Univariate Convex Functions

Nipun Batra

October 13, 2025

Definition

- Convexity is defined on an interval $[\alpha, \beta]$
- The line segment joining (a, f(a)) and (b, f(b)) should be above or on the function f for all points in interval $[\alpha, \beta]$.

Convex on the entire real line i.e. $(-\infty, \infty)$

Convex on the entire real line i.e. $(-\infty, \infty)$

Convex on the entire real line i.e. $(-\infty, \infty)$

Example: $y = \ln x$

Not convex on the entire real line i.e. $(-\infty, \infty)$

It is convex for the interval $[0,\infty)$

7 / 47

It is concave for the interval $(-\infty, 0]$

But, it is not convex for the interval $(-\infty, \infty)$

Mathematical Formulation

Function f is convex on set X, if $\forall x_1, x_2 \in X$ and $\forall t \in [0, 1]$

$$f(tx_1+(1-t)x_2) \leq tf(x_1)+(1-t)f(x_2)$$

11 / 47

To prove:

$$f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2)$$

12 / 47

To prove:

$$f(tx_1 + (1-t)x_2) \leq tf(x_1) + (1-t)f(x_2)$$

LHS =
$$f(tx_1 + (1 - t)x_2)$$
 = $t^2x_1^2 + (1 - t)^2x_2^2 + 2t(1 - t)x_1x_2$
RHS = $tf(x_1) + (1 - t)f(x_2) = tx_1^2 + (1 - t)x_2^2$

To prove:

$$f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2)$$

LHS =
$$f(tx_1 + (1 - t)x_2)$$
 = $t^2x_1^2 + (1 - t)^2x_2^2 + 2t(1 - t)x_1x_2$
RHS = $tf(x_1) + (1 - t)f(x_2) = tx_1^2 + (1 - t)x_2^2$

Here,

LHS - RHS =
$$(t^2 - t)x_1^2 + [(1 - t)^2 - (1 - t)]x_2^2 + 2t(1 - t)x_1x_2$$

= $(t^2 - t)x_1^2 + (t^2 - t)x_2^2 - 2(t^2 - t)x_1x_2$
= $(t^2 - t)(x_1 - x_2)^2$

To prove:

$$f(tx_1+(1-t)x_2) \leq tf(x_1)+(1-t)f(x_2)$$

LHS =
$$f(tx_1 + (1 - t)x_2)$$
 = $t^2x_1^2 + (1 - t)^2x_2^2 + 2t(1 - t)x_1x_2$
RHS = $tf(x_1) + (1 - t)f(x_2) = tx_1^2 + (1 - t)x_2^2$

Here,

LHS - RHS =
$$(t^2 - t)x_1^2 + [(1 - t)^2 - (1 - t)]x_2^2 + 2t(1 - t)x_1x_2$$

= $(t^2 - t)x_1^2 + (t^2 - t)x_2^2 - 2(t^2 - t)x_1x_2$
= $(t^2 - t)(x_1 - x_2)^2$

Here, $(t^2 - t) \le 0$ since $t \in [0, 1]$ and $(x_1 - x_2)^2 \ge 0$

Hence, LHS -RHS ≤ 0

Hence LHS \leq RHS

Hence proved.

Alternative ways to prove convexity

The Double-Derivative Test

If f''(x) > 0, the function is convex.

For example,

$$\frac{\partial^2(x^2)}{\partial x^2} = 2 > 0 \Rightarrow x^2$$
 is a convex function.

Nipun Batra

Alternative ways to prove convexity

The double derivative test for multi-parameter function is equal to using the Hessian Matrix

A function $f(x_1, x_2, ..., x_n)$ is convex iff its $n \times n$ Hessian Matrix is positive semidefinite for all possible values of $(x_1, x_2, ..., x_n)$

$$\mathbf{H} = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}$$

Hessian Matrix Tutorial - Understanding Second-Order Derivatives for Optimization

Palak Gupta

What is Hessian Matrix?

- The Hessian is a square matrix containing all second-order partial derivatives of a scalar function $f(\mathbf{x})$.
- It's essential for understanding the curvature of functions in machine learning optimization.
- Role in Optimization: It helps to determine whether an optimization point is a minimum, maximum, or saddle point.

Understanding Curvature: Minima and Maxima

Hessian Matrix Definition and Formula

• For a scalar-valued function $f: \mathbb{R}^n \to \mathbb{R}$ of n variables $\mathbf{x} = (x_1, x_2, \dots, x_n)^T$, the Hessian matrix \mathbf{H} is defined as:

$$\mathbf{H}(f) = \left[\frac{\partial^2 f}{\partial x_i \partial x_j}\right]_{i,j=1}^n$$

- The element $\mathbf{H}_{i,j}$ of the matrix is the second-order partial derivative of f with respect to x_i and x_j .
- Example: Hessian for Two Variables f(x, y):

$$\mathbf{H} = \begin{bmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y^2} \end{bmatrix}$$

• **Key Property:** If the second partial derivatives are continuous, then by **Clairaut's Theorem** (or Schwarz's theorem), the matrix is **symmetric**:

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$$

Hessian and Convexity

- Strictly Convex: For a point x*, the properties of H(x*) determine the nature of the function's curvature:
 - Strictly Convex: The Hessian H is Positive Definite (H > 0).
 - Positive Definite \Leftrightarrow All Eigenvalues $\lambda_i > 0$.
 - Consequence: Any local minimum is guaranteed to be the global minimum.
 - Optimization algorithms like Gradient Descent are guaranteed to converge to this minimum.

Hessian and Convexity (Cont.)

- Convex: The Hessian H is Positive
 Semi-Definite (H ≥ 0).
- Positive Semi-Definite \Leftrightarrow All Eigenvalues $\lambda_i \geq 0$.
- Optimization Implications:
 - The function still possesses a global minimum.
 - It may have **flat regions** or multiple optimal points (e.g., when $\lambda_i = 0$), leading to potential slowdowns for optimization methods.

Hessian and Concavity

- Negative Definite \Leftrightarrow All Eigenvalues $\lambda_i < 0$.
- Function Shape:
 - The function curves downward everywhere (inverted U-shape).
 - Any local maximum is guaranteed to be the global maximum.
- Optimization Context: This property is key for maximization problems, as any algorithm will converge to the unique global maximum.

Hessian and Non-Convexity

- Non-Convex: The Hessian H is **Indefinite** (neither positive nor negative semi-definite).
- positive $\lambda_i > 0$ and negative $\lambda_i < 0$).
- Function Shape & Optimization **Challenges:**
 - Multiple Local Minima are possible. complicating optimization.
 - Saddle Points are present, where the function curves up in some directions and down in others (Hessian is indefinite).

Hessian: Eigenvalue Summary and Calculation

Eigenvalues	Function Type	Optimization
All positive $(\lambda_i > 0)$	Strictly convex	Global minimum exists
All non-negative $(\lambda_i \geq 0)$	Convex	Minimum exists
All negative $(\lambda_i < 0)$	Strictly concave	Global maximum exists
Mixed signs	Non-convex	Saddle points present

- Finding Eigenvalues for a 2D Hessian:
- We solve the characteristic equation: $det(\mathbf{H} \lambda \mathbf{I}) = 0$.

$$\mathbf{H} = \begin{bmatrix} a & b \\ b & c \end{bmatrix}$$

$$\det \begin{vmatrix} a - \lambda & b \\ b & c - \lambda \end{vmatrix} = 0$$

$$(a - \lambda)(c - \lambda) - b^{2} = 0$$

$$\lambda^{2} - \underbrace{(a + c)}_{\text{tr}(\mathbf{H})} \lambda + \underbrace{(ac - b^{2})}_{\text{det}(\mathbf{H})} = 0$$

$$\lambda_{1,2} = rac{\mathsf{tr}(\mathbf{H}) \pm \sqrt{\mathsf{tr}(\mathbf{H})^2 - 4\det(\mathbf{H})}}{2}$$

Alternative Convexity Test: The Quadratic Form $\mathbf{v}^T \mathbf{H} \mathbf{v}$

- **Definition:** Convexity can be defined by the sign of the **quadratic form** $\mathbf{v}^T \mathbf{H} \mathbf{v}$.
- This method is the fundamental mathematical definition of matrix definiteness.

The Quadratic Form $v^T H(x)v$ (Curvature in Direction v)

• Convex (H ≥ 0):

$$\mathbf{v}^T \mathbf{H}(\mathbf{x}) \mathbf{v} \geq 0$$

for all x and all vectors $\mathbf{v} \neq \mathbf{0}$.

• Strictly Convex $(H \succ 0)$:

$$\mathbf{v}^T \mathbf{H}(\mathbf{x}) \mathbf{v} > 0$$

for all **x** and all vectors $\mathbf{v} \neq \mathbf{0}$.

• Concave $(H \leq 0)$:

$$\mathbf{v}^T \mathbf{H}(\mathbf{x}) \mathbf{v} \leq 0$$

for all **x** and all vectors $\mathbf{v} \neq \mathbf{0}$.

 Intuition: The sign of this value indicates the function's curvature when moving from x in the direction v.

Example Q1: Analysis of $f(x, y) = x^2 + y^2$ (Calculations)

• Function:

$$f(x,y) = x^2 + y^2$$

First Derivatives:

$$\frac{\partial f}{\partial x} = 2x, \quad \frac{\partial f}{\partial y} = 2y$$

Second Derivatives:

$$\frac{\partial^2 f}{\partial x^2} = 2$$
, $\frac{\partial^2 f}{\partial y^2} = 2$, $\frac{\partial^2 f}{\partial x \partial y} = 0$

$$\mathbf{H} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$

Example Q1: Analysis of $f(x, y) = x^2 + y^2$ (Conclusion)

Hessian Matrix (from previous slide):

$$\mathbf{H} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$

• **Eigenvalues** λ : The Hessian is a diagonal matrix, so the eigenvalues are the diagonal elements.

$$\lambda_1 = 2, \quad \lambda_2 = 2$$

- Final Conclusion:
 - Both eigenvalues are **positive** ($\lambda > 0$).
 - The function f(x, y) is **Strictly Convex**.
 - The critical point (where $\nabla f = \mathbf{0}$, which is (0,0)) is a **Global Minimum**.

Example Q2: Analysis of $f(x, y) = x^2 - y^2$ (Calculations)

• Function:

$$f(x,y) = x^2 - y^2$$

• First Derivatives (Gradient ∇f):

$$\frac{\partial f}{\partial x} = 2x, \quad \frac{\partial f}{\partial y} = -2y$$

Second Derivatives:

$$\frac{\partial^2 f}{\partial x^2} = 2$$
, $\frac{\partial^2 f}{\partial y^2} = -2$, $\frac{\partial^2 f}{\partial x \partial y} = 0$

Hessian Matrix H:

$$\mathbf{H} = \begin{pmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial y \partial y} & \frac{\partial^2 f}{\partial y^2} \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}$$

Example Q2: Analysis of $f(x, y) = x^2 - y^2$ (Conclusion)

Hessian Matrix (from previous slide):

$$\mathbf{H} = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}$$

• Eigenvalues λ :

$$\lambda_1 = 2, \quad \lambda_2 = -2$$

- Mixed Signs
 - The critical point (0,0) is a **Saddle Point** (by setting first derivatives to zero).
 - The Hessian is **Indefinite** (mixed positive and negative eigenvalues).
 - This means the critical point is NOT a minimum or a maximum.
 - Saddle points are **very common** in high-dimensional Machine Learning loss landscapes.
 - They can **slow down optimization algorithms** like Gradient Descent, as the gradient near the point is close to zero.

Example Q3: Rosenbrock Function (Calculations)

• Function: (Non-convex with a steep, curved valley)

$$f(x,y) = (1-x)^2 + 100(y-x^2)^2$$

First Derivatives:

$$\frac{\partial f}{\partial x} = -2(1-x) - 400x(y-x^2)$$
$$\frac{\partial f}{\partial y} = 200(y-x^2)$$

Second Derivatives:

$$\frac{\partial^2 f}{\partial x^2} = 2 + 1200x^2 - 400y$$
$$\frac{\partial^2 f}{\partial y^2} = 200, \quad \frac{\partial^2 f}{\partial x \partial y} = -400x$$

Rosenbrock Function (3D Surface)

Rosenbrock Function (3D Surface) Minimum (1, 1) 2500 2000 ₹ 1500 ≤ ₁₀₀₀ 500 O 0.0 X 1.5 1.0 0.5 0.0 -0.5 -1.5

Example Q3: Rosenbrock Function (Hessian Analysis)

• General Hessian Matrix H(x, y):

$$\mathbf{H}(x,y) = \begin{pmatrix} 2 + 1200x^2 - 400y & -400x \\ -400x & 200 \end{pmatrix}$$

• Hessian at Minimum (1,1):

$$\mathbf{H}(1,1) = \begin{pmatrix} 802 & -400 \\ -400 & 200 \end{pmatrix}$$

Eigenvalues at Minimum:

$$\lambda_1 \approx 1001.6, \quad \lambda_2 \approx 0.4$$

- The large difference in λ values ($\approx 2500 \times$) indicates severe ill-conditioning.
- This means the valley is **very steep** in one direction (λ_1) and extremely **shallow** in the orthogonal direction (λ_2) .

Example Q3: Rosenbrock Function (Optimization Challenge)

- The long, narrow, parabolic valley makes it difficult for simple Gradient Descent (GD) to navigate efficiently.
- GD takes tiny steps along the shallow direction and bounces wildly back-and-forth across the steep walls.
- Optimization algorithms must effectively follow the valley floor without bouncing side-to-side.

2D Slices Through the Minimum (1, 1)

Hessian Matrix: Summary and Insights

• Generalized Form (Hessian H for $f : \mathbb{R}^n \to \mathbb{R}$):

$$\mathbf{H} = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{pmatrix}$$

- **Eigenvalue** (λ) Classification: The eigenvalues of **H** at a critical point θ_c determine the nature of that point:
 - Local Minimum: All $\lambda > 0$
 - Local Maximum: All $\lambda < 0$
 - Saddle Point: $\exists \lambda^+ > 0$ and $\exists \lambda^- < 0$ (Mixed signs)
- **Eigenvalue Magnitude (Curvature):** The magnitude of the eigenvalues tells us about function steepness along the corresponding eigenvector direction:
 - **Steepness:** Large $|\lambda|$
 - Flatness: Small $|\lambda|$

Multivariate Convex Functions

Nipun Batra

Convexity of linear least squares

Prove the convexity of linear least squares i.e. $f(\theta) = ||\mathbf{y} - \mathbf{X}\boldsymbol{\theta}||^2$

Prove the convexity of linear least squares i.e. $f(\theta) = ||\mathbf{y} - \mathbf{X}\boldsymbol{\theta}||^2$

Prove the convexity of linear least squares i.e. $f(\theta) = ||\mathbf{y} - \mathbf{X}\theta||^2$

$$f(\theta) = ||\mathbf{y} - \mathbf{X}\theta||^2 = (\mathbf{y} - \mathbf{X}\theta)^T (\mathbf{y} - \mathbf{X}\theta)$$
$$= \mathbf{y}^T \mathbf{y} - 2\mathbf{y}^T \mathbf{X}\theta + \theta^T \mathbf{X}^T \mathbf{X}\theta$$

Prove the convexity of linear least squares i.e. $f(\theta) = ||\mathbf{y} - \mathbf{X}\theta||^2$

$$f(\theta) = ||\mathbf{y} - \mathbf{X}\theta||^2 = (\mathbf{y} - \mathbf{X}\theta)^T(\mathbf{y} - \mathbf{X}\theta)$$

$$= \mathbf{y}^T \mathbf{y} - 2 \mathbf{y}^T \mathbf{X} \boldsymbol{\theta} + \boldsymbol{\theta}^T \mathbf{X}^T \mathbf{X} \boldsymbol{\theta}$$

$$\frac{df}{d\theta} = -2\mathbf{X}^T\mathbf{y} + 2\mathbf{X}^T\mathbf{X}\boldsymbol{\theta}$$

(Using:
$$\frac{\partial}{\partial \theta}(\mathbf{a}^T \boldsymbol{\theta}) = \mathbf{a}$$
 and $\frac{\partial}{\partial \theta}(\boldsymbol{\theta}^T \mathbf{A} \boldsymbol{\theta}) = (\mathbf{A} + \mathbf{A}^T)\boldsymbol{\theta}$, with $\mathbf{X}^T \mathbf{X}$ symmetric)

Prove the convexity of linear least squares i.e. $f(\theta) = ||\mathbf{y} - \mathbf{X}\theta||^2$

$$f(\theta) = ||\mathbf{y} - \mathbf{X}\theta||^2 = (\mathbf{y} - \mathbf{X}\theta)^T (\mathbf{y} - \mathbf{X}\theta)$$
$$= \mathbf{y}^T \mathbf{y} - 2\mathbf{y}^T \mathbf{X}\theta + \theta^T \mathbf{X}^T \mathbf{X}\theta$$

$$\frac{df}{d\theta} = -2\mathbf{X}^T\mathbf{y} + 2\mathbf{X}^T\mathbf{X}\boldsymbol{\theta}$$

(Using:
$$\frac{\partial}{\partial \theta}(\mathbf{a}^T \boldsymbol{\theta}) = \mathbf{a}$$
 and $\frac{\partial}{\partial \theta}(\boldsymbol{\theta}^T \mathbf{A} \boldsymbol{\theta}) = (\mathbf{A} + \mathbf{A}^T)\boldsymbol{\theta}$, with $\mathbf{X}^T \mathbf{X}$ symmetric)

$$\frac{d^2f}{d\theta^2} = \mathbf{H} = 2\mathbf{X}^T\mathbf{X}$$

Prove the convexity of linear least squares i.e. $f(\theta) = ||\mathbf{y} - \mathbf{X}\theta||^2$

We will use the double derivative (Hessian)

$$f(\theta) = ||\mathbf{y} - \mathbf{X}\theta||^2 = (\mathbf{y} - \mathbf{X}\theta)^T (\mathbf{y} - \mathbf{X}\theta)$$
$$= \mathbf{y}^T \mathbf{y} - 2\mathbf{y}^T \mathbf{X}\theta + \theta^T \mathbf{X}^T \mathbf{X}\theta$$

$$\frac{df}{d\theta} = -2\mathbf{X}^T\mathbf{y} + 2\mathbf{X}^T\mathbf{X}\boldsymbol{\theta}$$

(Using:
$$\frac{\partial}{\partial \theta}(\mathbf{a}^T \boldsymbol{\theta}) = \mathbf{a}$$
 and $\frac{\partial}{\partial \theta}(\boldsymbol{\theta}^T \mathbf{A} \boldsymbol{\theta}) = (\mathbf{A} + \mathbf{A}^T)\boldsymbol{\theta}$, with $\mathbf{X}^T \mathbf{X}$ symmetric)

$$\frac{d^2f}{d\theta^2} = \mathbf{H} = 2\mathbf{X}^T\mathbf{X}$$

 $\mathbf{X}^T\mathbf{X}$ is positive semidefinite for any $\mathbf{X} \in \mathbb{R}^{m \times n}$. Hence, linear least squares function is convex.

Properties of Convex Functions

• If f(x) is convex, then kf(x) is also convex, for some constant $k \ge 0$

Properties of Convex Functions

- If f(x) is convex, then kf(x) is also convex, for some constant $k \ge 0$
- If f(x) and g(x) are convex, then f(x) + g(x) is also convex.

Properties of Convex Functions

- If f(x) is convex, then kf(x) is also convex, for some constant $k \ge 0$
- If f(x) and g(x) are convex, then f(x) + g(x) is also convex.

Using this we can say that:

- $(\mathbf{y} \mathbf{X}\boldsymbol{\theta})^T (\mathbf{y} \mathbf{X}\boldsymbol{\theta}) + \boldsymbol{\theta}^T \boldsymbol{\theta}$ is convex
- $\bullet (\mathbf{y} \mathbf{X} \mathbf{\theta})^T (\mathbf{y} \mathbf{X} \mathbf{\theta}) + ||\mathbf{\theta}||_1$ is convex

Second-Order Optimization for Logistic Regression

Abhyudaya Nair

Why Second-Order Methods?

- GD Problem: Slow convergence in elongated valleys, struggles with different parameter scales, requires learning rate tuning
- **Second-Order Solution:** Use Hessian **H** to capture curvature information
- Key Benefits:
 - ullet \mathbf{H}^{-1} acts as automatic, adaptive learning rate
 - Quadratic convergence near optimum (vs linear for GD)
 - Typically 5-10 iterations vs 100s-1000s for gradient descent

Logistic Regression Setup

Model Components:

Data and Predictions:

- Binary labels: $y_i \in \{0,1\}$
- Features: $\mathbf{x}_i \in \mathbb{R}^d$
- Sigmoid: $\sigma(z) = \frac{1}{1+e^{-z}}$
- Predictions: $\hat{y}_i = \sigma(\boldsymbol{\theta}^T \mathbf{x}_i)$

Loss Function (NLL):

$$J(\theta) = -\sum_{i=1}^{n} [y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i)]$$

Key Sigmoid Property:

$$\frac{d\sigma(z)}{dz} = \sigma(z)(1 - \sigma(z))$$

Newton's Method: Core Derivation

Strategy: Locally approximate $f(\theta)$ with a quadratic, jump to its minimum, repeat.

Second-Order Taylor Expansion around θ_k :

$$f_{\text{quad}}(\theta) = \underbrace{f(\theta_k)}_{\text{constant}} + \underbrace{\mathbf{g}_k^T(\theta - \theta_k)}_{\text{linear: slope}} + \underbrace{\frac{1}{2}(\theta - \theta_k)^T \mathbf{H}_k(\theta - \theta_k)}_{\text{quadratic: curvature}}$$

where $\mathbf{g}_k = \nabla f(\theta_k)$ (gradient) and $\mathbf{H}_k = \nabla^2 f(\theta_k)$ (Hessian).

Derivation Steps:

- lacksquare Take gradient: $abla_{m{ heta}} f_{\mathsf{quad}}(m{ heta}) = \mathbf{g}_k + \mathbf{H}_k(m{ heta} m{ heta}_k)$
- ② Set to zero: $\mathbf{g}_k + \mathbf{H}_k(\theta \theta_k) = \mathbf{0}$
- Solve for θ : $\mathbf{H}_k(\theta \theta_k) = -\mathbf{g}_k \Rightarrow \theta \theta_k = -\mathbf{H}_k^{-1}\mathbf{g}_k$
- **③** Newton's Update: $\theta_{k+1} = \theta_k \mathbf{H}_k^{-1} \mathbf{g}_k$

Gradient Descent: $\theta_{k+1} = \theta_k - \alpha \mathbf{g}_k$

Newton's Method: $\theta_{k+1} = \theta_k - \mathsf{H}_k^{-1} \mathsf{g}_k$

lacktriangle Needs learning rate lpha

H_k⁻¹ acts as adaptive learning rate → ⟨ ≣ → ⟨ ≣

Recall Gradient and Hessian

$$oldsymbol{ heta}_{k+1} = oldsymbol{ heta}_k - oldsymbol{\mathsf{H}}_k^{-1} oldsymbol{\mathsf{g}}_k$$

What We Need:

• Gradient vector:
$$\mathbf{g} = \nabla J(\boldsymbol{\theta}) = \begin{bmatrix} \frac{\partial J}{\partial \theta_1} \\ \frac{\partial J}{\partial \theta_2} \\ \vdots \\ \frac{\partial J}{\partial \theta_d} \end{bmatrix} \in \mathbb{R}^d$$

 $\bullet \text{ Hessian matrix: } \mathbf{H} = \nabla^2 J(\boldsymbol{\theta}) = \begin{bmatrix} \frac{\partial^2 J}{\partial \theta_1^2} & \frac{\partial^2 J}{\partial \theta_1 \partial \theta_2} & \cdots & \frac{\partial^2 J}{\partial \theta_1 \partial \theta_d} \\ \frac{\partial^2 J}{\partial \theta_2 \partial \theta_1} & \frac{\partial^2 J}{\partial \theta_2^2} & \cdots & \frac{\partial^2 J}{\partial \theta_2 \partial \theta_d} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 J}{\partial \theta_d \partial \theta_1} & \frac{\partial^2 J}{\partial \theta_d \partial \theta_2} & \cdots & \frac{\partial^2 J}{\partial \theta_2^2} \end{bmatrix} \in \mathbb{R}^{d \times d}$

Gradient Computation for Logistic Regression

Goal: Compute $\frac{\partial J}{\partial \theta_j}$ where $J(\boldsymbol{\theta}) = -\sum_{i=1}^n [y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i)], \ \hat{y}_i = \sigma(\boldsymbol{\theta}^T \mathbf{x}_i)$

For single sample i, use chain rule: $\frac{\partial J_i}{\partial \theta_j} = \frac{\partial J_i}{\partial \hat{y}_i} \cdot \frac{\partial \hat{y}_i}{\partial \theta_j}$

Part 1 - Loss derivative w.r.t. prediction:

$$\frac{\partial J_i}{\partial \hat{y}_i} = \frac{\partial}{\partial \hat{y}_i} [-y_i \log(\hat{y}_i) - (1 - y_i) \log(1 - \hat{y}_i)] = -\frac{y_i}{\hat{y}_i} + \frac{1 - y_i}{1 - \hat{y}_i}
= \frac{-y_i (1 - \hat{y}_i) + (1 - y_i) \hat{y}_i}{\hat{y}_i (1 - \hat{y}_i)} = \frac{-y_i + y_i \hat{y}_i + \hat{y}_i - y_i \hat{y}_i}{\hat{y}_i (1 - \hat{y}_i)} = \frac{\hat{y}_i - y_i}{\hat{y}_i (1 - \hat{y}_i)}$$

Gradient Computation for Logistic Regression (continued)

Part 2 - Prediction derivative w.r.t. parameter:

$$\frac{\partial \hat{y}_i}{\partial \theta_j} = \frac{\partial \sigma(\boldsymbol{\theta}^T \mathbf{x}_i)}{\partial \theta_j} = \underbrace{\sigma'(\boldsymbol{\theta}^T \mathbf{x}_i)}_{=\hat{y}_i(1-\hat{y}_i)} \cdot \frac{\partial(\boldsymbol{\theta}^T \mathbf{x}_i)}{\partial \theta_j} = \hat{y}_i(1-\hat{y}_i) \cdot x_{ij}$$

Combining (beautiful cancellation!):

$$\frac{\partial J_i}{\partial \theta_i} = \frac{\hat{y}_i - y_i}{\hat{y}_i (1 - \hat{y}_i)} \cdot \hat{y}_i (1 - \hat{y}_i) x_{ij} = (\hat{y}_i - y_i) x_{ij}$$

Sum over all samples: $\frac{\partial J}{\partial \theta_i} = \sum_{i=1}^n (\hat{y}_i - y_i) x_{ij} \quad \Rightarrow \quad \boxed{\mathbf{g}(\boldsymbol{\theta}) = \mathbf{X}^T (\hat{\mathbf{y}} - \mathbf{y})}$

Hessian Computation for Logistic Regression

Goal: Compute second derivatives $H_{jk} = \frac{\partial^2 J}{\partial \theta_j \partial \theta_k}$

Starting from gradient: We know $\frac{\partial J}{\partial \theta_i} = \sum_{i=1}^n (\hat{y}_i - y_i) x_{ij}$

Take derivative w.r.t. θ_k :

$$H_{jk} = \frac{\partial}{\partial \theta_k} \left[\sum_{i=1}^n (\hat{y}_i - y_i) x_{ij} \right] = \sum_{i=1}^n x_{ij} \frac{\partial \hat{y}_i}{\partial \theta_k} \quad \text{(since } y_i \text{ and } x_{ij} \text{ don't depend on } \theta_k\text{)}$$

$$= \sum_{i=1}^n x_{ij} \cdot \hat{y}_i (1 - \hat{y}_i) \cdot x_{ik} = \sum_{i=1}^n \hat{y}_i (1 - \hat{y}_i) x_{ij} x_{ik}$$

Matrix Form: Define weight matrix $\mathbf{S} = \operatorname{diag}(\hat{y}_1(1-\hat{y}_1), \dots, \hat{y}_n(1-\hat{y}_n))$, then: $\mathbf{H} = \mathbf{X}^T \mathbf{S} \mathbf{X}$

Hessian: Key Properties

$$oxed{\mathbf{H} = \mathbf{X}^T \mathbf{S} \mathbf{X}}$$
 where $\mathbf{S} = \mathsf{diag}(\hat{y}_1(1-\hat{y}_1), \dots, \hat{y}_n(1-\hat{y}_n))$

Key Properties:

- **Positive Definite:** Since $\hat{y}_i(1 \hat{y}_i) > 0$ for $\hat{y}_i \in (0, 1)$, we have $\mathbf{v}^T \mathbf{H} \mathbf{v} = (\mathbf{X} \mathbf{v})^T \mathbf{S} (\mathbf{X} \mathbf{v}) > 0$ for $\mathbf{v} \neq \mathbf{0} \Rightarrow J(\theta)$ is strictly convex!
- Adaptive Weighting: Weight $w_i = \hat{y}_i(1 \hat{y}_i)$ is maximal at $\hat{y}_i = 0.5$ (uncertain), minimal near $\hat{y}_i = 0$ or 1 (confident)
- Fisher Information: H equals the Fisher Information Matrix for logistic regression
- Weighted Least Squares Form: X^TSX appears in weighted regression problems

Newton's Method Algorithm for Logistic Regression

Complete Algorithm:

- 1: Initialize: $oldsymbol{ heta}_0$ (e.g., $oldsymbol{ heta}_0 = oldsymbol{0}$)
- 2: **for** $k = 0, 1, 2, \ldots$ until convergence **do**
- 3: Compute predictions: $\hat{\mathbf{y}}_k = \sigma(\mathbf{X}\boldsymbol{\theta}_k)$ (apply elementwise)
- 4: Compute gradient: $\mathbf{g}_k = \mathbf{X}^T (\hat{\mathbf{y}}_k \mathbf{y})$
- 5: Compute weights: $\mathbf{S}_k = \text{diag}(\hat{y}_{1k}(1 \hat{y}_{1k}), \dots, \hat{y}_{nk}(1 \hat{y}_{nk}))$
- 6: Compute Hessian: $\mathbf{H}_k = \mathbf{X}^T \mathbf{S}_k \mathbf{X}$
- 7: Solve linear system: $\mathbf{H}_k \boldsymbol{\delta}_k = -\mathbf{g}_k$ for $\boldsymbol{\delta}_k$
- 8: Update: $\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k + \boldsymbol{\delta}_k$
- 9: Check convergence: if $\|\mathbf{g}_k\| < \epsilon$ or $\|\boldsymbol{\delta}_k\| < \epsilon$, stop
- 10: end for

Newton's Method: Practical Considerations

Practical Considerations:

- Never compute \mathbf{H}_k^{-1} explicitly! Solve $\mathbf{H}_k \delta_k = -\mathbf{g}_k$ using Cholesky decomposition (exploits \mathbf{H}_k being symmetric positive definite)
- Computational Cost per iteration: $O(nd^2 + d^3)$ where n = samples, d = features
- **Memory:** $O(d^2)$ for storing Hessian
- Convergence: Typically 5-10 iterations vs 100s-1000s for gradient descent
- When to use: Small-to-medium d (features), need high accuracy, well-conditioned problems

Iteratively Reweighted Least Squares (IRLS) Formulation

Motivation: Rewrite Newton's update to reveal connection with weighted least squares. Starting from Newton's update:

$$\theta_{k+1} = \theta_k + \mathbf{H}_k^{-1}(-\mathbf{g}_k) = \theta_k + (\mathbf{X}^T \mathbf{S}_k \mathbf{X})^{-1} \mathbf{X}^T (\mathbf{y} - \hat{\mathbf{y}}_k)$$

$$= (\mathbf{X}^T \mathbf{S}_k \mathbf{X})^{-1} [(\mathbf{X}^T \mathbf{S}_k \mathbf{X}) \theta_k + \mathbf{X}^T (\mathbf{y} - \hat{\mathbf{y}}_k)]$$

$$= (\mathbf{X}^T \mathbf{S}_k \mathbf{X})^{-1} \mathbf{X}^T [\mathbf{S}_k \mathbf{X} \theta_k + (\mathbf{y} - \hat{\mathbf{y}}_k)]$$

Define adjusted response vector: $\mathbf{z}_k = \mathbf{X}\boldsymbol{\theta}_k + \mathbf{S}_k^{-1}(\mathbf{y} - \hat{\mathbf{y}}_k)$ Then:

$$\mathbf{S}_k \mathbf{X} \boldsymbol{\theta}_k + (\mathbf{y} - \hat{\mathbf{y}}_k) = \mathbf{S}_k [\mathbf{X} \boldsymbol{\theta}_k + \mathbf{S}_k^{-1} (\mathbf{y} - \hat{\mathbf{y}}_k)] = \mathbf{S}_k \mathbf{z}_k$$

Final IRLS form:
$$\theta_{k+1} = (\mathbf{X}^T \mathbf{S}_k \mathbf{X})^{-1} \mathbf{X}^T \mathbf{S}_k \mathbf{z}_k$$

IRLS: Interpretation

IRLS form:

$\boxed{\boldsymbol{\theta}_{k+1} = (\mathbf{X}^T \mathbf{S}_k \mathbf{X})^{-1} \mathbf{X}^T \mathbf{S}_k \mathbf{z}_k}$

Weighted Least Squares:

$$oldsymbol{ heta} = (\mathbf{X}^T \mathbf{W} \mathbf{X})^{-1} \mathbf{X}^T \mathbf{W} \mathbf{y}$$

This is exactly the **weighted least squares solution** with:

- Weights: S_k (changes each iteration hence "iteratively reweighted")
- Response: z_k (adjusted to account for current predictions)

Interpretation: Newton's method for logistic regression = iteratively solving weighted least squares problems where weights and responses are updated based on current parameter estimates!