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o Convexity is defined on an interval [, (]
@ The line segment joining (a, f(a)) and (b, f(b)) should be above or on the function f for
all points in interval [, 3].

Line segment joining 'a' and 'b'
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Example: y = x

Convex on the entire real line i.e. (—o0, 00)
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Example: y = |x|

Convex on the entire real line i.e. (—o0, 00)
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Example: y = &*

Convex on the entire real line i.e. (—o0, 00)
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Example: y = Inx

Not convex on the entire real line i.e. (—00,0)
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Example: y = x

It is convex for the interval [0, c0)
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Example: y = x

It is concave for the interval (—o0, 0]
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Example: y = x

But, it is not convex for the interval (—oo, 00)
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Mathematical Formulation

Function f is convex on set X, if Vxi,x € X and Vt € [0, 1]

Ftxa + (1 — t)x) < tfa) + (1 — ) (x)

tf(x1) + (1-)f(x,)

f(tx1+ (1-t)x2)
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Question: Prove that f(x) = x? is convex
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Question: Prove that f(x) = x? is convex

To prove:

f(txa + (1 —t)xe) < tf(x1) + (1 — t)f(x2)
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Question: Prove that f(x) = x? is convex

To prove:

LHS = f(tx1 + (1 — t)x2)

f(tXl + (1 — t)Xz) < tf(Xl) + (1 — t)f(Xz)

= t2x2 + (1 — t)°x3 + 2t(1 — t)x1x

RHS = tf(x1) + (1 — t)f(x2) = tx2 + (1 — t)x3
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Question: Prove that f(x) = x? is convex

To prove:

f(tXl + (1 — t)Xz) < tf(Xl) + (1 — t)f(Xz)

LHS = f(ba + (1 — t)x2) = t2x2 + (1 — t)x3 + 2t(1 — t)x1x2
RHS = tf(x1) + (1 — t)f(x) = tx2 + (1 — t)x3

Here,

LHS - RHS = (£2 — t)x? + [(1 — t)2 — (1 — t)]x2 + 2t(1 — t)x1x2
(t2 — t)x2 + (t2 — t)x3 — 2(t% — t)x1x

(t2 — t)(Xl — X2)2
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Question: Prove that f(x) = x? is convex

To prove:
f(txa + (1 —t)xe) < tf(x1) + (1 — t)f(x2)

LHS = f(txa + (1 — t)xa) = t33 + (1 — t)%x3 + 2t(1 — t)xix
RHS = tf(x1) + (1 — t)f(x) = tx? + (1 — t)x3

Here,

LHS - RHS = (2 — t)x? + [(1 — t)? — (1 — t)]x3 + 2t(1 — t)x1x2
= (2 = t)xZ + (2 — t)x3 — 2(t2 — t)xix
= (£ = t)(a — %)

Here, (t2 — t) < O since t € [0,1] and (x1 — x2)? > 0
Hence, LHS -RHS < 0

Hence LHS < RHS

Hence proved.
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Alternative ways to prove convexity

The Double-Derivative Test

If f"(x) > 0, the function is convex.

For example,

2(,,2
88(;2) =2> 0= x? is a convex function.
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Alternative ways to prove convexity

The double derivative test for multi-parameter function is equal to using the Hessian Matrix

A function f(x1, x2,...,xy,) is convex iff its n x n Hessian Matrix is positive semidefinite for all
possible values of (x1,x2, ..., Xn)
[ 2°f i R
0x? 0x10x2 Ox10xn
&2f ’f . _Pf
H _ Ox20x1 8)(22 Ox20xp
02 f Rf .. 0%
| OxnOx1  OxpOx2 oxz |
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Hessian Matrix Tutorial - Understanding Second-Order Derivatives for

Optimization

Palak Gupta
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Understanding Curvature: Minima and Maxima

@ The Hessian is a square matrix containing all a2 0

Local Maximum

second-order partial derivatives of a scalar

function f(x). I
@ It's essential for understanding the curvature of
functions in machine learning optimization.
@ Role in Optimization: It helps to determine
whether an optimization point is a minimum, ® °

. . Local M y Local M "
maximum, or saddle point. — : el

dx dx?
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Hessian Matrix Definition and Formula

o For a scalar-valued function f : R” — R of n variables x = (x1, x2,...,x,)", the Hessian
matrix H is defined as:

P 1"
Hir) = [OX:@XJ]

ij=1
@ The element H;; of the matrix is the second-order partial derivative of f with respect to
x; and Xx;.
e Example: Hessian for Two Variables f(x,y):

ot Of
_ | ox2 Ox0Oy
H=1 % &/
dydx  0y?

o Key Property: If the second partial derivatives are continuous, then by **Clairaut’s
Theorem** (or Schwarz's theorem), the matrix is **symmetric**:
0?f B 0°f
0x0y  Oyox
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Hessian and Convexity

cccccc

o Strictly Convex: For a point x*, the
properties of H(x*) determine the nature
of the function’s curvature:

o Strictly Convex: The Hessian H is
Positive Definite (H ~ 0). R %
o Positive Definite < All Eigenvalues \
Ai > 0.
e Consequence: Any local minimum is
guaranteed to be the global minimum.
e Optimization algorithms like Gradient
Descent are guaranteed to converge to
this minimum.
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Hessian and Convexity (Co

Convex
fx,y) = x*

(kx

@ Convex: The Hessian H is Positive
Semi-Definite (H > 0).

o Positive Semi-Definite < All
Eigenvalues \; > 0. .

o Optimization Implications:

e The function still possesses a global
minimum.

e It may have flat regions or multiple
optimal points (e.g., when X\; = 0),
leading to potential slowdowns for -
optimization methods.
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Hessian and Concavity

Strictly Concave
fxy) = -0 +y%)

@ Strictly Concave: The Hessian H is
Negative Definite (H < 0).

o Negative Definite < All Eigenvalues
A < 0.

@ Function Shape:

(ZGzoro) S ciobal asmum
o

e The function curves downward
everywhere (inverted U-shape).

e Any local maximum is guaranteed to be
the global maximum.

@ Optimization Context: This property is
key for maximization problems, as any B
algorithm will converge to the unique B
global maximum. \
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Hessian and Non-Convexity

Non-Convex (Saddle)
flxy) = x*-y?

@ Non-Convex: The Hessian H is
Indefinite (neither positive nor negative
semi-definite).

o Indefinite & Mixed Eigenvalues (both

positive \; > 0 and negative \; < 0). R s
e Function Shape & Optimization NN
Challenges: ] N/
e Multiple Local Minima are possible, \ /
complicating optimization. ) R \‘
e Saddle Points are present, where the . / \
function curves up in some directions and W /N \

down in others (Hessian is indefinite).
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Hessian: Eigenvalue Summary and Calculation

Eigenvalues Function Type | Optimization
All positive (A;j > 0) Strictly convex | Global minimum exists
All non-negative (\; > 0) | Convex Minimum exists
All negative (\; < 0) Strictly concave | Global maximum exists
Mixed signs Non-convex Saddle points present
det 1?2~ A b | 0
e Finding Eigenvalues for a 2D 1o c—\
Hessian: (a—N)(c—A)—b2=0
@ We solve the characteristic 2 2
equation: det(H — Al) = 0. M-t b)=0
b tr(H) det(H)
=1 ]
b e \ . _ tr(H) = /u(H)2 = 4der(H)
12 =
’ 2
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Alternative Convexity Test: The Quadratic Form v Hv

o Definition: Convexity can be defined by the sign of the quadratic form v’ Hv.

@ This method is the fundamental mathematical definition of matrix definiteness.

The Quadratic Form v’ H(x)v (Curvature in Direction v)

e Convex (H > 0):
e Concave (H < 0):

v H(x)v >0
-
v H(x)v<0
for all x and all vectors v # 0.
o Strictly Convex (H > 0): for all x and all vectors v # 0.
@ Intuition: The sign of this value indicates
vTH(x)v >0 the function’s curvature when moving

from x in the direction v.
for all x and all vectors v # 0.
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Example Q1: Analysis of f(x,y)

@ Function:

f(x,y) = x> +y°

@ First Derivatives:

of
ox

= 2x,

@ Second Derivatives:

o _

e
ox2 7

dy?

@ Hessian Matrix H:

Palak Gupta

.

of

y

I

0 2

0?f B
oxdy

)

Hessian Matrix Tutorial -

2D Slice: y =0

= x? + y? (Calculations)

2D Slice: x =0
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Example Q1: Analysis of f(x,y) = x> + y? (Conclusion)

e Hessian Matrix (from previous slide):

2 0
"= 2
o Eigenvalues \: The Hessian is a diagonal matrix, so the eigenvalues are the diagonal

elements.
A1=2, =2

e Final Conclusion:
o Both eigenvalues are positive (A > 0).

e The function f(x, y) is Strictly Convex.
o The critical point (where Vf = 0, which is (0,0)) is a **Global Minimum**.
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Example Q2: Analysis of f(x,y) = x> — y? (Calculations)

@ Function:
lxy) ==y

o First Derivatives (Gradient Vf):

2D Slice: y =0 (Local Minimum in x) 2D Slice: x =0 (Local Maximum in y)
Bf af — fix,0=x? 0
- = 2)(7 - = —2y 8 @ saddle point (0,0)
Ox dy ) -
@ Second Derivatives: 4 s
2 2 2 ’ . A
ﬁ — a f e 8 f — 0 0 ° gadd:e Pol::(o,o)
6X2 ’ 8y2 ) axay -3 -2 -1 : 1 2 3 -3 -2 -1 3 1 2 3

@ Hessian Matrix H:

2f  _9f
_ Ox? oxdy | _
H=| % ¢ |=

dydx  0y2
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Example Q2: Analysis of f(x,y) = x?> — y? (Conclusion)

e Hessian Matrix (from previous slide):

o Eigenvalues \:
A1=2, A=-2

o Mixed Signs
o The critical point (0,0) is a Saddle Point (by setting first derivatives to zero).
o The Hessian is **Indefinite** (mixed positive and negative eigenvalues).
e This means the critical point is NOT a minimum or a maximum.
o Saddle points are very common in high-dimensional Machine Learning loss landscapes.
e They can slow down optimization algorithms like Gradient Descent, as the gradient near
the point is close to zero.
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Example Q3: Rosenbrock Function (Calculations)

e Function: (Non-convex with a steep, Rosenbrock Function (3D Surface)
curved valley)
f(x,y) = (1 —x)> 4+ 100(y — x?)?

Rosenbrock Function (3D Surface)

@ Minimum (1, 1)

@ First Derivatives:

of 5
Ix —2(1 — x) — 400x(y — x°)

8f 2000
—— =200(y — x?
8}/ (y x ) s1500
e Second Derivatives: = 1000
2f .
AL + 1200x2 — 400y
82an2 0*f
— = = —400
Oy? T Ox0y x
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Example Q3: Rosenbrock Function (Hessian Analysis)

e General Hessian Matrix H(x,y):

(24 1200x% — 400y —400x
H(x,y) = < —400x 200 >

e Hessian at Minimum (1,1):

802 400
H(l’l)_<—4oo 200)

o Eigenvalues at Minimum:
)\1 ~ 10016, )\2 ~ 0.4

e The large difference in )\ values (=~ 2500x) indicates severe ill-conditioning.
o This means the valley is very steep in one direction (A1) and extremely shallow in the
orthogonal direction (Az).

Palak Gupta Hessian Matrix Tutorial - Understanding Second-Order D



Example Q3: Rosenbrock Function (Optimization Challenge)

@ The long, narrow, parabolic valley
makes it difficult for simple Gradient 2D Slices Through the Minimum (1, 1)

2D Slice: y =1 (Through the 2D Slice: x = 1 (Through the minimum )

Descent (GD) to navigate efficiently. e

— fix1)
®  Minimum (1,1) ® Minimum (11
150 150

@ GD takes tiny steps along the shallow
direction and bounces wildly
back-and-forth across the steep walls.

100 100

fx, 1)

f(1,y)

e Optimization algorithms must S e T T e e o n o
effectively follow the valley floor without
bouncing side-to-side.
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Hessian Matrix: Summary and Insights

e Generalized Form (Hessian H for f : R” — R):

Pr or . o
0x? Ox10x2 Ox10xn
T T
H _ Oxo0x1 8)(22 Ox20xn
02f o°f . 02f
OxnOx1  0xn0x0 Ox?

e Eigenvalue ()\) Classification: The eigenvalues of H at a critical point 6. determine the
nature of that point:
e Local Minimum: All A >0
e Local Maximum: All A <0
o Saddle Point: AT > 0 and IA~ < 0 (Mixed signs)
e Eigenvalue Magnitude (Curvature): The magnitude of the eigenvalues tells us about
function steepness along the corresponding eigenvector direction:
o Steepness: Large |)|
o Flatness: Small |)|
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Multivariate Convex Functions

Nipun Batra
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Convexity of linear least squares

Prove the convexity of linear least squares i.e. f(8) = ||y — X8||?
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Convexity of linear least squares

Prove the convexity of linear least squares i.e. f(8) = ||y — X8||?

We will use the double derivative (Hessian)
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Convexity of linear least squares

Prove the convexity of linear least squares i.e. f(8) = ||y — X8||?
We will use the double derivative (Hessian)

f(8) = |ly — X0|> = (y — X6) " (y — X6)
=yTy—2yTX0+6"X"X0
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Convexity of linear least squares

Prove the convexity of linear least squares i.e. f(8) = |ly — X8||?
We will use the double derivative (Hessian)

f(8) = Ily — X6|]> = (y — X8) " (y — X6)
—yTy—2yTX0 +67XTX0

g = —2XTy +2XTX6
(Using: Z(a™@) =a and 2(8"A8) = (A+ A7)0, with XTX symmetric)
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Convexity of linear least squares

Prove the convexity of linear least squares i.e. f(8) = ||y — X0||?

We will use the double derivative (Hessian)

F(0) = lly — X0||> = (y — X0) " (y — X0)
=yTy—2y"X0+607XTX0
o = —2XTy+2XTX6
(Using: %(aTB) =a and {_%(GTAB) = (A + AT)H, with XTX symmetric)
& —H=2X"X

de? —
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Convexity of linear least squares

Prove the convexity of linear least squares i.e. f(8) = ||y — X8||?

We will use the double derivative (Hessian)

F(0) = lly = X6||* = (y — X0) " (y — X0)
=yTy—2yTX0+607XTX0
g = —2XTy +2XTX6
(Using: %(aTB) =a and %(BTAO) = (A+ AT)H, with XTX symmetric)

dPf g T
W_H_2X X

XTX is positive semidefinite for any X € R™*".
Hence, linear least squares function is convex.
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Properties of Convex Functions

o If f(x) is convex, then kf(x) is also convex, for some constant k > 0
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Properties of Convex Functions

o If f(x) is convex, then kf(x) is also convex, for some constant k > 0

e If f(x) and g(x) are convex, then f(x) + g(x) is also convex.
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Properties of Convex Functions

o If f(x) is convex, then kf(x) is also convex, for some constant k > 0
o If f(x) and g(x) are convex, then f(x) + g(x) is also convex.
Using this we can say that:
o (y—X8)"(y —X8)+ 6780 is convex
o (y — X0)T(y — X0) +|0||1 is convex
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Second-Order Optimization for Logistic Regression

Abhyudaya Nair
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Why Second-Order Methods?

@ GD Problem: Slow convergence in elongated valleys, struggles with different parameter
scales, requires learning rate tuning

@ Second-Order Solution: Use Hessian H to capture curvature information

o Key Benefits:

o H™! acts as automatic, adaptive learning rate
o Quadratic convergence near optimum (vs linear for GD)
e Typically 5-10 iterations vs 100s-1000s for gradient descent
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Logistic Regression Setup

Model Components:
Loss Function (NLL):

Data and Predictions: n

@ Binary labels: y; € {0,1} J(0) =— Z[y; log(yi) + (1 — yi) log(1 — yi)]
o Features: x; € RY i=1

e Sigmoid: o(z) = H% Key Sigmoid Property:

e Predictions: §; = o(67x;) do(z)

22— o(2)(1 - o(2))

Abhyudaya Nair Second-Order Optimization for Logistic Regression



Newton's Method: Core Derivation

Strategy: Locally approximate f(0) with a quadratic, jump to its minimum, repeat.

Second-Order Taylor Expansion around 6,:

1
fauad(0) = F(0k) +g/ (6 — 04) + 5(9 —0) TH (6 — 6y)

/

constant linear: slope .
quadratic: curvature

where g, = V£(0y) (gradient) and H, = V2f(6)) (Hessian).
Derivation Steps:

Q Take gradient: Vgfquad(0) = gk + Hi(6 — 0)

@ Set to zero: gx + Hi (0 —0,) =0

@ Solve for @: He(6 — 0y) = —gx = 0 — 0, = —H, g,

@ Newton’s Update: |0, = 0 — H;lgk

Gradient Descent: 0,1 = 0, — agx Newton’s Method: 6,1 = 0, — H;lgk

@ Needs learning rate o H,:l acts as adaptive learning rate
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Recall Gradient and Hessian

ki1 =0k — H, 'gx

Abhyudaya Nair

Second-Order Optimization for Logistic Regression

What We Need:
o4
00
o)
. 00> d
o Gradient vector: g=VJ(@)= || €R
0J
904
r 9%J 02J 92J T
002  00:00; 90,004
02J @g 02J
. . 00,00 06,00
o Hessian matrix: H =V?2J(0) = | 7" 6‘_92 2T e Rxd
02 _PJ 2J
| 90400, 90400, 962 |



Gradient Computation for Logistic Regression

Goal: Compute

For single sample i, use chain rule: 2 = 24 . %%

7 where J(0) = — 3271 [yilog(9) + (1 — yi) log(1 = 91)], 71 = o(0x;)

* 90, = 9y 00

Part 1 - Loss derivative w.r.t. prediction:

0J;
3%

Abhyudaya Nair

. yi  1—vyi
= —[—yilo — (1= y;)log(1 — y; ———+
8y,-[ yilog(9i) — (1 — yi) log(1 — yi)] 5,
_ yil=9)+ A -yl —yi+yi)7i+y, yivi _ Ji—yi
yi(L—9i) yi(L = i) ¥i(1 = i)
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Gradient Computation for Logistic Regression (continued)

Part 2 - Prediction derivative w.r.t. parameter:

o9, 00(0"x)) .+ . 00Tx) .
2= 22 T 50T X)) = (1 — 9 - X
a6, 00); 76 %) 26; 9i(1 = 9i) - x;
=9i(1-9)
Combining (beautiful cancellation!):
i Vi—vyi

0 = o1 oy Vill = 9i)xij = (Ji — yi)xij

Sum over all samples: g—é’j =S G-y = |80 =XT(§-y)
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Hessian Computation for Logistic Regression

2
. P %)
Goal: Compute second derivatives Hj = 90,00,

Starting from gradient: We know 94 = 37 (9 — yi)x;

96; — 2ui=1

Take derivative w.r.t. 0:

H. 0

i=1
n
= E Xij'}/}i( y, * Xik = E y/ — Ji XUXIk
i=1

Matrix Form: Define weight matrix S = diag(y1(1 — 1), .

Abhyudaya Nair

i = %6, [Z( — i xU] ZX,J 89 (since y; and x;; don't depend on 6y)

e n(L ~ 9a)). then:
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Hessian: Key Properties

H = X"SX | where S = diag(91(1 — $1),- .-, n(1 — )

Key Properties:
o Positive Definite: Since §;(1 — y;) > 0 for y; € (0,1), we have
v Hv = (Xv)"S(Xv) > 0 for v # 0 = J(0) is strictly convex!
e Adaptive Weighting: Weight w; = y;(1 — ;) is maximal at y; = 0.5 (uncertain),
minimal near §; = 0 or 1 (confident)
o Fisher Information: H equals the Fisher Information Matrix for logistic regression

o Weighted Least Squares Form: X7 SX appears in weighted regression problems
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Newton's Method Algorithm for Logistic Regression

Complete Algorithm:

1. Initialize: 6y (e.g., 6o = 0)

2: for k=0,1,2,... until convergence do

3:  Compute predictions: yx = o(X8y) (apply elementwise)
Compute gradient: gx = X' (yx —y)
Compute weights: Sx = diag(J1x(1 — J1k); - - » Fak(1 — k)
Compute Hessian: Hy = XS, X
Solve linear system: Hi 8, = —gy for d
Update: 0k+1 =0+ 0k

9:  Check convergence: if ||gk|| < € or ||6k|| < €, stop
10: end for

e R
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Newton's Method: Practical Considerations

Practical Considerations:
o Never compute H;l explicitly! Solve Hy 6, = —gj using Cholesky decomposition
(exploits Hy being symmetric positive definite)
e Computational Cost per iteration: O(nd? + d*) where n = samples, d = features
e Memory: O(d?) for storing Hessian
o Convergence: Typically 5-10 iterations vs 100s-1000s for gradient descent

e When to use: Small-to-medium d (features), need high accuracy, well-conditioned
problems
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|lteratively Reweighted Least Squares (IRLS) Formulation

Motivation: Rewrite Newton's update to reveal connection with weighted least squares.
Starting from Newton's update:

01 =0k +H, ' (—gk) = 0k + (XTSKX) ' XT(y — )
= (XTSkX) " [(XTSkX)8k + X (y — §4)]
= (XTSkX) ' XT[Si X0y + (y — )]

Define adjusted response vector: z;, = X6y + S;l(y —9¥k) Then:
SiXO + (y — k) = Sk[XOk + S (y — 9u)] = Swzk

Final IRLS form: |0,,1 = (X"S,X)"!X"S,z
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IRLS: Interpretation

IRLS form: Weighted Least Squares:

Ok1 = (XTSKX)IX TSz, 0 = (XTWX) " 1X Wy

This is exactly the weighted least squares solution with:
e Weights: S, (changes each iteration - hence "iteratively reweighted”)

e Response: z, (adjusted to account for current predictions)

Interpretation: Newton's method for logistic regression = iteratively solving weighted least
squares problems where weights and responses are updated based on current parameter
estimates!
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