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Definition

Convexity is defined on an interval [α, β]
The line segment joining (a, f (a)) and (b, f (b)) should be above or on the function f for
all points in interval [α, β].

(a, f(a))

Line segment joining 'a' and 'b'

(b, f(b))

1
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Example: y = x2

Convex on the entire real line i.e. (−∞,∞)
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Example: y = |x |

Convex on the entire real line i.e. (−∞,∞)
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Example: y = ex

Convex on the entire real line i.e. (−∞,∞)
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Example: y = ln x

Not convex on the entire real line i.e. (−∞,∞)
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Example: y = x3

It is convex for the interval [0,∞)
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Example: y = x3

It is concave for the interval (−∞, 0]
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Example: y = x3

But, it is not convex for the interval (−∞,∞)
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Mathematical Formulation

Function f is convex on set X , if ∀x1, x2 ∈ X and ∀t ∈ [0, 1]

f (tx1 + (1− t)x2) ≤ tf (x1) + (1− t)f (x2)

(x  , f(x  ))

tf(x  ) + (1-t)f(x  )

1 1

(x  , f(x  ))2 2

1 2

f(tx  + (1-t)x  )  1 2
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Question: Prove that f (x) = x2 is convex
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Question: Prove that f (x) = x2 is convex

To prove:

f (tx1 + (1− t)x2) ≤ tf (x1) + (1− t)f (x2)

LHS = f (tx1 + (1− t)x2) = t2x21 + (1− t)2x22 + 2t(1− t)x1x2
RHS = tf (x1) + (1− t)f (x2) = tx21 + (1− t)x22
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To prove:

f (tx1 + (1− t)x2) ≤ tf (x1) + (1− t)f (x2)

LHS = f (tx1 + (1− t)x2) = t2x21 + (1− t)2x22 + 2t(1− t)x1x2
RHS = tf (x1) + (1− t)f (x2) = tx21 + (1− t)x22

Here,
LHS - RHS = (t2 − t)x21 + [(1− t)2 − (1− t)]x22 + 2t(1− t)x1x2

= (t2 − t)x21 + (t2 − t)x22 − 2(t2 − t)x1x2
= (t2 − t)(x1 − x2)

2
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Question: Prove that f (x) = x2 is convex

To prove:

f (tx1 + (1− t)x2) ≤ tf (x1) + (1− t)f (x2)

LHS = f (tx1 + (1− t)x2) = t2x21 + (1− t)2x22 + 2t(1− t)x1x2
RHS = tf (x1) + (1− t)f (x2) = tx21 + (1− t)x22

Here,
LHS - RHS = (t2 − t)x21 + [(1− t)2 − (1− t)]x22 + 2t(1− t)x1x2

= (t2 − t)x21 + (t2 − t)x22 − 2(t2 − t)x1x2
= (t2 − t)(x1 − x2)

2

Here, (t2 − t) ≤ 0 since t ∈ [0, 1] and (x1 − x2)
2 ≥ 0

Hence, LHS -RHS ≤ 0
Hence LHS ≤ RHS
Hence proved.
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Alternative ways to prove convexity

The Double-Derivative Test

If f”(x) > 0, the function is convex.

For example,

∂2(x2)
∂x2

= 2 > 0 ⇒ x2 is a convex function.
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Alternative ways to prove convexity

The double derivative test for multi-parameter function is equal to using the Hessian Matrix

A function f (x1, x2, . . . , xn) is convex iff its n× n Hessian Matrix is positive semidefinite for all
possible values of (x1, x2, . . . , xn)

H =


∂2f
∂x21

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x22

· · · ∂2f
∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂x2n


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Hessian Matrix Tutorial - Understanding Second-Order Derivatives for
Optimization

Palak Gupta
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What is Hessian Matrix?

The Hessian is a square matrix containing all
second-order partial derivatives of a scalar
function f (x).

It’s essential for understanding the curvature of
functions in machine learning optimization.

Role in Optimization: It helps to determine
whether an optimization point is a minimum,
maximum, or saddle point.
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Hessian Matrix Definition and Formula

For a scalar-valued function f : Rn → R of n variables x = (x1, x2, . . . , xn)
T , the Hessian

matrix H is defined as:

H(f ) =

[
∂2f

∂xi∂xj

]n
i ,j=1

The element Hi ,j of the matrix is the second-order partial derivative of f with respect to
xi and xj .

Example: Hessian for Two Variables f (x , y):

H =

[
∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2

]
Key Property: If the second partial derivatives are continuous, then by **Clairaut’s
Theorem** (or Schwarz’s theorem), the matrix is **symmetric**:

∂2f

∂x∂y
=

∂2f

∂y∂x
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Hessian and Convexity

Strictly Convex: For a point x∗, the
properties of H(x∗) determine the nature
of the function’s curvature:

Strictly Convex: The Hessian H is
Positive Definite (H ≻ 0).
Positive Definite ⇔ All Eigenvalues
λi > 0.
Consequence: Any local minimum is
guaranteed to be the global minimum.
Optimization algorithms like Gradient
Descent are guaranteed to converge to
this minimum.
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Hessian and Convexity (Cont.)

Convex: The Hessian H is Positive
Semi-Definite (H ⪰ 0).

Positive Semi-Definite ⇔ All
Eigenvalues λi ≥ 0.

Optimization Implications:
The function still possesses a global
minimum.
It may have flat regions or multiple
optimal points (e.g., when λi = 0),
leading to potential slowdowns for
optimization methods.
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Hessian and Concavity

Strictly Concave: The Hessian H is
Negative Definite (H ≺ 0).

Negative Definite ⇔ All Eigenvalues
λi < 0.

Function Shape:
The function curves downward
everywhere (inverted U-shape).
Any local maximum is guaranteed to be
the global maximum.

Optimization Context: This property is
key for maximization problems, as any
algorithm will converge to the unique
global maximum.
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Hessian and Non-Convexity

Non-Convex: The Hessian H is
Indefinite (neither positive nor negative
semi-definite).

Indefinite ⇔ Mixed Eigenvalues (both
positive λi > 0 and negative λj < 0).

Function Shape & Optimization
Challenges:

Multiple Local Minima are possible,
complicating optimization.
Saddle Points are present, where the
function curves up in some directions and
down in others (Hessian is indefinite).
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Hessian: Eigenvalue Summary and Calculation

Eigenvalues Function Type Optimization
All positive (λi > 0) Strictly convex Global minimum exists

All non-negative (λi ≥ 0) Convex Minimum exists

All negative (λi < 0) Strictly concave Global maximum exists

Mixed signs Non-convex Saddle points present

Finding Eigenvalues for a 2D
Hessian:

We solve the characteristic
equation: det(H− λI) = 0.

H =

[
a b
b c

]

det

∣∣∣∣a− λ b
b c − λ

∣∣∣∣ = 0

(a− λ)(c − λ)− b2 = 0

λ2 − (a+ c)︸ ︷︷ ︸
tr(H)

λ+ (ac − b2)︸ ︷︷ ︸
det(H)

= 0

λ1,2 =
tr(H)±

√
tr(H)2 − 4 det(H)

2
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Alternative Convexity Test: The Quadratic Form vTHv

Definition: Convexity can be defined by the sign of the quadratic form vTHv.

This method is the fundamental mathematical definition of matrix definiteness.

The Quadratic Form vTH(x)v (Curvature in Direction v)

Convex (H ⪰ 0):

vTH(x)v ≥ 0

for all x and all vectors v ̸= 0.

Strictly Convex (H ≻ 0):

vTH(x)v > 0

for all x and all vectors v ̸= 0.

Concave (H ⪯ 0):

vTH(x)v ≤ 0

for all x and all vectors v ̸= 0.

Intuition: The sign of this value indicates
the function’s curvature when moving
from x in the direction v.
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Example Q1: Analysis of f (x , y) = x2 + y 2 (Calculations)

Function:

f (x , y) = x2 + y2

First Derivatives:

∂f

∂x
= 2x ,

∂f

∂y
= 2y

Second Derivatives:

∂2f

∂x2
= 2,

∂2f

∂y2
= 2,

∂2f

∂x∂y
= 0

Hessian Matrix H:

H =

(
2 0
0 2

)
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Example Q1: Analysis of f (x , y) = x2 + y 2 (Conclusion)

Hessian Matrix (from previous slide):

H =

(
2 0
0 2

)
Eigenvalues λ: The Hessian is a diagonal matrix, so the eigenvalues are the diagonal
elements.

λ1 = 2, λ2 = 2

Final Conclusion:
Both eigenvalues are positive (λ > 0).
The function f (x , y) is Strictly Convex.
The critical point (where ∇f = 0, which is (0, 0)) is a **Global Minimum**.
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Example Q2: Analysis of f (x , y) = x2 − y 2 (Calculations)

Function:

f (x , y) = x2 − y2

First Derivatives (Gradient ∇f ):

∂f

∂x
= 2x ,

∂f

∂y
= −2y

Second Derivatives:

∂2f

∂x2
= 2,

∂2f

∂y2
= −2,

∂2f

∂x∂y
= 0

Hessian Matrix H:

H =

(
∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2

)
=

(
2 0
0 −2

)
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Example Q2: Analysis of f (x , y) = x2 − y 2 (Conclusion)

Hessian Matrix (from previous slide):

H =

(
2 0
0 −2

)
Eigenvalues λ:

λ1 = 2, λ2 = −2

Mixed Signs
The critical point (0, 0) is a Saddle Point (by setting first derivatives to zero).
The Hessian is **Indefinite** (mixed positive and negative eigenvalues).
This means the critical point is NOT a minimum or a maximum.
Saddle points are very common in high-dimensional Machine Learning loss landscapes.
They can slow down optimization algorithms like Gradient Descent, as the gradient near
the point is close to zero.
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Example Q3: Rosenbrock Function (Calculations)

Function: (Non-convex with a steep,
curved valley)

f (x , y) = (1− x)2 + 100(y − x2)2

First Derivatives:

∂f

∂x
= −2(1− x)− 400x(y − x2)

∂f

∂y
= 200(y − x2)

Second Derivatives:

∂2f

∂x2
= 2 + 1200x2 − 400y

∂2f

∂y2
= 200,

∂2f

∂x∂y
= −400x

Rosenbrock Function (3D Surface)
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Example Q3: Rosenbrock Function (Hessian Analysis)

General Hessian Matrix H(x , y):

H(x , y) =

(
2 + 1200x2 − 400y −400x

−400x 200

)
Hessian at Minimum (1, 1):

H(1, 1) =

(
802 −400
−400 200

)
Eigenvalues at Minimum:

λ1 ≈ 1001.6, λ2 ≈ 0.4

The large difference in λ values (≈ 2500×) indicates severe ill-conditioning.
This means the valley is very steep in one direction (λ1) and extremely shallow in the
orthogonal direction (λ2).
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Example Q3: Rosenbrock Function (Optimization Challenge)

The long, narrow, parabolic valley
makes it difficult for simple Gradient
Descent (GD) to navigate efficiently.

GD takes tiny steps along the shallow
direction and bounces wildly
back-and-forth across the steep walls.

Optimization algorithms must
effectively follow the valley floor without
bouncing side-to-side.

2D Slices Through the Minimum (1, 1)
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Hessian Matrix: Summary and Insights

Generalized Form (Hessian H for f : Rn → R):

H =


∂2f
∂x21

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x22

· · · ∂2f
∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂x2n


Eigenvalue (λ) Classification: The eigenvalues of H at a critical point θc determine the
nature of that point:

Local Minimum: All λ > 0
Local Maximum: All λ < 0
Saddle Point: ∃λ+ > 0 and ∃λ− < 0 (Mixed signs)

Eigenvalue Magnitude (Curvature): The magnitude of the eigenvalues tells us about
function steepness along the corresponding eigenvector direction:

Steepness: Large |λ|
Flatness: Small |λ|
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Multivariate Convex Functions

Nipun Batra
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Convexity of linear least squares

Prove the convexity of linear least squares i.e. f (θ) = ||y − Xθ||2
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Prove the convexity of linear least squares i.e. f (θ) = ||y − Xθ||2

We will use the double derivative (Hessian)

f (θ) = ||y − Xθ||2 = (y − Xθ)T (y − Xθ)

= yTy − 2yTXθ + θTXTXθ

df
dθ = −2XTy + 2XTXθ

(Using: ∂
∂θ (a

Tθ) = a and ∂
∂θ (θ

TAθ) = (A+ AT )θ, with XTX symmetric)
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Convexity of linear least squares

Prove the convexity of linear least squares i.e. f (θ) = ||y − Xθ||2

We will use the double derivative (Hessian)

f (θ) = ||y − Xθ||2 = (y − Xθ)T (y − Xθ)

= yTy − 2yTXθ + θTXTXθ

df
dθ = −2XTy + 2XTXθ

(Using: ∂
∂θ (a

Tθ) = a and ∂
∂θ (θ

TAθ) = (A+ AT )θ, with XTX symmetric)

d2f
dθ2 = H = 2XTX

XTX is positive semidefinite for any X ∈ Rm×n.
Hence, linear least squares function is convex.
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Properties of Convex Functions

If f (x) is convex, then kf (x) is also convex, for some constant k ≥ 0

If f (x) and g(x) are convex, then f (x) + g(x) is also convex.
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Properties of Convex Functions

If f (x) is convex, then kf (x) is also convex, for some constant k ≥ 0

If f (x) and g(x) are convex, then f (x) + g(x) is also convex.

Using this we can say that:

(y − Xθ)T (y − Xθ) + θTθ is convex

(y − Xθ)T (y − Xθ) + ||θ||1 is convex
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Second-Order Optimization for Logistic Regression

Abhyudaya Nair
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Why Second-Order Methods?

GD Problem: Slow convergence in elongated valleys, struggles with different parameter
scales, requires learning rate tuning

Second-Order Solution: Use Hessian H to capture curvature information

Key Benefits:
H−1 acts as automatic, adaptive learning rate
Quadratic convergence near optimum (vs linear for GD)
Typically 5-10 iterations vs 100s-1000s for gradient descent
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Logistic Regression Setup

Model Components:

Data and Predictions:

Binary labels: yi ∈ {0, 1}
Features: xi ∈ Rd

Sigmoid: σ(z) = 1
1+e−z

Predictions: ŷi = σ(θTxi )

Loss Function (NLL):

J(θ) = −
n∑

i=1

[yi log(ŷi ) + (1− yi ) log(1− ŷi )]

Key Sigmoid Property:

dσ(z)

dz
= σ(z)(1− σ(z))
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Newton’s Method: Core Derivation

Strategy: Locally approximate f (θ) with a quadratic, jump to its minimum, repeat.

Second-Order Taylor Expansion around θk :

fquad(θ) = f (θk)︸ ︷︷ ︸
constant

+ gTk (θ − θk)︸ ︷︷ ︸
linear: slope

+
1

2
(θ − θk)

THk(θ − θk)︸ ︷︷ ︸
quadratic: curvature

where gk = ∇f (θk) (gradient) and Hk = ∇2f (θk) (Hessian).

Derivation Steps:
1 Take gradient: ∇θfquad(θ) = gk +Hk(θ − θk)
2 Set to zero: gk +Hk(θ − θk) = 0
3 Solve for θ: Hk(θ − θk) = −gk ⇒ θ − θk = −H−1

k gk

4 Newton’s Update: θk+1 = θk −H−1
k gk

Gradient Descent: θk+1 = θk − αgk
Needs learning rate α

Linear convergence

Newton’s Method: θk+1 = θk −H−1
k gk

H−1
k acts as adaptive learning rate

Quadratic convergenceAbhyudaya Nair Second-Order Optimization for Logistic Regression 38 / 47



Recall Gradient and Hessian

θk+1 = θk −H−1
k gk

What We Need:

Gradient vector: g = ∇J(θ) =


∂J
∂θ1
∂J
∂θ2
...
∂J
∂θd

 ∈ Rd

Hessian matrix: H = ∇2J(θ) =


∂2J
∂θ21

∂2J
∂θ1∂θ2

· · · ∂2J
∂θ1∂θd

∂2J
∂θ2∂θ1

∂2J
∂θ22

· · · ∂2J
∂θ2∂θd

...
...

. . .
...

∂2J
∂θd∂θ1

∂2J
∂θd∂θ2

· · · ∂2J
∂θ2d

 ∈ Rd×d
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Gradient Computation for Logistic Regression

Goal: Compute ∂J
∂θj

where J(θ) = −
∑n

i=1[yi log(ŷi ) + (1− yi ) log(1− ŷi )], ŷi = σ(θTxi )

For single sample i , use chain rule: ∂Ji
∂θj

= ∂Ji
∂ŷi

· ∂ŷi
∂θj

Part 1 - Loss derivative w.r.t. prediction:

∂Ji
∂ŷi

=
∂

∂ŷi
[−yi log(ŷi )− (1− yi ) log(1− ŷi )] = −yi

ŷi
+

1− yi
1− ŷi

=
−yi (1− ŷi ) + (1− yi )ŷi

ŷi (1− ŷi )
=

−yi + yi ŷi + ŷi − yi ŷi
ŷi (1− ŷi )

=
ŷi − yi

ŷi (1− ŷi )
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Gradient Computation for Logistic Regression (continued)

Part 2 - Prediction derivative w.r.t. parameter:

∂ŷi
∂θj

=
∂σ(θTxi )

∂θj
= σ′(θTxi )︸ ︷︷ ︸

=ŷi (1−ŷi )

·∂(θ
Txi )

∂θj
= ŷi (1− ŷi ) · xij

Combining (beautiful cancellation!):

∂Ji
∂θj

=
ŷi − yi

ŷi (1− ŷi )
· ŷi (1− ŷi )xij = (ŷi − yi )xij

Sum over all samples: ∂J
∂θj

=
∑n

i=1(ŷi − yi )xij ⇒ g(θ) = XT (ŷ − y)
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Hessian Computation for Logistic Regression

Goal: Compute second derivatives Hjk = ∂2J
∂θj∂θk

Starting from gradient: We know ∂J
∂θj

=
∑n

i=1(ŷi − yi )xij

Take derivative w.r.t. θk :

Hjk =
∂

∂θk

[
n∑

i=1

(ŷi − yi )xij

]
=

n∑
i=1

xij
∂ŷi
∂θk

(since yi and xij don’t depend on θk)

=
n∑

i=1

xij · ŷi (1− ŷi ) · xik =
n∑

i=1

ŷi (1− ŷi )xijxik

Matrix Form: Define weight matrix S = diag(ŷ1(1− ŷ1), . . . , ŷn(1− ŷn)), then: H = XTSX
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Hessian: Key Properties

H = XTSX where S = diag(ŷ1(1− ŷ1), . . . , ŷn(1− ŷn))

Key Properties:

Positive Definite: Since ŷi (1− ŷi ) > 0 for ŷi ∈ (0, 1), we have
vTHv = (Xv)TS(Xv) > 0 for v ̸= 0 ⇒ J(θ) is strictly convex!

Adaptive Weighting: Weight wi = ŷi (1− ŷi ) is maximal at ŷi = 0.5 (uncertain),
minimal near ŷi = 0 or 1 (confident)

Fisher Information: H equals the Fisher Information Matrix for logistic regression

Weighted Least Squares Form: XTSX appears in weighted regression problems
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Newton’s Method Algorithm for Logistic Regression

Complete Algorithm:

1: Initialize: θ0 (e.g., θ0 = 0)
2: for k = 0, 1, 2, . . . until convergence do
3: Compute predictions: ŷk = σ(Xθk) (apply elementwise)
4: Compute gradient: gk = XT (ŷk − y)
5: Compute weights: Sk = diag(ŷ1k(1− ŷ1k), . . . , ŷnk(1− ŷnk))
6: Compute Hessian: Hk = XTSkX
7: Solve linear system: Hkδk = −gk for δk
8: Update: θk+1 = θk + δk
9: Check convergence: if ∥gk∥ < ϵ or ∥δk∥ < ϵ, stop

10: end for
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Newton’s Method: Practical Considerations

Practical Considerations:

Never compute H−1
k explicitly! Solve Hkδk = −gk using Cholesky decomposition

(exploits Hk being symmetric positive definite)

Computational Cost per iteration: O(nd2 + d3) where n = samples, d = features

Memory: O(d2) for storing Hessian

Convergence: Typically 5-10 iterations vs 100s-1000s for gradient descent

When to use: Small-to-medium d (features), need high accuracy, well-conditioned
problems
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Iteratively Reweighted Least Squares (IRLS) Formulation

Motivation: Rewrite Newton’s update to reveal connection with weighted least squares.
Starting from Newton’s update:

θk+1 = θk +H−1
k (−gk) = θk + (XTSkX)

−1XT (y − ŷk)

= (XTSkX)
−1[(XTSkX)θk + XT (y − ŷk)]

= (XTSkX)
−1XT [SkXθk + (y − ŷk)]

Define adjusted response vector: zk = Xθk + S−1
k (y − ŷk) Then:

SkXθk + (y − ŷk) = Sk [Xθk + S−1
k (y − ŷk)] = Skzk

Final IRLS form: θk+1 = (XTSkX)
−1XTSkzk
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IRLS: Interpretation

IRLS form:

θk+1 = (XTSkX)
−1XTSkzk

Weighted Least Squares:

θ = (XTWX)−1XTWy

This is exactly the weighted least squares solution with:

Weights: Sk (changes each iteration - hence ”iteratively reweighted”)

Response: zk (adjusted to account for current predictions)

Interpretation: Newton’s method for logistic regression = iteratively solving weighted least
squares problems where weights and responses are updated based on current parameter
estimates!
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