequence, optional
    Which columns to read, with 0 being the first.  For example,
    ``usecols = (1, 4, 5)`` will extract the 2nd, 5th and 6th columns.
names : {None, True, str, sequence}, optional
    If `names` is True, the field names are read from the first line after
    the first `skip_header` lines. This line can optionally be preceded
    by a comment delimiter. If `names` is a sequence or a single-string of
    comma-separated names, the names will be used to define the field names
    in a structured dtype. If `names` is None, the names of the dtype
    fields will be used, if any.
excludelist : sequence, optional
    A list of names to exclude. This list is appended to the default list
    ['return','file','print']. Excluded names are appended with an
    underscore: for example, `file` would become `file_`.
deletechars : str, optional
    A string combining invalid characters that must be deleted from the
    names.
defaultfmt : str, optional
    A format used to define default field names, such as "f%i" or "f_%02i".
autostrip : bool, optional
    Whether to automatically strip white spaces from the variables.
replace_space : char, optional
    Character(s) used in replacement of white spaces in the variable
    names. By default, use a '_'.
case_sensitive : {True, False, 'upper', 'lower'}, optional
    If True, field names are case sensitive.
    If False or 'upper', field names are converted to upper case.
    If 'lower', field names are converted to lower case.
unpack : bool, optional
    If True, the returned array is transposed, so that arguments may be
    unpacked using ``x, y, z = genfromtxt(...)``.  When used with a
    structured data-type, arrays are returned for each field.
    Default is False.
usemask : bool, optional
    If True, return a masked array.
    If False, return a regular array.
loose : bool, optional
    If True, do not raise errors for invalid values.
invalid_raise : bool, optional
    If True, an exception is raised if an inconsistency is detected in the
    number of columns.
    If False, a warning is emitted and the offending lines are skipped.
max_rows : int,  optional
    The maximum number of rows to read. Must not be used with skip_footer
    at the same time.  If given, the value must be at least 1. Default is
    to read the entire file.

    .. versionadded:: 1.10.0
encoding : str, optional
    Encoding used to decode the inputfile. Does not apply when `fname` is
    a file object.  The special value 'bytes' enables backward compatibility
    workarounds that ensure that you receive byte arrays when possible
    and passes latin1 encoded strings to converters. Override this value to
    receive unicode arrays and pass strings as input to converters.  If set
    to None the system default is used. The default value is 'bytes'.

    .. versionadded:: 1.14.0
ndmin : int, optional
    Same parameter as `loadtxt`

    .. versionadded:: 1.23.0
like : array_like, optional
    Reference object to allow the creation of arrays which are not
    NumPy arrays. If an array-like passed in as ``like`` supports
    the ``__array_function__`` protocol, the result will be defined
    by it. In this case, it ensures the creation of an array object
    compatible with that passed in via this argument.

    .. versionadded:: 1.20.0

Returns
-------
out : ndarray
    Data read from the text file. If `usemask` is True, this is a
    masked array.

See Also
--------
numpy.loadtxt : equivalent function when no data is missing.

Notes
-----
* When spaces are used as delimiters, or when no delimiter has been given
  as input, there should not be any missing data between two fields.
* When the variables are named (either by a flexible dtype or with `names`),
  there must not be any header in the file (else a ValueError
  exception is raised).
* Individual values are not stripped of spaces by default.
  When using a custom converter, make sure the function does remove spaces.

References
----------
.. [1] NumPy User Guide, section `I/O with NumPy
       <https://docs.scipy.org/doc/numpy/user/basics.io.genfromtxt.html>`_.

Examples
--------
>>> from io import StringIO
>>> import numpy as np

Comma delimited file with mixed dtype

>>> s = StringIO(u"1,1.3,abcde")
>>> data = np.genfromtxt(s, dtype=[('myint','i8'),('myfloat','f8'),
... ('mystring','S5')], delimiter=",")
>>> data
array((1, 1.3, b'abcde'),
      dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', 'S5')])

Using dtype = None

>>> _ = s.seek(0) # needed for StringIO example only
>>> data = np.genfromtxt(s, dtype=None,
... names = ['myint','myfloat','mystring'], delimiter=",")
>>> data
array((1, 1.3, b'abcde'),
      dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', 'S5')])

Specifying dtype and names

>>> _ = s.seek(0)
>>> data = np.genfromtxt(s, dtype="i8,f8,S5",
... names=['myint','myfloat','mystring'], delimiter=",")
>>> data
array((1, 1.3, b'abcde'),
      dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', 'S5')])

An example with fixed-width columns

>>> s = StringIO(u"11.3abcde")
>>> data = np.genfromtxt(s, dtype=None, names=['intvar','fltvar','strvar'],
...     delimiter=[1,3,5])
>>> data
array((1, 1.3, b'abcde'),
      dtype=[('intvar', '<i8'), ('fltvar', '<f8'), ('strvar', 'S5')])

An example to show comments

>>> f = StringIO('''
... text,# of chars
... hello world,11
... numpy,5''')
>>> np.genfromtxt(f, dtype='S12,S12', delimiter=',')
array([(b'text', b''), (b'hello world', b'11'), (b'numpy', b'5')],
  dtype=[('f0', 'S12'), ('f1', 'S12')])
File:      ~/miniforge3/lib/python3.9/site-packages/numpy/lib/npyio.py
Type:      function
data = np.genfromtxt('../datasets/tennis-discrete-output.csv', delimiter=',')
data
array([[nan, nan, nan, nan, nan, nan],
       [nan, nan, nan, nan, nan, nan],
       [nan, nan, nan, nan, nan, nan],
       [nan, nan, nan, nan, nan, nan],
       [nan, nan, nan, nan, nan, nan],
       [nan, nan, nan, nan, nan, nan],
       [nan, nan, nan, nan, nan, nan],
       [nan, nan, nan, nan, nan, nan],
       [nan, nan, nan, nan, nan, nan],
       [nan, nan, nan, nan, nan, nan],
       [nan, nan, nan, nan, nan, nan],
       [nan, nan, nan, nan, nan, nan],
       [nan, nan, nan, nan, nan, nan],
       [nan, nan, nan, nan, nan, nan],
       [nan, nan, nan, nan, nan, nan]])

Wait! What happened?

data = np.genfromtxt('../datasets/tennis-discrete-output.csv', delimiter=',', dtype=str)
data
array([['Day', 'Outlook', 'Temp', 'Humidity', 'Windy', 'Play'],
       ['D1', 'Sunny', 'Hot', 'High', 'Weak', 'No'],
       ['D2', 'Sunny', 'Hot', 'High', 'Strong', 'No'],
       ['D3', 'Overcast', 'Hot', 'High', 'Weak', 'Yes'],
       ['D4', 'Rain', 'Mild', 'High', 'Weak', 'Yes'],
       ['D5', 'Rain', 'Cool', 'Normal', 'Weak', 'Yes'],
       ['D6', 'Rain', 'Cool', 'Normal', 'Strong', 'No'],
       ['D7', 'Overcast', 'Cool', 'Normal', 'Strong', 'Yes'],
       ['D8', 'Sunny', 'Mild', 'High', 'Weak', 'No'],
       ['D9', 'Sunny', 'Cool', 'Normal', 'Weak', 'Yes'],
       ['D10', 'Rain', 'Mild', 'Normal', 'Weak', 'Yes'],
       ['D11', 'Sunny', 'Mild', 'Normal', 'Strong', 'Yes'],
       ['D12', 'Overcast', 'Mild', 'High', 'Strong', 'Yes'],
       ['D13', 'Overcast', 'Hot', 'Normal', 'Weak', 'Yes'],
       ['D14', 'Rain', 'Mild', 'High', 'Strong', 'No']], dtype='<U8')
data.shape
(15, 6)

Question: Find the outlook on D11

idx = np.argwhere(data[:, 0] == 'D11')[0, 0]
idx
11
data[idx]
array(['D11', 'Sunny', 'Mild', 'Normal', 'Strong', 'Yes'], dtype='<U8')
data[idx][1]
'Sunny'

Reading CSV file using Pandas

df = pd.read_csv('../datasets/tennis-discrete-output.csv')
df
Day Outlook Temp Humidity Windy Play
0 D1 Sunny Hot High Weak No
1 D2 Sunny Hot High Strong No
2 D3 Overcast Hot High Weak Yes
3 D4 Rain Mild High Weak Yes
4 D5 Rain Cool Normal Weak Yes
5 D6 Rain Cool Normal Strong No
6 D7 Overcast Cool Normal Strong Yes
7 D8 Sunny Mild High Weak No
8 D9 Sunny Cool Normal Weak Yes
9 D10 Rain Mild Normal Weak Yes
10 D11 Sunny Mild Normal Strong Yes
11 D12 Overcast Mild High Strong Yes
12 D13 Overcast Hot Normal Weak Yes
13 D14 Rain Mild High Strong No
df['Day'] == 'D11'
0     False
1     False
2     False
3     False
4     False
5     False
6     False
7     False
8     False
9     False
10     True
11    False
12    False
13    False
Name: Day, dtype: bool
df[df['Day'] == 'D11']
Day Outlook Temp Humidity Windy Play
10 D11 Sunny Mild Normal Strong Yes
df[df['Day'] == 'D11']['Outlook']
10    Sunny
Name: Outlook, dtype: object
df.query('Day == "D11"')['Outlook']
10    Sunny
Name: Outlook, dtype: object
df.shape
(14, 6)

Question. How many times do we play v/s not play tennis

ser = df['Play']
ser
0      No
1      No
2     Yes
3     Yes
4     Yes
5      No
6     Yes
7      No
8     Yes
9     Yes
10    Yes
11    Yes
12    Yes
13     No
Name: Play, dtype: object
unique_play_options = df['Play'].unique()
unique_play_options
array(['No', 'Yes'], dtype=object)
for option in unique_play_options:
    print(option, (df['Play'] == option).sum())
No 5
Yes 9
df['Play'].value_counts()
Play
Yes    9
No     5
Name: count, dtype: int64
df.groupby('Play').size()
Play
No     5
Yes    9
dtype: int64
gby = df.groupby('Play')
{k: len(v) for k, v in gby.groups.items()}
{'No': 5, 'Yes': 9}
pd.crosstab(index=df['Play'], columns='count')
col_0 count
Play
No 5
Yes 9

What is the distribution of any given attribute?

def distribution(df, attribute):
    return df[attribute].value_counts()
ser = distribution(df, 'Outlook')
ser
Outlook
Sunny       5
Rain        5
Overcast    4
Name: count, dtype: int64
type(ser)
pandas.core.series.Series
ser.values
array([5, 5, 4])
ser.index
Index(['Sunny', 'Rain', 'Overcast'], dtype='object', name='Outlook')
distribution(df, 'Temp')
Temp
Mild    6
Hot     4
Cool    4
Name: count, dtype: int64

Finding entropy for target variable

target_attribute = 'Play'
dist_target = distribution(df, target_attribute)
dist_target
Play
Yes    9
No     5
Name: count, dtype: int64

Normalize distribution

dist_target/dist_target.sum()
Play
Yes    0.642857
No     0.357143
Name: count, dtype: float64
df['Play'].value_counts(normalize=True)
Play
Yes    0.642857
No     0.357143
Name: proportion, dtype: float64
normalized_dist_target = dist_target/dist_target.sum()

For loop way of calculating entropy

e = 0.0
for value, p in normalized_dist_target.items():
    e = e - p * np.log2(p + 1e-6) # 1e-6 is added to avoid log(0)
print(e)
0.9402830732836911
normalized_dist_target.apply(lambda x: -x * np.log2(x + 1e-6))
Play
Yes    0.409775
No     0.530508
Name: count, dtype: float64
normalized_dist_target.apply(lambda x: -x * np.log2(x + 1e-6)).sum()
0.9402830732836911

More on crosstab

pd.crosstab(index=df['Outlook'], columns=df['Play'])
Play No Yes
Outlook
Overcast 0 4
Rain 2 3
Sunny 3 2
pd.crosstab(index=df['Outlook'], columns=df['Play']).T
Outlook Overcast Rain Sunny
Play
No 0 2 3
Yes 4 3 2
df_attr = pd.crosstab(index=df['Play'], columns=df['Outlook'], normalize='columns')
df_attr
Outlook Overcast Rain Sunny
Play
No 0.0 0.4 0.6
Yes 1.0 0.6 0.4

Using groupby

df.groupby(['Play', 'Outlook']).size()
Play  Outlook 
No    Rain        2
      Sunny       3
Yes   Overcast    4
      Rain        3
      Sunny       2
dtype: int64
df.groupby(['Play', 'Outlook']).size().index
MultiIndex([( 'No',     'Rain'),
            ( 'No',    'Sunny'),
            ('Yes', 'Overcast'),
            ('Yes',     'Rain'),
            ('Yes',    'Sunny')],
           names=['Play', 'Outlook'])
df.groupby(['Play', 'Outlook']).size().unstack('Outlook')
Outlook Overcast Rain Sunny
Play
No NaN 2.0 3.0
Yes 4.0 3.0 2.0
df_attr_groupby = df.groupby(['Play', 'Outlook']).size().unstack('Outlook').fillna(0)
df_attr_groupby
Outlook Overcast Rain Sunny
Play
No 0.0 2.0 3.0
Yes 4.0 3.0 2.0

Apply

neg_plogp = df_attr.apply(lambda x: -x * np.log2(x + 1e-6), axis=0)
neg_plogp
Outlook Overcast Rain Sunny
Play
No 0.000000 0.528770 0.442178
Yes -0.000001 0.442178 0.528770
neg_plogp.sum(axis=0).sort_index()
Outlook
Overcast   -0.000001
Rain        0.970948
Sunny       0.970948
dtype: float64
df_attr_dist = distribution(df, 'Outlook')
norm_attr_dist = df_attr_dist/df_attr_dist.sum()
norm_attr_dist
Outlook
Sunny       0.357143
Rain        0.357143
Overcast    0.285714
Name: count, dtype: float64
(norm_attr_dist*neg_plogp.sum(axis=0).sort_index()).sum()
0.6935336657070463