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Definition

• Convexity is defined on an interval [α, β]

• The line segment joining (a, f(a)) and (b, f(b)) should
be above or on the function f for all points in interval
[α, β].
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Example: y = x2

Convex on the entire real line i.e. (−∞,∞)
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Example: y = |x|

Convex on the entire real line i.e. (−∞,∞)
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Example: y = ex

Convex on the entire real line i.e. (−∞,∞)
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Example: y = ln x

Not convex on the entire real line i.e. (−∞,∞)
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Example: y = x3

It is convex for the interval [0,∞)
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Example: y = x3

It is concave for the interval (−∞, 0]
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Example: y = x3

But, it is not convex for the interval (−∞,∞)
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Mathematical Formulation

Function f is convex on set X, if ∀x1, x2 ∈ X and ∀t ∈ [0, 1]

f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2)

(x  , f(x  ))

tf(x  ) + (1-t)f(x  )

1 1

(x  , f(x  ))2 2

1 2

f(tx  + (1-t)x  )  1 2
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Question: Prove that f(x) = x2 is convex
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Question: Prove that f(x) = x2 is convex

To prove:
f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2)

LHS = f(tx1 + (1− t)x2) = t2x21 + (1− t)2x22 + 2t(1− t)x1x2
RHS = tf(x1) + (1− t)f(x2) = tx21 + (1− t)x22
Here,
LHS - RHS = (t2 − t)x21 + [(1− t)2 − (1− t)]x22 + 2t(1− t)x1x2

= (t2 − t)x21 + (t2 − t)x22 − 2(t2 − t)x1x2
= (t2 − t)(x1 − x2)2

Here, (t2 − t) ≤ 0 since t ∈ [0, 1] and (x1 − x2)2 ≥ 0
Hence, LHS RHS ≤ 0
Hence LHS ≤ RHS
Hence proved.
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Alternative ways to prove convexity

The Double-Derivative Test

If f”(x) > 0, the function is convex.

For example,

∂2(x2)
∂x2 = 2 > 0 ⇒ x2 is a convex function.
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Alternative ways to prove convexity

The double derivative test for multi-parameter function is
equal to using the Hessian Matrix

A function f(x1, x2, . . . , xn) is convex iff its n× n Hessian
Matrix is positive semidefinite for all possible values of
(x1, x2, . . . , xn)

H =


∂2f
∂x21

∂2f
∂x1∂x2 · · · ∂2f

∂x1∂xn
∂2f

∂x2∂x1
∂2f
∂x22

· · · ∂2f
∂x2∂xn

...
... . . . ...

∂2f
∂xn∂x1

∂2f
∂xn∂x2 · · · ∂2f

∂x2n


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Alternative ways to prove convexity

Show that f(x1, x2) = x21 + x22 is convex.
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H =

∂2(x21+x22)
∂x21

∂2(x21+x22)
∂x1∂x2

∂2(x21+x22)
∂x2∂x1

∂2(x21+x22)
∂x22

 =

[
2 0
0 2

]

Eigenvalues of H are 2 and 2 > 0 ⇒ H is positive
semidefinite.
Hence, f(x1, x2) = x21 + x22 is convex.
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Convexity of linear least squares

Prove the convexity of linear least squares i.e.
f(θ) = ||y − Xθ||2
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Convexity of linear least squares

Prove the convexity of linear least squares i.e.
f(θ) = ||y − Xθ||2

We will use the double derivative Hessian)

df
dθ = d(||y||2−2yTXθ+||Xθ||2)

dθ = −2yTX + 2(Xθ)TX

d2f
dθ2 = H = 2XTX

XTX is positive semidefinite for any X ∈ Rm×n.
Hence, linear least squares function is convex.
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Properties of Convex Functions

• If f(x) is convex, then kf(x) is also convex, for some
constant k

• If f(x) and g(x) are convex, then f(x) + g(x) is also
convex.
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Properties of Convex Functions

• If f(x) is convex, then kf(x) is also convex, for some
constant k

• If f(x) and g(x) are convex, then f(x) + g(x) is also
convex.

Using this we can say that:

• (y − Xθ)T(y − Xθ) + θTθ is convex
• (y − Xθ)T(y − Xθ) + ||θ||1 is convex
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