
Gradient Descent

Nipun Batra

July 26, 2025

IIT Gandhinagar



Revision



Contour Plot And Gradients

z = f (x , y) = x2 + y2

x

−5

0

5
y

−5
0

5

z
20

40

Surface Plot

−5 0 5

x

−5.0

−2.5

0.0

2.5

5.0

y

Contour Plot

0

10

20

30

40

50

Gradient denotes the direction of steepest ascent or the direction

in which there is a maximum increase in f(x,y)

∇f (x , y) =
[
∂f (x ,y)

∂x
∂f (x ,y)

∂y

]
=

[
2x

2y

]

1 / 65



Contour Plot And Gradients

z = f (x , y) = x2 + y2

x

−5

0

5
y

−5
0

5

z
20

40

Surface Plot

−5 0 5

x

−5.0

−2.5

0.0

2.5

5.0

y

Contour Plot

0

10

20

30

40

50

Gradient denotes the direction of steepest ascent or the direction

in which there is a maximum increase in f(x,y)

∇f (x , y) =
[
∂f (x ,y)

∂x
∂f (x ,y)

∂y

]
=

[
2x

2y

]

1 / 65



Contour Plot And Gradients

z = f (x , y) = x2 + y2

x

−5

0

5
y

−5
0

5

z
20

40

Surface Plot

−5 0 5

x

−5.0

−2.5

0.0

2.5

5.0

y

Contour Plot

0

10

20

30

40

50

Gradient denotes the direction of steepest ascent or the direction

in which there is a maximum increase in f(x,y)

∇f (x , y) =
[
∂f (x ,y)

∂x
∂f (x ,y)

∂y

]
=

[
2x

2y

]
1 / 65



Introduction



Optimization algorithms

• We often want to minimize/maximize a function

• We wanted to minimize the cost function:

f (θ) = (y − Xθ)T (y − Xθ) (1)

• Note, here θ is the parameter vector

2 / 65



Optimization algorithms

• We often want to minimize/maximize a function

• We wanted to minimize the cost function:

f (θ) = (y − Xθ)T (y − Xθ) (1)

• Note, here θ is the parameter vector

2 / 65



Optimization algorithms

• We often want to minimize/maximize a function

• We wanted to minimize the cost function:

f (θ) = (y − Xθ)T (y − Xθ) (1)

• Note, here θ is the parameter vector

2 / 65



Optimization algorithms

• In general, we have following components:

• Maximize or Minimize a function subject to some constraints

• Today, we will focus on unconstrained optimization (no

constraints)

• We will focus on minimization

• Goal:

θ∗ = argmin
θ

f (θ) (2)

3 / 65



Optimization algorithms

• In general, we have following components:

• Maximize or Minimize a function subject to some constraints

• Today, we will focus on unconstrained optimization (no

constraints)

• We will focus on minimization

• Goal:

θ∗ = argmin
θ

f (θ) (2)

3 / 65



Optimization algorithms

• In general, we have following components:

• Maximize or Minimize a function subject to some constraints

• Today, we will focus on unconstrained optimization (no

constraints)

• We will focus on minimization

• Goal:

θ∗ = argmin
θ

f (θ) (2)

3 / 65



Optimization algorithms

• In general, we have following components:

• Maximize or Minimize a function subject to some constraints

• Today, we will focus on unconstrained optimization (no

constraints)

• We will focus on minimization

• Goal:

θ∗ = argmin
θ

f (θ) (2)

3 / 65



Optimization algorithms

• In general, we have following components:

• Maximize or Minimize a function subject to some constraints

• Today, we will focus on unconstrained optimization (no

constraints)

• We will focus on minimization

• Goal:

θ∗ = argmin
θ

f (θ) (2)

3 / 65



Introduction

• Gradient descent is an optimization algorithm

• It is used to find the minimum of a function in unconstrained

settings

• It is an iterative algorithm

• It is a first order optimization algorithm

• It is a local search algorithm/greedy

4 / 65



Introduction

• Gradient descent is an optimization algorithm

• It is used to find the minimum of a function in unconstrained

settings

• It is an iterative algorithm

• It is a first order optimization algorithm

• It is a local search algorithm/greedy

4 / 65



Introduction

• Gradient descent is an optimization algorithm

• It is used to find the minimum of a function in unconstrained

settings

• It is an iterative algorithm

• It is a first order optimization algorithm

• It is a local search algorithm/greedy

4 / 65



Introduction

• Gradient descent is an optimization algorithm

• It is used to find the minimum of a function in unconstrained

settings

• It is an iterative algorithm

• It is a first order optimization algorithm

• It is a local search algorithm/greedy

4 / 65



Introduction

• Gradient descent is an optimization algorithm

• It is used to find the minimum of a function in unconstrained

settings

• It is an iterative algorithm

• It is a first order optimization algorithm

• It is a local search algorithm/greedy

4 / 65



Gradient Descent Algorithm

1. Initialize θ to some random value

2. Compute the gradient of the cost function at θ, ∇f (θ)
3. For Iteration i (i = 1, 2, . . .) or until convergence:

• θi ← θi−1 − α∇f (θi−1)

5 / 65



Gradient Descent Algorithm

1. Initialize θ to some random value

2. Compute the gradient of the cost function at θ, ∇f (θ)

3. For Iteration i (i = 1, 2, . . .) or until convergence:

• θi ← θi−1 − α∇f (θi−1)

5 / 65



Gradient Descent Algorithm

1. Initialize θ to some random value

2. Compute the gradient of the cost function at θ, ∇f (θ)
3. For Iteration i (i = 1, 2, . . .) or until convergence:

• θi ← θi−1 − α∇f (θi−1)

5 / 65



Gradient Descent Algorithm

1. Initialize θ to some random value

2. Compute the gradient of the cost function at θ, ∇f (θ)
3. For Iteration i (i = 1, 2, . . .) or until convergence:

• θi ← θi−1 − α∇f (θi−1)

5 / 65



Taylor’s Series



Taylor’s Series

• Taylor’s series is a way to approximate a function f (x) around

a point x0 using a polynomial

• The polynomial is given by

f (x) = f (x0) +
f ′(x0)

1!
(x − x0) +

f ′′(x0)

2!
(x − x0)

2 + . . . (3)

• The vector form of the above equation is given by:

f (x) = f (x0)+∇f (x0)T (x−x0)+
1

2
(x−x0)T∇2f (x0)(x−x0)+. . .

(4)

• where ∇2f (x0) is the Hessian matrix and ∇f (x0) is the
gradient vector

6 / 65



Taylor’s Series

• Taylor’s series is a way to approximate a function f (x) around

a point x0 using a polynomial

• The polynomial is given by

f (x) = f (x0) +
f ′(x0)

1!
(x − x0) +

f ′′(x0)

2!
(x − x0)

2 + . . . (3)

• The vector form of the above equation is given by:

f (x) = f (x0)+∇f (x0)T (x−x0)+
1

2
(x−x0)T∇2f (x0)(x−x0)+. . .

(4)

• where ∇2f (x0) is the Hessian matrix and ∇f (x0) is the
gradient vector

6 / 65



Taylor’s Series

• Taylor’s series is a way to approximate a function f (x) around

a point x0 using a polynomial

• The polynomial is given by

f (x) = f (x0) +
f ′(x0)

1!
(x − x0) +

f ′′(x0)

2!
(x − x0)

2 + . . . (3)

• The vector form of the above equation is given by:

f (x) = f (x0)+∇f (x0)T (x−x0)+
1

2
(x−x0)T∇2f (x0)(x−x0)+. . .

(4)

• where ∇2f (x0) is the Hessian matrix and ∇f (x0) is the
gradient vector

6 / 65



Taylor’s Series

• Taylor’s series is a way to approximate a function f (x) around

a point x0 using a polynomial

• The polynomial is given by

f (x) = f (x0) +
f ′(x0)

1!
(x − x0) +

f ′′(x0)

2!
(x − x0)

2 + . . . (3)

• The vector form of the above equation is given by:

f (x) = f (x0)+∇f (x0)T (x−x0)+
1

2
(x−x0)T∇2f (x0)(x−x0)+. . .

(4)

• where ∇2f (x0) is the Hessian matrix and ∇f (x0) is the
gradient vector

6 / 65



Taylor’s Series

• Let us consider f (x) = cos(x) and x0 = 0

• Then, we have:

• f (x0) = cos(0) = 1

• f ′(x0) = − sin(0) = 0

• f ′′(x0) = − cos(0) = −1
• We can write the second order Taylor’s series as:

• f (x) = 1 + 0(x − 0) + −1
2! (x − 0)2 = 1− x2

2

7 / 65



Taylor’s Series

• Let us consider f (x) = cos(x) and x0 = 0

• Then, we have:

• f (x0) = cos(0) = 1

• f ′(x0) = − sin(0) = 0

• f ′′(x0) = − cos(0) = −1
• We can write the second order Taylor’s series as:

• f (x) = 1 + 0(x − 0) + −1
2! (x − 0)2 = 1− x2

2

7 / 65



Taylor’s Series

• Let us consider f (x) = cos(x) and x0 = 0

• Then, we have:

• f (x0) = cos(0) = 1

• f ′(x0) = − sin(0) = 0

• f ′′(x0) = − cos(0) = −1
• We can write the second order Taylor’s series as:

• f (x) = 1 + 0(x − 0) + −1
2! (x − 0)2 = 1− x2

2

7 / 65



Taylor’s Series

• Let us consider f (x) = cos(x) and x0 = 0

• Then, we have:

• f (x0) = cos(0) = 1

• f ′(x0) = − sin(0) = 0

• f ′′(x0) = − cos(0) = −1
• We can write the second order Taylor’s series as:

• f (x) = 1 + 0(x − 0) + −1
2! (x − 0)2 = 1− x2

2

7 / 65



Taylor’s Series

• Let us consider f (x) = cos(x) and x0 = 0

• Then, we have:

• f (x0) = cos(0) = 1

• f ′(x0) = − sin(0) = 0

• f ′′(x0) = − cos(0) = −1

• We can write the second order Taylor’s series as:

• f (x) = 1 + 0(x − 0) + −1
2! (x − 0)2 = 1− x2

2

7 / 65



Taylor’s Series

• Let us consider f (x) = cos(x) and x0 = 0

• Then, we have:

• f (x0) = cos(0) = 1

• f ′(x0) = − sin(0) = 0

• f ′′(x0) = − cos(0) = −1
• We can write the second order Taylor’s series as:

• f (x) = 1 + 0(x − 0) + −1
2! (x − 0)2 = 1− x2

2

7 / 65



Taylor’s Series

• Let us consider f (x) = cos(x) and x0 = 0

• Then, we have:

• f (x0) = cos(0) = 1

• f ′(x0) = − sin(0) = 0

• f ′′(x0) = − cos(0) = −1
• We can write the second order Taylor’s series as:

• f (x) = 1 + 0(x − 0) + −1
2! (x − 0)2 = 1− x2

2

7 / 65



Taylor’s series

• Let us consider another example: f (x) = x2 + 2 and x0 = 2

• Question: How does the first order Taylor’s series

approximation look like?

• First order Taylor’s series approximation is given by:

• f (x) = f (x0) + f ′(x0)(x − x0) = 6 + 4(x − 2) = 4x − 2

8 / 65



Taylor’s series

• Let us consider another example: f (x) = x2 + 2 and x0 = 2

• Question: How does the first order Taylor’s series

approximation look like?

• First order Taylor’s series approximation is given by:

• f (x) = f (x0) + f ′(x0)(x − x0) = 6 + 4(x − 2) = 4x − 2

8 / 65



Taylor’s series

• Let us consider another example: f (x) = x2 + 2 and x0 = 2

• Question: How does the first order Taylor’s series

approximation look like?

• First order Taylor’s series approximation is given by:

• f (x) = f (x0) + f ′(x0)(x − x0) = 6 + 4(x − 2) = 4x − 2

8 / 65



Taylor’s series

• Let us consider another example: f (x) = x2 + 2 and x0 = 2

• Question: How does the first order Taylor’s series

approximation look like?

• First order Taylor’s series approximation is given by:

• f (x) = f (x0) + f ′(x0)(x − x0) = 6 + 4(x − 2) = 4x − 2

8 / 65



Taylor’s Series (Alternative form)

• We have:

f (x) = f (x0) +
f ′(x0)

1!
(x − x0) +

f ′′(x0)

2!
(x − x0)

2 + . . . (5)

• Let us consider x = x0 +∆x where ∆x is a small quantity

• Then, we have:

f (x0 +∆x) = f (x0) +
f ′(x0)

1!
∆x +

f ′′(x0)

2!
∆x2 + . . . (6)

• Let us assume ∆x is small enough such that ∆x2 and higher

order terms can be ignored

• Then, we have: f (x0 +∆x) ≈ f (x0) +
f ′(x0)
1! ∆x

9 / 65



Taylor’s Series (Alternative form)

• We have:

f (x) = f (x0) +
f ′(x0)

1!
(x − x0) +

f ′′(x0)

2!
(x − x0)

2 + . . . (5)

• Let us consider x = x0 +∆x where ∆x is a small quantity

• Then, we have:

f (x0 +∆x) = f (x0) +
f ′(x0)

1!
∆x +

f ′′(x0)

2!
∆x2 + . . . (6)

• Let us assume ∆x is small enough such that ∆x2 and higher

order terms can be ignored

• Then, we have: f (x0 +∆x) ≈ f (x0) +
f ′(x0)
1! ∆x

9 / 65



Taylor’s Series (Alternative form)

• We have:

f (x) = f (x0) +
f ′(x0)

1!
(x − x0) +

f ′′(x0)

2!
(x − x0)

2 + . . . (5)

• Let us consider x = x0 +∆x where ∆x is a small quantity

• Then, we have:

f (x0 +∆x) = f (x0) +
f ′(x0)

1!
∆x +

f ′′(x0)

2!
∆x2 + . . . (6)

• Let us assume ∆x is small enough such that ∆x2 and higher

order terms can be ignored

• Then, we have: f (x0 +∆x) ≈ f (x0) +
f ′(x0)
1! ∆x

9 / 65



Taylor’s Series (Alternative form)

• We have:

f (x) = f (x0) +
f ′(x0)

1!
(x − x0) +

f ′′(x0)

2!
(x − x0)

2 + . . . (5)

• Let us consider x = x0 +∆x where ∆x is a small quantity

• Then, we have:

f (x0 +∆x) = f (x0) +
f ′(x0)

1!
∆x +

f ′′(x0)

2!
∆x2 + . . . (6)

• Let us assume ∆x is small enough such that ∆x2 and higher

order terms can be ignored

• Then, we have: f (x0 +∆x) ≈ f (x0) +
f ′(x0)
1! ∆x

9 / 65



Taylor’s Series (Alternative form)

• We have:

f (x) = f (x0) +
f ′(x0)

1!
(x − x0) +

f ′′(x0)

2!
(x − x0)

2 + . . . (5)

• Let us consider x = x0 +∆x where ∆x is a small quantity

• Then, we have:

f (x0 +∆x) = f (x0) +
f ′(x0)

1!
∆x +

f ′′(x0)

2!
∆x2 + . . . (6)

• Let us assume ∆x is small enough such that ∆x2 and higher

order terms can be ignored

• Then, we have: f (x0 +∆x) ≈ f (x0) +
f ′(x0)
1! ∆x

9 / 65



Taylor’s Series to Gradient Descent

• Then, we have: f (x0 +∆x) ≈ f (x0) +
f ′(x0)
1! ∆x

• Or, in vector form: f (x0 +∆x) ≈ f (x0) +∇f (x0)T∆x

• Goal: Find ∆x such that f (x0 +∆x) is minimized

• This is equivalent to minimizing f (x0) +∇f (x0)T∆x

• This happens when vectors ∇f (x0) and ∆x are at phase angle

of 180◦

• This happens when ∆x = −α∇f (x0) where α is a scalar

• This is the gradient descent algorithm: x1 = x0 − α∇f (x0)

10 / 65



Taylor’s Series to Gradient Descent

• Then, we have: f (x0 +∆x) ≈ f (x0) +
f ′(x0)
1! ∆x

• Or, in vector form: f (x0 +∆x) ≈ f (x0) +∇f (x0)T∆x

• Goal: Find ∆x such that f (x0 +∆x) is minimized

• This is equivalent to minimizing f (x0) +∇f (x0)T∆x

• This happens when vectors ∇f (x0) and ∆x are at phase angle

of 180◦

• This happens when ∆x = −α∇f (x0) where α is a scalar

• This is the gradient descent algorithm: x1 = x0 − α∇f (x0)

10 / 65



Taylor’s Series to Gradient Descent

• Then, we have: f (x0 +∆x) ≈ f (x0) +
f ′(x0)
1! ∆x

• Or, in vector form: f (x0 +∆x) ≈ f (x0) +∇f (x0)T∆x

• Goal: Find ∆x such that f (x0 +∆x) is minimized

• This is equivalent to minimizing f (x0) +∇f (x0)T∆x

• This happens when vectors ∇f (x0) and ∆x are at phase angle

of 180◦

• This happens when ∆x = −α∇f (x0) where α is a scalar

• This is the gradient descent algorithm: x1 = x0 − α∇f (x0)

10 / 65



Taylor’s Series to Gradient Descent

• Then, we have: f (x0 +∆x) ≈ f (x0) +
f ′(x0)
1! ∆x

• Or, in vector form: f (x0 +∆x) ≈ f (x0) +∇f (x0)T∆x

• Goal: Find ∆x such that f (x0 +∆x) is minimized

• This is equivalent to minimizing f (x0) +∇f (x0)T∆x

• This happens when vectors ∇f (x0) and ∆x are at phase angle

of 180◦

• This happens when ∆x = −α∇f (x0) where α is a scalar

• This is the gradient descent algorithm: x1 = x0 − α∇f (x0)

10 / 65



Taylor’s Series to Gradient Descent

• Then, we have: f (x0 +∆x) ≈ f (x0) +
f ′(x0)
1! ∆x

• Or, in vector form: f (x0 +∆x) ≈ f (x0) +∇f (x0)T∆x

• Goal: Find ∆x such that f (x0 +∆x) is minimized

• This is equivalent to minimizing f (x0) +∇f (x0)T∆x

• This happens when vectors ∇f (x0) and ∆x are at phase angle

of 180◦

• This happens when ∆x = −α∇f (x0) where α is a scalar

• This is the gradient descent algorithm: x1 = x0 − α∇f (x0)

10 / 65



Taylor’s Series to Gradient Descent

• Then, we have: f (x0 +∆x) ≈ f (x0) +
f ′(x0)
1! ∆x

• Or, in vector form: f (x0 +∆x) ≈ f (x0) +∇f (x0)T∆x

• Goal: Find ∆x such that f (x0 +∆x) is minimized

• This is equivalent to minimizing f (x0) +∇f (x0)T∆x

• This happens when vectors ∇f (x0) and ∆x are at phase angle

of 180◦

• This happens when ∆x = −α∇f (x0) where α is a scalar

• This is the gradient descent algorithm: x1 = x0 − α∇f (x0)

10 / 65



Taylor’s Series to Gradient Descent

• Then, we have: f (x0 +∆x) ≈ f (x0) +
f ′(x0)
1! ∆x

• Or, in vector form: f (x0 +∆x) ≈ f (x0) +∇f (x0)T∆x

• Goal: Find ∆x such that f (x0 +∆x) is minimized

• This is equivalent to minimizing f (x0) +∇f (x0)T∆x

• This happens when vectors ∇f (x0) and ∆x are at phase angle

of 180◦

• This happens when ∆x = −α∇f (x0) where α is a scalar

• This is the gradient descent algorithm: x1 = x0 − α∇f (x0)

10 / 65



Effect of learning rate

Low learning rate α = 0.01 : Converges slowly

−2 −1 0 1 2
0

2

4

6

8
f(x) = x2 + 2

x0 = 2.00

order 1 appx. at x = x0

x1 = 1.96

order 1 appx. at x = x1

x2 = 1.92

order 1 appx. at x = x2

x3 = 1.88

order 1 appx. at x = x3

11 / 65



Effect of learning rate

High learning rate α = 0.8: Converges quickly, but might overshoot

−2 −1 0 1 2
0

2

4

6

8
f(x) = x2 + 2

x0 = 2.00

order 1 appx. at x = x0

x1 = -1.20

order 1 appx. at x = x1

x2 = 0.72

order 1 appx. at x = x2

x3 = -0.43

order 1 appx. at x = x3

12 / 65



Effect of learning rate

Very high learning rate α = 1.01: Diverges

−2 −1 0 1 2
0

2

4

6

8
f(x) = x2 + 2

x0 = 2.00

order 1 appx. at x = x0

x1 = -2.04

order 1 appx. at x = x1

x2 = 2.08

order 1 appx. at x = x2

x3 = -2.12

order 1 appx. at x = x3

13 / 65



Effect of learning rate

Appropriate learning rate α = 0.1

−2 −1 0 1 2
0

2

4

6

8 f(x) = x2 + 2

x0 = 2.00

order 1 appx. at x = x0

x1 = 1.60

order 1 appx. at x = x1

x2 = 1.28

order 1 appx. at x = x2

x3 = 1.02

order 1 appx. at x = x3

x4 = 0.82

order 1 appx. at x = x4

14 / 65



Gradient Descent for linear

regression



Some commonly confused terms

• Loss function is usually a function defined on a data point,

prediction and label, and measures the penalty.

• square loss l (f (xi ;θ) , yi ) = (f (xi ;θ)− yi )
2 , used in linear

regression

• Cost function is usually more general. It might be a sum of

loss functions over your training set plus some model

complexity penalty (regularization). For example:

• Mean Squared Error MSE(θ) = 1
n

∑n
i=1 (f (xi ;θ)− yi )

2

• Objective function is the most general term for any function

that you optimize during training.

15 / 65



Some commonly confused terms

• Loss function is usually a function defined on a data point,

prediction and label, and measures the penalty.

• square loss l (f (xi ;θ) , yi ) = (f (xi ;θ)− yi )
2 , used in linear

regression

• Cost function is usually more general. It might be a sum of

loss functions over your training set plus some model

complexity penalty (regularization). For example:

• Mean Squared Error MSE(θ) = 1
n

∑n
i=1 (f (xi ;θ)− yi )

2

• Objective function is the most general term for any function

that you optimize during training.

15 / 65



Some commonly confused terms

• Loss function is usually a function defined on a data point,

prediction and label, and measures the penalty.

• square loss l (f (xi ;θ) , yi ) = (f (xi ;θ)− yi )
2 , used in linear

regression

• Cost function is usually more general. It might be a sum of

loss functions over your training set plus some model

complexity penalty (regularization). For example:

• Mean Squared Error MSE(θ) = 1
n

∑n
i=1 (f (xi ;θ)− yi )

2

• Objective function is the most general term for any function

that you optimize during training.

15 / 65



Some commonly confused terms

• Loss function is usually a function defined on a data point,

prediction and label, and measures the penalty.

• square loss l (f (xi ;θ) , yi ) = (f (xi ;θ)− yi )
2 , used in linear

regression

• Cost function is usually more general. It might be a sum of

loss functions over your training set plus some model

complexity penalty (regularization). For example:

• Mean Squared Error MSE(θ) = 1
n

∑n
i=1 (f (xi ;θ)− yi )

2

• Objective function is the most general term for any function

that you optimize during training.

15 / 65



Some commonly confused terms

• Loss function is usually a function defined on a data point,

prediction and label, and measures the penalty.

• square loss l (f (xi ;θ) , yi ) = (f (xi ;θ)− yi )
2 , used in linear

regression

• Cost function is usually more general. It might be a sum of

loss functions over your training set plus some model

complexity penalty (regularization). For example:

• Mean Squared Error MSE(θ) = 1
n

∑n
i=1 (f (xi ;θ)− yi )

2

• Objective function is the most general term for any function

that you optimize during training.

15 / 65



Gradient Descent : Example

Learn y = θ0 + θ1x on following dataset, using gradient descent

where initially (θ0, θ1) = (4, 0) and step-size, α = 0.1, for 2

iterations.

x y

1 1

2 2

3 3

16 / 65



Gradient Descent : Example

Our predictor, ŷ = θ0 + θ1x

Error for i th datapoint, ϵi = yi − ŷi

ϵ1 = 1− θ0 − θ1

ϵ2 = 2− θ0 − 2θ1

ϵ3 = 3− θ0 − 3θ1

MSE =
ϵ21+ϵ22+ϵ23

3 =
14+3θ20+14θ21−12θ0−28θ1+12θ0θ1

3

17 / 65



Difference between SSE and MSE

∑
ϵ2i increases as the number of examples increase

So, we use MSE

MSE =
1

n

∑
ϵ2i

Here n denotes the number of samples

18 / 65



Gradient Descent : Example

∂MSE
∂θ0

=
2
∑n

i=1(yi−θ0−θ1xi )(−1)
n =

2
∑n

i=1 ϵi (−1)
n

∂MSE
∂θ1

=
2
∑n

i=1(yi−θ0−θ1xi )(−xi )
n =

2
∑n

i=1 ϵi (−xi )
n

19 / 65



Gradient Descent : Example

Iteration 1

θ0 = θ0 − α∂MSE
∂θ0

θ1 = θ1 − α∂MSE
∂θ1

20 / 65



Gradient Descent : Example

Iteration 1

θ0 = θ0 − α∂MSE
∂θ0

θ0 = 4− 0.2 ((1−(4+0))(−1)+(2−(4+0))(−1)+(3−(4+0))(−1))
3

θ0 = 3.6

θ1 = θ1 − α∂MSE
∂θ1

20 / 65



Gradient Descent : Example

Iteration 1

θ0 = θ0 − α∂MSE
∂θ0

θ0 = 4− 0.2 ((1−(4+0))(−1)+(2−(4+0))(−1)+(3−(4+0))(−1))
3

θ0 = 3.6

θ1 = θ1 − α∂MSE
∂θ1

θ1 = 0− 0.2 ((1−(4+0))(−1)+(2−(4+0))(−2)+(3−(4+0))(−3))
3

θ1 = −0.67

20 / 65



Gradient Descent : Example

Iteration 2

θ0 = θ0 − α∂MSE
∂θ0

θ1 = θ1 − α∂MSE
∂θ1

21 / 65



Gradient Descent : Example

Iteration 2

θ0 = θ0 − α∂MSE
∂θ0

θ0 =

3.6− 0.2 ((1−(3.6−0.67))(−1)+(2−(3.6−0.67×2))(−1)+(3−(3.6−0.67×3))(−1))
3

θ0 = 3.54

θ1 = θ1 − α∂MSE
∂θ1

21 / 65



Gradient Descent : Example

Iteration 2

θ0 = θ0 − α∂MSE
∂θ0

θ0 =

3.6− 0.2 ((1−(3.6−0.67))(−1)+(2−(3.6−0.67×2))(−1)+(3−(3.6−0.67×3))(−1))
3

θ0 = 3.54

θ1 = θ1 − α∂MSE
∂θ1

θ0 =

3.6− 0.2 ((1−(3.6−0.67))(−1)+(2−(3.6−0.67×2))(−2)+(3−(3.6−0.67×3))(−3))
3

θ0 = −0.55
21 / 65



Gradient Descent : Example (Iteraion 0)

−4 −2 0 2 4

x

−4

−2

0

2

4

y

Contour Plot

0 1 2 3 4 5

0

2

4

6
Line fit

Actual line

0

10

25

50

100

200

300

400

22 / 65



Gradient Descent : Example (Iteraion 2)

−4 −2 0 2 4

x

−4

−2

0

2

4

y

Contour Plot

0 1 2 3 4 5

0

2

4

6
Line fit

Actual line

0

10

25

50

100

200

300

400

23 / 65



Gradient Descent : Example (Iteraion 4)

−4 −2 0 2 4

x

−4

−2

0

2

4

y

Contour Plot

0 1 2 3 4 5

0

2

4

6
Line fit

Actual line

0

10

25

50

100

200

300

400

24 / 65



Gradient Descent : Example (Iteraion 6)

−4 −2 0 2 4

x

−4

−2

0

2

4

y

Contour Plot

0 1 2 3 4 5

0

2

4

6
Line fit

Actual line

0

10

25

50

100

200

300

400

25 / 65



Gradient Descent : Example (Iteraion 8)

−4 −2 0 2 4

x

−4

−2

0

2

4

y

Contour Plot

0 1 2 3 4 5

0

2

4

6
Line fit

Actual line

0

10

25

50

100

200

300

400

26 / 65



Gradient Descent : Example (Iteraion 10)

−4 −2 0 2 4

x

−4

−2

0

2

4

y

Contour Plot

0 1 2 3 4 5

0

2

4

6
Line fit

Actual line

0

10

25

50

100

200

300

400

27 / 65



Gradient Descent : Example (Iteraion 12)

−4 −2 0 2 4

x

−4

−2

0

2

4

y

Contour Plot

0 1 2 3 4 5

0

2

4

6
Line fit

Actual line

0

10

25

50

100

200

300

400

28 / 65



Gradient Descent : Example (Iteraion 14)

−4 −2 0 2 4

x

−4

−2

0

2

4

y

Contour Plot

0 1 2 3 4 5

0

2

4

6
Line fit

Actual line

0

10

25

50

100

200

300

400

29 / 65



Gradient Descent : Example (Iteraion 16)

−4 −2 0 2 4

x

−4

−2

0

2

4

y

Contour Plot

0 1 2 3 4 5

0

2

4

6
Line fit

Actual line

0

10

25

50

100

200

300

400

30 / 65



Gradient Descent : Example (Iteraion 18)

−4 −2 0 2 4

x

−4

−2

0

2

4

y

Contour Plot

0 1 2 3 4 5

0

2

4

6
Line fit

Actual line

0

10

25

50

100

200

300

400

31 / 65



Gradient Descent : Example (Iteraion 20)

−4 −2 0 2 4

x

−4

−2

0

2

4

y

Contour Plot

0 1 2 3 4 5

0

2

4

6
Line fit

Actual line

0

10

25

50

100

200

300

400

32 / 65



Gradient Descent : Example (Iteraion 22)

−4 −2 0 2 4

x

−4

−2

0

2

4

y

Contour Plot

0 1 2 3 4 5

0

2

4

6
Line fit

Actual line

0

10

25

50

100

200

300

400

33 / 65



Gradient Descent : Example (Iteraion 24)

−4 −2 0 2 4

x

−4

−2

0

2

4

y

Contour Plot

0 1 2 3 4 5

0

2

4

6
Line fit

Actual line

0

10

25

50

100

200

300

400

34 / 65



Gradient Descent : Example (Iteraion 26)

−4 −2 0 2 4

x

−4

−2

0

2

4

y

Contour Plot

0 1 2 3 4 5

0

2

4

6
Line fit

Actual line

0

10

25

50

100

200

300

400

35 / 65



Gradient Descent : Example (Iteraion 28)

−4 −2 0 2 4

x

−4

−2

0

2

4

y

Contour Plot

0 1 2 3 4 5

0

2

4

6
Line fit

Actual line

0

10

25

50

100

200

300

400

36 / 65



Gradient Descent : Example (Iteraion 30)

−4 −2 0 2 4

x

−4

−2

0

2

4

y

Contour Plot

0 1 2 3 4 5

0

2

4

6
Line fit

Actual line

0

10

25

50

100

200

300

400

37 / 65



Gradient Descent : Example (Iteraion 32)

−4 −2 0 2 4

x

−4

−2

0

2

4

y

Contour Plot

0 1 2 3 4 5

0

2

4

6
Line fit

Actual line

0

10

25

50

100

200

300

400

38 / 65



Gradient Descent : Example (Iteraion 34)

−4 −2 0 2 4

x

−4

−2

0

2

4

y

Contour Plot

0 1 2 3 4 5

0

2

4

6
Line fit

Actual line

0

10

25

50

100

200

300

400

39 / 65



Gradient Descent : Example (Iteraion 36)

−4 −2 0 2 4

x

−4

−2

0

2

4

y

Contour Plot

0 1 2 3 4 5

0

2

4

6
Line fit

Actual line

0

10

25

50

100

200

300

400

40 / 65



Gradient Descent : Example (Iteraion 38)

−4 −2 0 2 4

x

−4

−2

0

2

4

y

Contour Plot

0 1 2 3 4 5

0

2

4

6
Line fit

Actual line

0

10

25

50

100

200

300

400

41 / 65



Gradient Descent : Example (Iteraion 40)

−4 −2 0 2 4

x

−4

−2

0

2

4

y

Contour Plot

0 1 2 3 4 5

0

2

4

6
Line fit

Actual line

0

10

25

50

100

200

300

400

42 / 65



Iteration vs Epochs for gradient descent

• Iteration: Each time you update the parameters of the model

• Epoch: Each time you have seen all the set of examples

43 / 65



Iteration vs Epochs for gradient descent

• Iteration: Each time you update the parameters of the model

• Epoch: Each time you have seen all the set of examples

43 / 65



Gradient Descent (GD)

• Dataset: D = {(X, y)} of size n

• Initialize θ

• For epoch e in [1,E ]

• Predict ŷ = pred(X,θ)

• Compute loss: J(θ) = loss(y, ŷ)

• Compute gradient: ∇J(θ) = grad(J)(θ)

• Update: θ = θ − α∇J(θ)

44 / 65



Gradient Descent (GD)

• Dataset: D = {(X, y)} of size n

• Initialize θ

• For epoch e in [1,E ]

• Predict ŷ = pred(X,θ)

• Compute loss: J(θ) = loss(y, ŷ)

• Compute gradient: ∇J(θ) = grad(J)(θ)

• Update: θ = θ − α∇J(θ)

44 / 65



Gradient Descent (GD)

• Dataset: D = {(X, y)} of size n

• Initialize θ

• For epoch e in [1,E ]

• Predict ŷ = pred(X,θ)

• Compute loss: J(θ) = loss(y, ŷ)

• Compute gradient: ∇J(θ) = grad(J)(θ)

• Update: θ = θ − α∇J(θ)

44 / 65



Gradient Descent (GD)

• Dataset: D = {(X, y)} of size n

• Initialize θ

• For epoch e in [1,E ]

• Predict ŷ = pred(X,θ)

• Compute loss: J(θ) = loss(y, ŷ)

• Compute gradient: ∇J(θ) = grad(J)(θ)

• Update: θ = θ − α∇J(θ)

44 / 65



Gradient Descent (GD)

• Dataset: D = {(X, y)} of size n

• Initialize θ

• For epoch e in [1,E ]

• Predict ŷ = pred(X,θ)

• Compute loss: J(θ) = loss(y, ŷ)

• Compute gradient: ∇J(θ) = grad(J)(θ)

• Update: θ = θ − α∇J(θ)

44 / 65



Gradient Descent (GD)

• Dataset: D = {(X, y)} of size n

• Initialize θ

• For epoch e in [1,E ]

• Predict ŷ = pred(X,θ)

• Compute loss: J(θ) = loss(y, ŷ)

• Compute gradient: ∇J(θ) = grad(J)(θ)

• Update: θ = θ − α∇J(θ)

44 / 65



Gradient Descent (GD)

• Dataset: D = {(X, y)} of size n

• Initialize θ

• For epoch e in [1,E ]

• Predict ŷ = pred(X,θ)

• Compute loss: J(θ) = loss(y, ŷ)

• Compute gradient: ∇J(θ) = grad(J)(θ)

• Update: θ = θ − α∇J(θ)

44 / 65



Stochastic Gradient Descent (SGD)

• Dataset: D = {(X, y)} of size n

• Initialize θ

• For epoch e in [1,E ]

• Shuffle D
• For i in [1, n]

• Predict ŷi = pred(xi ,θ)

• Compute loss: J(θ) = loss(yi , ŷi )

• Compute gradient: ∇J(θ) = grad(J)(θ)

• Update: θ = θ − α∇J(θ)

45 / 65



Stochastic Gradient Descent (SGD)

• Dataset: D = {(X, y)} of size n

• Initialize θ

• For epoch e in [1,E ]

• Shuffle D
• For i in [1, n]

• Predict ŷi = pred(xi ,θ)

• Compute loss: J(θ) = loss(yi , ŷi )

• Compute gradient: ∇J(θ) = grad(J)(θ)

• Update: θ = θ − α∇J(θ)

45 / 65



Stochastic Gradient Descent (SGD)

• Dataset: D = {(X, y)} of size n

• Initialize θ

• For epoch e in [1,E ]

• Shuffle D
• For i in [1, n]

• Predict ŷi = pred(xi ,θ)

• Compute loss: J(θ) = loss(yi , ŷi )

• Compute gradient: ∇J(θ) = grad(J)(θ)

• Update: θ = θ − α∇J(θ)

45 / 65



Stochastic Gradient Descent (SGD)

• Dataset: D = {(X, y)} of size n

• Initialize θ

• For epoch e in [1,E ]

• Shuffle D

• For i in [1, n]

• Predict ŷi = pred(xi ,θ)

• Compute loss: J(θ) = loss(yi , ŷi )

• Compute gradient: ∇J(θ) = grad(J)(θ)

• Update: θ = θ − α∇J(θ)

45 / 65



Stochastic Gradient Descent (SGD)

• Dataset: D = {(X, y)} of size n

• Initialize θ

• For epoch e in [1,E ]

• Shuffle D
• For i in [1, n]

• Predict ŷi = pred(xi ,θ)

• Compute loss: J(θ) = loss(yi , ŷi )

• Compute gradient: ∇J(θ) = grad(J)(θ)

• Update: θ = θ − α∇J(θ)

45 / 65



Stochastic Gradient Descent (SGD)

• Dataset: D = {(X, y)} of size n

• Initialize θ

• For epoch e in [1,E ]

• Shuffle D
• For i in [1, n]

• Predict ŷi = pred(xi ,θ)

• Compute loss: J(θ) = loss(yi , ŷi )

• Compute gradient: ∇J(θ) = grad(J)(θ)

• Update: θ = θ − α∇J(θ)

45 / 65



Stochastic Gradient Descent (SGD)

• Dataset: D = {(X, y)} of size n

• Initialize θ

• For epoch e in [1,E ]

• Shuffle D
• For i in [1, n]

• Predict ŷi = pred(xi ,θ)

• Compute loss: J(θ) = loss(yi , ŷi )

• Compute gradient: ∇J(θ) = grad(J)(θ)

• Update: θ = θ − α∇J(θ)

45 / 65



Stochastic Gradient Descent (SGD)

• Dataset: D = {(X, y)} of size n

• Initialize θ

• For epoch e in [1,E ]

• Shuffle D
• For i in [1, n]

• Predict ŷi = pred(xi ,θ)

• Compute loss: J(θ) = loss(yi , ŷi )

• Compute gradient: ∇J(θ) = grad(J)(θ)

• Update: θ = θ − α∇J(θ)

45 / 65



Stochastic Gradient Descent (SGD)

• Dataset: D = {(X, y)} of size n

• Initialize θ

• For epoch e in [1,E ]

• Shuffle D
• For i in [1, n]

• Predict ŷi = pred(xi ,θ)

• Compute loss: J(θ) = loss(yi , ŷi )

• Compute gradient: ∇J(θ) = grad(J)(θ)

• Update: θ = θ − α∇J(θ)

45 / 65



Mini-Batch Gradient Descent (MBGD)

• Dataset: D = {(X, y)} of size n

• Initialize θ

• For epoch e in [1,E ]

• Shuffle D
• Batches = make batches(D,B)
• For b in Batches

• Xb, yb = b

• Predict ŷb = pred(Xb,θ)

• Compute loss: J(θ) = loss(yb, ŷb)

• Compute gradient: ∇J(θ) = grad(J)(θ)

• Update: θ = θ − α∇J(θ)

46 / 65



Mini-Batch Gradient Descent (MBGD)

• Dataset: D = {(X, y)} of size n

• Initialize θ

• For epoch e in [1,E ]

• Shuffle D
• Batches = make batches(D,B)
• For b in Batches

• Xb, yb = b

• Predict ŷb = pred(Xb,θ)

• Compute loss: J(θ) = loss(yb, ŷb)

• Compute gradient: ∇J(θ) = grad(J)(θ)

• Update: θ = θ − α∇J(θ)

46 / 65



Mini-Batch Gradient Descent (MBGD)

• Dataset: D = {(X, y)} of size n

• Initialize θ

• For epoch e in [1,E ]

• Shuffle D
• Batches = make batches(D,B)
• For b in Batches

• Xb, yb = b

• Predict ŷb = pred(Xb,θ)

• Compute loss: J(θ) = loss(yb, ŷb)

• Compute gradient: ∇J(θ) = grad(J)(θ)

• Update: θ = θ − α∇J(θ)

46 / 65



Mini-Batch Gradient Descent (MBGD)

• Dataset: D = {(X, y)} of size n

• Initialize θ

• For epoch e in [1,E ]

• Shuffle D

• Batches = make batches(D,B)
• For b in Batches

• Xb, yb = b

• Predict ŷb = pred(Xb,θ)

• Compute loss: J(θ) = loss(yb, ŷb)

• Compute gradient: ∇J(θ) = grad(J)(θ)

• Update: θ = θ − α∇J(θ)

46 / 65



Mini-Batch Gradient Descent (MBGD)

• Dataset: D = {(X, y)} of size n

• Initialize θ

• For epoch e in [1,E ]

• Shuffle D
• Batches = make batches(D,B)

• For b in Batches

• Xb, yb = b

• Predict ŷb = pred(Xb,θ)

• Compute loss: J(θ) = loss(yb, ŷb)

• Compute gradient: ∇J(θ) = grad(J)(θ)

• Update: θ = θ − α∇J(θ)

46 / 65



Mini-Batch Gradient Descent (MBGD)

• Dataset: D = {(X, y)} of size n

• Initialize θ

• For epoch e in [1,E ]

• Shuffle D
• Batches = make batches(D,B)
• For b in Batches

• Xb, yb = b

• Predict ŷb = pred(Xb,θ)

• Compute loss: J(θ) = loss(yb, ŷb)

• Compute gradient: ∇J(θ) = grad(J)(θ)

• Update: θ = θ − α∇J(θ)

46 / 65



Mini-Batch Gradient Descent (MBGD)

• Dataset: D = {(X, y)} of size n

• Initialize θ

• For epoch e in [1,E ]

• Shuffle D
• Batches = make batches(D,B)
• For b in Batches

• Xb, yb = b

• Predict ŷb = pred(Xb,θ)

• Compute loss: J(θ) = loss(yb, ŷb)

• Compute gradient: ∇J(θ) = grad(J)(θ)

• Update: θ = θ − α∇J(θ)

46 / 65



Mini-Batch Gradient Descent (MBGD)

• Dataset: D = {(X, y)} of size n

• Initialize θ

• For epoch e in [1,E ]

• Shuffle D
• Batches = make batches(D,B)
• For b in Batches

• Xb, yb = b

• Predict ŷb = pred(Xb,θ)

• Compute loss: J(θ) = loss(yb, ŷb)

• Compute gradient: ∇J(θ) = grad(J)(θ)

• Update: θ = θ − α∇J(θ)

46 / 65



Mini-Batch Gradient Descent (MBGD)

• Dataset: D = {(X, y)} of size n

• Initialize θ

• For epoch e in [1,E ]

• Shuffle D
• Batches = make batches(D,B)
• For b in Batches

• Xb, yb = b

• Predict ŷb = pred(Xb,θ)

• Compute loss: J(θ) = loss(yb, ŷb)

• Compute gradient: ∇J(θ) = grad(J)(θ)

• Update: θ = θ − α∇J(θ)

46 / 65



Mini-Batch Gradient Descent (MBGD)

• Dataset: D = {(X, y)} of size n

• Initialize θ

• For epoch e in [1,E ]

• Shuffle D
• Batches = make batches(D,B)
• For b in Batches

• Xb, yb = b

• Predict ŷb = pred(Xb,θ)

• Compute loss: J(θ) = loss(yb, ŷb)

• Compute gradient: ∇J(θ) = grad(J)(θ)

• Update: θ = θ − α∇J(θ)

46 / 65



Mini-Batch Gradient Descent (MBGD)

• Dataset: D = {(X, y)} of size n

• Initialize θ

• For epoch e in [1,E ]

• Shuffle D
• Batches = make batches(D,B)
• For b in Batches

• Xb, yb = b

• Predict ŷb = pred(Xb,θ)

• Compute loss: J(θ) = loss(yb, ŷb)

• Compute gradient: ∇J(θ) = grad(J)(θ)

• Update: θ = θ − α∇J(θ)

46 / 65



Gradient Descent vs SGD

Vanilla Gradient Descent

• in Vanilla (Batch) gradient descent: We update params after

going through all the data

• Smooth curve for Iteration vs Cost

• For a single update, it needs to compute the gradient over all

the samples. Hence takes more time

Stochastic Gradient Descent

• In SGD, we update parameters after seeing each each point

• Noisier curve for iteration vs cost

• For a single update, it computes the gradient over one

example. Hence lesser time

47 / 65



Gradient Descent vs SGD

Vanilla Gradient Descent

• in Vanilla (Batch) gradient descent: We update params after

going through all the data

• Smooth curve for Iteration vs Cost

• For a single update, it needs to compute the gradient over all

the samples. Hence takes more time

Stochastic Gradient Descent

• In SGD, we update parameters after seeing each each point

• Noisier curve for iteration vs cost

• For a single update, it computes the gradient over one

example. Hence lesser time

47 / 65



Gradient Descent vs SGD

Vanilla Gradient Descent

• in Vanilla (Batch) gradient descent: We update params after

going through all the data

• Smooth curve for Iteration vs Cost

• For a single update, it needs to compute the gradient over all

the samples. Hence takes more time

Stochastic Gradient Descent

• In SGD, we update parameters after seeing each each point

• Noisier curve for iteration vs cost

• For a single update, it computes the gradient over one

example. Hence lesser time

47 / 65



Gradient Descent vs SGD

Vanilla Gradient Descent

• in Vanilla (Batch) gradient descent: We update params after

going through all the data

• Smooth curve for Iteration vs Cost

• For a single update, it needs to compute the gradient over all

the samples. Hence takes more time

Stochastic Gradient Descent

• In SGD, we update parameters after seeing each each point

• Noisier curve for iteration vs cost

• For a single update, it computes the gradient over one

example. Hence lesser time

47 / 65



Gradient Descent vs SGD

Vanilla Gradient Descent

• in Vanilla (Batch) gradient descent: We update params after

going through all the data

• Smooth curve for Iteration vs Cost

• For a single update, it needs to compute the gradient over all

the samples. Hence takes more time

Stochastic Gradient Descent

• In SGD, we update parameters after seeing each each point

• Noisier curve for iteration vs cost

• For a single update, it computes the gradient over one

example. Hence lesser time

47 / 65



Gradient Descent vs SGD

Vanilla Gradient Descent

• in Vanilla (Batch) gradient descent: We update params after

going through all the data

• Smooth curve for Iteration vs Cost

• For a single update, it needs to compute the gradient over all

the samples. Hence takes more time

Stochastic Gradient Descent

• In SGD, we update parameters after seeing each each point

• Noisier curve for iteration vs cost

• For a single update, it computes the gradient over one

example. Hence lesser time

47 / 65



Gradient Descent vs SGD

Vanilla Gradient Descent

• in Vanilla (Batch) gradient descent: We update params after

going through all the data

• Smooth curve for Iteration vs Cost

• For a single update, it needs to compute the gradient over all

the samples. Hence takes more time

Stochastic Gradient Descent

• In SGD, we update parameters after seeing each each point

• Noisier curve for iteration vs cost

• For a single update, it computes the gradient over one

example. Hence lesser time

47 / 65



Stochastic Gradient Descent : Example

Learn y = θ0 + θ1x on following dataset, using SGD where initially

(θ0, θ1) = (4, 0) and step-size, α = 0.1, for 1 epoch (3 iterations).

x y

2 2

3 3

1 1

48 / 65



Stochastic Gradient Descent : Example

Our predictor, ŷ = θ0 + θ1x

Error for i th datapoint, ei = yi − ŷi

ϵ1 = 2− θ0 − 2θ1

ϵ2 = 3− θ0 − 3θ1

ϵ3 = 1− θ0 − θ1

While using SGD, we compute the MSE using only 1 datapoint per

iteration.

So MSE is ϵ21 for iteration 1 and ϵ22 for iteration 2.

49 / 65



Stochastic Gradient Descent : Example

Contour plot of the cost functions for the three datapoints

−5 0 5

x

−4

−2

0

2

4

y

Contour Plot

−5 0 5

x

−4

−2

0

2

4

y

Contour Plot

−5 0 5

x

−4

−2

0

2

4

y

Contour Plot

0

60

120

180

240

300

0

100

200

300

400

500

0

15

30

45

60

75

90

105

120

135

50 / 65



Stochastic Gradient Descent : Example

For Iteration i

∂MSE
∂θ0

= 2 (yi − θ0 − θ1xi ) (−1) = 2ϵi (−1)

∂MSE
∂θ1

= 2 (yi − θ0 − θ1xi ) (−xi ) = 2ϵi (−xi )

51 / 65



Stochastic Gradient Descent : Example

Iteration 1

θ0 = θ0 − α∂MSE
∂θ0

θ1 = θ1 − α∂MSE
∂θ1

52 / 65



Stochastic Gradient Descent : Example

Iteration 1

θ0 = θ0 − α∂MSE
∂θ0

θ0 = 4− 0.1× 2× (2− (4 + 0)) (−1)

θ0 = 3.6

θ1 = θ1 − α∂MSE
∂θ1

52 / 65



Stochastic Gradient Descent : Example

Iteration 1

θ0 = θ0 − α∂MSE
∂θ0

θ0 = 4− 0.1× 2× (2− (4 + 0)) (−1)

θ0 = 3.6

θ1 = θ1 − α∂MSE
∂θ1

θ1 = 0− 0.1× 2× (2− (4 + 0)) (−2)

θ1 = −0.8

52 / 65



Stochastic Gradient Descent : Example

Iteration 2

θ0 = θ0 − α∂MSE
∂θ0

θ1 = θ1 − α∂MSE
∂θ1

53 / 65



Stochastic Gradient Descent : Example

Iteration 2

θ0 = θ0 − α∂MSE
∂θ0

θ0 = 3.6− 0.1× 2× (3− (3.6− 0.8× 3)) (−1)

θ0 = 3.96

θ1 = θ1 − α∂MSE
∂θ1

53 / 65



Stochastic Gradient Descent : Example

Iteration 2

θ0 = θ0 − α∂MSE
∂θ0

θ0 = 3.6− 0.1× 2× (3− (3.6− 0.8× 3)) (−1)

θ0 = 3.96

θ1 = θ1 − α∂MSE
∂θ1

θ0 = −0.8− 0.1× 2× (3− (3.6− 0.8× 3)) (−3)

θ1 = 0.28

53 / 65



Stochastic Gradient Descent : Example

Iteration 3

θ0 = θ0 − α∂MSE
∂θ0

θ1 = θ1 − α∂MSE
∂θ1

54 / 65



Stochastic Gradient Descent : Example

Iteration 3

θ0 = θ0 − α∂MSE
∂θ0

θ0 = 3.96− 0.1× 2× (1− (3.96 + 0.28× 1)) (−1)

θ0 = 3.312

θ1 = θ1 − α∂MSE
∂θ1

54 / 65



Stochastic Gradient Descent : Example

Iteration 3

θ0 = θ0 − α∂MSE
∂θ0

θ0 = 3.96− 0.1× 2× (1− (3.96 + 0.28× 1)) (−1)

θ0 = 3.312

θ1 = θ1 − α∂MSE
∂θ1

θ0 = 0.28− 0.1× 2× (1− (3.96 + 0.28× 1)) (−1)

θ1 = −0.368

54 / 65



Stochastic gradient is an unbiased

estimator of the true gradient



True Gradient

Based on Estimation Theory and Machine Learning by Florian

Hartmann

• Let us say we have a dataset D containing input output pairs

{(x1, y1), (x2, y2), . . . , (xN , yN)}

• We can define overall loss as:

L(θ) =
1

N

N∑
i=1

loss(f (xi , θ), yi )

• loss can be any loss function such as squared loss,

cross-entropy loss etc.

loss(f (xi , θ), yi ) = (f (xi , θ)− yi )
2

55 / 65



True Gradient

Based on Estimation Theory and Machine Learning by Florian

Hartmann

• Let us say we have a dataset D containing input output pairs

{(x1, y1), (x2, y2), . . . , (xN , yN)}
• We can define overall loss as:

L(θ) =
1

N

N∑
i=1

loss(f (xi , θ), yi )

• loss can be any loss function such as squared loss,

cross-entropy loss etc.

loss(f (xi , θ), yi ) = (f (xi , θ)− yi )
2

55 / 65



True Gradient

Based on Estimation Theory and Machine Learning by Florian

Hartmann

• Let us say we have a dataset D containing input output pairs

{(x1, y1), (x2, y2), . . . , (xN , yN)}
• We can define overall loss as:

L(θ) =
1

N

N∑
i=1

loss(f (xi , θ), yi )

• loss can be any loss function such as squared loss,

cross-entropy loss etc.

loss(f (xi , θ), yi ) = (f (xi , θ)− yi )
2

55 / 65



True Gradient

• The true gradient of the loss function is given by:

∇L = ∇1

n

n∑
i=1

loss (f (xi ) , yi )

=
1

n

n∑
i=1

∇ loss (f (xi ) , yi )

• The above is a consequence of linearity of the gradient

operator.

56 / 65



True Gradient

• The true gradient of the loss function is given by:

∇L = ∇1

n

n∑
i=1

loss (f (xi ) , yi )

=
1

n

n∑
i=1

∇ loss (f (xi ) , yi )

• The above is a consequence of linearity of the gradient

operator.

56 / 65



Estimator for the true gradient

• In practice, we do not have access to the true gradient

• We can only estimate the true gradient using a subset of the

data

• For SGD, we use a single example to estimate the true

gradient, for mini-batch gradient descent, we use a mini-batch

of examples to estimate the true gradient

• Let us say we have a sample: (x, y)

• The estimated gradient is given by:

∇L̃ = ∇ loss(f (x), y)

57 / 65



Estimator for the true gradient

• In practice, we do not have access to the true gradient

• We can only estimate the true gradient using a subset of the

data

• For SGD, we use a single example to estimate the true

gradient, for mini-batch gradient descent, we use a mini-batch

of examples to estimate the true gradient

• Let us say we have a sample: (x, y)

• The estimated gradient is given by:

∇L̃ = ∇ loss(f (x), y)

57 / 65



Estimator for the true gradient

• In practice, we do not have access to the true gradient

• We can only estimate the true gradient using a subset of the

data

• For SGD, we use a single example to estimate the true

gradient, for mini-batch gradient descent, we use a mini-batch

of examples to estimate the true gradient

• Let us say we have a sample: (x, y)

• The estimated gradient is given by:

∇L̃ = ∇ loss(f (x), y)

57 / 65



Estimator for the true gradient

• In practice, we do not have access to the true gradient

• We can only estimate the true gradient using a subset of the

data

• For SGD, we use a single example to estimate the true

gradient, for mini-batch gradient descent, we use a mini-batch

of examples to estimate the true gradient

• Let us say we have a sample: (x, y)

• The estimated gradient is given by:

∇L̃ = ∇ loss(f (x), y)

57 / 65



Estimator for the true gradient

• In practice, we do not have access to the true gradient

• We can only estimate the true gradient using a subset of the

data

• For SGD, we use a single example to estimate the true

gradient, for mini-batch gradient descent, we use a mini-batch

of examples to estimate the true gradient

• Let us say we have a sample: (x, y)

• The estimated gradient is given by:

∇L̃ = ∇ loss(f (x), y)

57 / 65



Bias of the estimator

• One measure for the quality of an estimator X̃ is its bias or

how far off its estimate is on average from the true value X :

bias(X ) = E[X̃ ]− X

• Using the rules of expectation, we can show that the expected

value of the estimated gradient is the true gradient:

E[∇L̃] =
n∑

i=1

1

n
∇ loss (f (xi ) , yi )

=
1

n
∇

n∑
i=1

loss (f (xi ) , yi )

= ∇L
• Thus, the estimated gradient is an unbiased estimator of the

true gradient

58 / 65



Bias of the estimator

• One measure for the quality of an estimator X̃ is its bias or

how far off its estimate is on average from the true value X :

bias(X ) = E[X̃ ]− X

• Using the rules of expectation, we can show that the expected

value of the estimated gradient is the true gradient:

E[∇L̃] =
n∑

i=1

1

n
∇ loss (f (xi ) , yi )

=
1

n
∇

n∑
i=1

loss (f (xi ) , yi )

= ∇L

• Thus, the estimated gradient is an unbiased estimator of the

true gradient

58 / 65



Bias of the estimator

• One measure for the quality of an estimator X̃ is its bias or

how far off its estimate is on average from the true value X :

bias(X ) = E[X̃ ]− X

• Using the rules of expectation, we can show that the expected

value of the estimated gradient is the true gradient:

E[∇L̃] =
n∑

i=1

1

n
∇ loss (f (xi ) , yi )

=
1

n
∇

n∑
i=1

loss (f (xi ) , yi )

= ∇L
• Thus, the estimated gradient is an unbiased estimator of the

true gradient

58 / 65



Time Complexity: Gradient Descent

vs Normal Equation for Linear

Regression



Normal Equation

• Consider X ∈ Rn×d

• n examples and d dimensions

• What is the time complexity of solving the normal equation

θ̂ = (XTX)−1XTy?

59 / 65



Normal Equation

• Consider X ∈ Rn×d

• n examples and d dimensions

• What is the time complexity of solving the normal equation

θ̂ = (XTX)−1XTy?

59 / 65



Normal Equation

• Consider X ∈ Rn×d

• n examples and d dimensions

• What is the time complexity of solving the normal equation

θ̂ = (XTX)−1XTy?

59 / 65



Normal Equation

• X has dimensions n × d , XT has dimensions d × n

• XTX is a matrix product of matrices of size: d × n and n× d ,

which is O(d2n)

• Inversion of XTX is an inversion of a d × d matrix, which is

O(d3)

• XTy is a matrix vector product of size d × n and n× 1, which

is O(dn)
• (XTX)−1XTy is a matrix product of a d × d matrix and

d × 1 matrix, which is O(d2)

• Overall complexity: O(d2n) + O(d3) + O(dn) + O(d2) =

O(d2n) + O(d3)

• Scales cubic in the number of columns/features of X

60 / 65



Normal Equation

• X has dimensions n × d , XT has dimensions d × n

• XTX is a matrix product of matrices of size: d × n and n× d ,

which is O(d2n)

• Inversion of XTX is an inversion of a d × d matrix, which is

O(d3)

• XTy is a matrix vector product of size d × n and n× 1, which

is O(dn)
• (XTX)−1XTy is a matrix product of a d × d matrix and

d × 1 matrix, which is O(d2)

• Overall complexity: O(d2n) + O(d3) + O(dn) + O(d2) =

O(d2n) + O(d3)

• Scales cubic in the number of columns/features of X

60 / 65



Normal Equation

• X has dimensions n × d , XT has dimensions d × n

• XTX is a matrix product of matrices of size: d × n and n× d ,

which is O(d2n)

• Inversion of XTX is an inversion of a d × d matrix, which is

O(d3)

• XTy is a matrix vector product of size d × n and n× 1, which

is O(dn)
• (XTX)−1XTy is a matrix product of a d × d matrix and

d × 1 matrix, which is O(d2)

• Overall complexity: O(d2n) + O(d3) + O(dn) + O(d2) =

O(d2n) + O(d3)

• Scales cubic in the number of columns/features of X

60 / 65



Normal Equation

• X has dimensions n × d , XT has dimensions d × n

• XTX is a matrix product of matrices of size: d × n and n× d ,

which is O(d2n)

• Inversion of XTX is an inversion of a d × d matrix, which is

O(d3)

• XTy is a matrix vector product of size d × n and n× 1, which

is O(dn)

• (XTX)−1XTy is a matrix product of a d × d matrix and

d × 1 matrix, which is O(d2)

• Overall complexity: O(d2n) + O(d3) + O(dn) + O(d2) =

O(d2n) + O(d3)

• Scales cubic in the number of columns/features of X

60 / 65



Normal Equation

• X has dimensions n × d , XT has dimensions d × n

• XTX is a matrix product of matrices of size: d × n and n× d ,

which is O(d2n)

• Inversion of XTX is an inversion of a d × d matrix, which is

O(d3)

• XTy is a matrix vector product of size d × n and n× 1, which

is O(dn)
• (XTX)−1XTy is a matrix product of a d × d matrix and

d × 1 matrix, which is O(d2)

• Overall complexity: O(d2n) + O(d3) + O(dn) + O(d2) =

O(d2n) + O(d3)

• Scales cubic in the number of columns/features of X

60 / 65



Normal Equation

• X has dimensions n × d , XT has dimensions d × n

• XTX is a matrix product of matrices of size: d × n and n× d ,

which is O(d2n)

• Inversion of XTX is an inversion of a d × d matrix, which is

O(d3)

• XTy is a matrix vector product of size d × n and n× 1, which

is O(dn)
• (XTX)−1XTy is a matrix product of a d × d matrix and

d × 1 matrix, which is O(d2)

• Overall complexity: O(d2n) + O(d3) + O(dn) + O(d2) =

O(d2n) + O(d3)

• Scales cubic in the number of columns/features of X

60 / 65



Normal Equation

• X has dimensions n × d , XT has dimensions d × n

• XTX is a matrix product of matrices of size: d × n and n× d ,

which is O(d2n)

• Inversion of XTX is an inversion of a d × d matrix, which is

O(d3)

• XTy is a matrix vector product of size d × n and n× 1, which

is O(dn)
• (XTX)−1XTy is a matrix product of a d × d matrix and

d × 1 matrix, which is O(d2)

• Overall complexity: O(d2n) + O(d3) + O(dn) + O(d2) =

O(d2n) + O(d3)

• Scales cubic in the number of columns/features of X

60 / 65



Gradient Descent

Start with random values of θ0 and θ1

Till convergence

• θ0 = θ0 − α ∂
∂θ0

(
∑

ϵ2i )

• θ1 = θ1 − α ∂
∂θ1

(
∑

ϵ2i )

• Question: Can you write the above for d dimensional data in

vectorised form?

• θ0 = θ0 − α ∂
∂θ0

(y − Xθ)⊤ (y − Xθ)

θ1 = θ1 − α ∂
∂θ1

(y − Xθ)⊤ (y − Xθ)
...

θd = θd − α ∂
∂θd

(y − Xθ)⊤ (y − Xθ)

• θ = θ − α ∂
∂θ (y − Xθ)⊤ (y − Xθ)

61 / 65



Gradient Descent

Start with random values of θ0 and θ1

Till convergence

• θ0 = θ0 − α ∂
∂θ0

(
∑

ϵ2i )

• θ1 = θ1 − α ∂
∂θ1

(
∑

ϵ2i )

• Question: Can you write the above for d dimensional data in

vectorised form?

• θ0 = θ0 − α ∂
∂θ0

(y − Xθ)⊤ (y − Xθ)

θ1 = θ1 − α ∂
∂θ1

(y − Xθ)⊤ (y − Xθ)
...

θd = θd − α ∂
∂θd

(y − Xθ)⊤ (y − Xθ)

• θ = θ − α ∂
∂θ (y − Xθ)⊤ (y − Xθ)

61 / 65



Gradient Descent

Start with random values of θ0 and θ1

Till convergence

• θ0 = θ0 − α ∂
∂θ0

(
∑

ϵ2i )

• θ1 = θ1 − α ∂
∂θ1

(
∑

ϵ2i )

• Question: Can you write the above for d dimensional data in

vectorised form?

• θ0 = θ0 − α ∂
∂θ0

(y − Xθ)⊤ (y − Xθ)

θ1 = θ1 − α ∂
∂θ1

(y − Xθ)⊤ (y − Xθ)
...

θd = θd − α ∂
∂θd

(y − Xθ)⊤ (y − Xθ)

• θ = θ − α ∂
∂θ (y − Xθ)⊤ (y − Xθ)

61 / 65



Gradient Descent

Start with random values of θ0 and θ1

Till convergence

• θ0 = θ0 − α ∂
∂θ0

(
∑

ϵ2i )

• θ1 = θ1 − α ∂
∂θ1

(
∑

ϵ2i )

• Question: Can you write the above for d dimensional data in

vectorised form?

• θ0 = θ0 − α ∂
∂θ0

(y − Xθ)⊤ (y − Xθ)

θ1 = θ1 − α ∂
∂θ1

(y − Xθ)⊤ (y − Xθ)
...

θd = θd − α ∂
∂θd

(y − Xθ)⊤ (y − Xθ)

• θ = θ − α ∂
∂θ (y − Xθ)⊤ (y − Xθ)

61 / 65



Gradient Descent

Start with random values of θ0 and θ1

Till convergence

• θ0 = θ0 − α ∂
∂θ0

(
∑

ϵ2i )

• θ1 = θ1 − α ∂
∂θ1

(
∑

ϵ2i )

• Question: Can you write the above for d dimensional data in

vectorised form?

• θ0 = θ0 − α ∂
∂θ0

(y − Xθ)⊤ (y − Xθ)

θ1 = θ1 − α ∂
∂θ1

(y − Xθ)⊤ (y − Xθ)
...

θd = θd − α ∂
∂θd

(y − Xθ)⊤ (y − Xθ)

• θ = θ − α ∂
∂θ (y − Xθ)⊤ (y − Xθ)

61 / 65



Gradient Descent

∂
∂θ (y − Xθ)⊤(y − Xθ)

= ∂
∂θ

(
y⊤ − θ⊤X⊤) (y − Xθ)

= ∂
∂θ

(
y⊤y − θ⊤X⊤y − y⊤Xθ + θ⊤X⊤Xθ

)
= −2X⊤y + 2X⊤Xθ

= 2X⊤(Xθ − y)

62 / 65



Gradient Descent

We can write the vectorised update equation as follows, for each

iteration

θ = θ − αX⊤(Xθ − y)

For t iterations, what is the computational complexity of our

gradient descent solution?

Hint, rewrite the above as: θ = θ − αX⊤Xθ + αX⊤y

Complexity of computing X⊤y is O(dn)
Complexity of computing αX⊤y once we have X⊤y is O(d) since
X⊤y has d entries

Complexity of computing X⊤X is O(d2n) and then multiplying

with α is O(d2)

All of the above need only be calculated once!

63 / 65



Gradient Descent

We can write the vectorised update equation as follows, for each

iteration

θ = θ − αX⊤(Xθ − y)

For t iterations, what is the computational complexity of our

gradient descent solution?

Hint, rewrite the above as: θ = θ − αX⊤Xθ + αX⊤y

Complexity of computing X⊤y is O(dn)
Complexity of computing αX⊤y once we have X⊤y is O(d) since
X⊤y has d entries

Complexity of computing X⊤X is O(d2n) and then multiplying

with α is O(d2)

All of the above need only be calculated once!

63 / 65



Gradient Descent

We can write the vectorised update equation as follows, for each

iteration

θ = θ − αX⊤(Xθ − y)

For t iterations, what is the computational complexity of our

gradient descent solution?

Hint, rewrite the above as: θ = θ − αX⊤Xθ + αX⊤y

Complexity of computing X⊤y is O(dn)
Complexity of computing αX⊤y once we have X⊤y is O(d) since
X⊤y has d entries

Complexity of computing X⊤X is O(d2n) and then multiplying

with α is O(d2)

All of the above need only be calculated once!

63 / 65



Gradient Descent

We can write the vectorised update equation as follows, for each

iteration

θ = θ − αX⊤(Xθ − y)

For t iterations, what is the computational complexity of our

gradient descent solution?

Hint, rewrite the above as: θ = θ − αX⊤Xθ + αX⊤y

Complexity of computing X⊤y is O(dn)

Complexity of computing αX⊤y once we have X⊤y is O(d) since
X⊤y has d entries

Complexity of computing X⊤X is O(d2n) and then multiplying

with α is O(d2)

All of the above need only be calculated once!

63 / 65



Gradient Descent

We can write the vectorised update equation as follows, for each

iteration

θ = θ − αX⊤(Xθ − y)

For t iterations, what is the computational complexity of our

gradient descent solution?

Hint, rewrite the above as: θ = θ − αX⊤Xθ + αX⊤y

Complexity of computing X⊤y is O(dn)
Complexity of computing αX⊤y once we have X⊤y is O(d) since
X⊤y has d entries

Complexity of computing X⊤X is O(d2n) and then multiplying

with α is O(d2)

All of the above need only be calculated once!

63 / 65



Gradient Descent

We can write the vectorised update equation as follows, for each

iteration

θ = θ − αX⊤(Xθ − y)

For t iterations, what is the computational complexity of our

gradient descent solution?

Hint, rewrite the above as: θ = θ − αX⊤Xθ + αX⊤y

Complexity of computing X⊤y is O(dn)
Complexity of computing αX⊤y once we have X⊤y is O(d) since
X⊤y has d entries

Complexity of computing X⊤X is O(d2n) and then multiplying

with α is O(d2)

All of the above need only be calculated once!

63 / 65



Gradient Descent

We can write the vectorised update equation as follows, for each

iteration

θ = θ − αX⊤(Xθ − y)

For t iterations, what is the computational complexity of our

gradient descent solution?

Hint, rewrite the above as: θ = θ − αX⊤Xθ + αX⊤y

Complexity of computing X⊤y is O(dn)
Complexity of computing αX⊤y once we have X⊤y is O(d) since
X⊤y has d entries

Complexity of computing X⊤X is O(d2n) and then multiplying

with α is O(d2)

All of the above need only be calculated once!
63 / 65



Gradient Descent

For each of the t iterations, we now need to first multiply αX⊤X

with θ which is matrix multiplication of a d × d matrix with a

d × 1, which is O(d2)

The remaining subtraction/addition can be done in O(d) for each
iteration.

What is overall computational complexity?

O(td2) + O(d2n) = O((t + n)d2)

64 / 65



Gradient Descent

For each of the t iterations, we now need to first multiply αX⊤X

with θ which is matrix multiplication of a d × d matrix with a

d × 1, which is O(d2)

The remaining subtraction/addition can be done in O(d) for each
iteration.

What is overall computational complexity?

O(td2) + O(d2n) = O((t + n)d2)

64 / 65



Gradient Descent

For each of the t iterations, we now need to first multiply αX⊤X

with θ which is matrix multiplication of a d × d matrix with a

d × 1, which is O(d2)

The remaining subtraction/addition can be done in O(d) for each
iteration.

What is overall computational complexity?

O(td2) + O(d2n) = O((t + n)d2)

64 / 65



Gradient Descent

For each of the t iterations, we now need to first multiply αX⊤X

with θ which is matrix multiplication of a d × d matrix with a

d × 1, which is O(d2)

The remaining subtraction/addition can be done in O(d) for each
iteration.

What is overall computational complexity?

O(td2) + O(d2n) = O((t + n)d2)

64 / 65



Gradient Descent

For each of the t iterations, we now need to first multiply αX⊤X

with θ which is matrix multiplication of a d × d matrix with a

d × 1, which is O(d2)

The remaining subtraction/addition can be done in O(d) for each
iteration.

What is overall computational complexity?

O(td2) + O(d2n) = O((t + n)d2)

64 / 65



Gradient Descent (Alternative)

If we do not rewrite the expression θ = θ − αX⊤(Xθ − y)

For each iteration, we have:

• Computing Xθ is O(nd)
• Computing Xθ − y is O(n)
• Computing αX⊤ is O(nd)
• Computing αX⊤(Xθ − y) is O(nd)
• Computing θ = θ − αX⊤(Xθ − y) is O(n)

What is overall computational complexity?

O(ndt)

65 / 65



Gradient Descent (Alternative)

If we do not rewrite the expression θ = θ − αX⊤(Xθ − y)

For each iteration, we have:

• Computing Xθ is O(nd)

• Computing Xθ − y is O(n)
• Computing αX⊤ is O(nd)
• Computing αX⊤(Xθ − y) is O(nd)
• Computing θ = θ − αX⊤(Xθ − y) is O(n)

What is overall computational complexity?

O(ndt)

65 / 65



Gradient Descent (Alternative)

If we do not rewrite the expression θ = θ − αX⊤(Xθ − y)

For each iteration, we have:

• Computing Xθ is O(nd)
• Computing Xθ − y is O(n)

• Computing αX⊤ is O(nd)
• Computing αX⊤(Xθ − y) is O(nd)
• Computing θ = θ − αX⊤(Xθ − y) is O(n)

What is overall computational complexity?

O(ndt)

65 / 65



Gradient Descent (Alternative)

If we do not rewrite the expression θ = θ − αX⊤(Xθ − y)

For each iteration, we have:

• Computing Xθ is O(nd)
• Computing Xθ − y is O(n)
• Computing αX⊤ is O(nd)

• Computing αX⊤(Xθ − y) is O(nd)
• Computing θ = θ − αX⊤(Xθ − y) is O(n)

What is overall computational complexity?

O(ndt)

65 / 65



Gradient Descent (Alternative)

If we do not rewrite the expression θ = θ − αX⊤(Xθ − y)

For each iteration, we have:

• Computing Xθ is O(nd)
• Computing Xθ − y is O(n)
• Computing αX⊤ is O(nd)
• Computing αX⊤(Xθ − y) is O(nd)

• Computing θ = θ − αX⊤(Xθ − y) is O(n)

What is overall computational complexity?

O(ndt)

65 / 65



Gradient Descent (Alternative)

If we do not rewrite the expression θ = θ − αX⊤(Xθ − y)

For each iteration, we have:

• Computing Xθ is O(nd)
• Computing Xθ − y is O(n)
• Computing αX⊤ is O(nd)
• Computing αX⊤(Xθ − y) is O(nd)
• Computing θ = θ − αX⊤(Xθ − y) is O(n)

What is overall computational complexity?

O(ndt)

65 / 65



Gradient Descent (Alternative)

If we do not rewrite the expression θ = θ − αX⊤(Xθ − y)

For each iteration, we have:

• Computing Xθ is O(nd)
• Computing Xθ − y is O(n)
• Computing αX⊤ is O(nd)
• Computing αX⊤(Xθ − y) is O(nd)
• Computing θ = θ − αX⊤(Xθ − y) is O(n)

What is overall computational complexity?

O(ndt)

65 / 65



Gradient Descent (Alternative)

If we do not rewrite the expression θ = θ − αX⊤(Xθ − y)

For each iteration, we have:

• Computing Xθ is O(nd)
• Computing Xθ − y is O(n)
• Computing αX⊤ is O(nd)
• Computing αX⊤(Xθ − y) is O(nd)
• Computing θ = θ − αX⊤(Xθ − y) is O(n)

What is overall computational complexity?

O(ndt)

65 / 65



Gradient Descent (Alternative)

If we do not rewrite the expression θ = θ − αX⊤(Xθ − y)

For each iteration, we have:

• Computing Xθ is O(nd)
• Computing Xθ − y is O(n)
• Computing αX⊤ is O(nd)
• Computing αX⊤(Xθ − y) is O(nd)
• Computing θ = θ − αX⊤(Xθ − y) is O(n)

What is overall computational complexity?

O(ndt)

65 / 65


	Revision
	Introduction
	Taylor's Series
	Gradient Descent for linear regression
	Stochastic gradient is an unbiased estimator of the true gradient
	Time Complexity: Gradient Descent vs Normal Equation for Linear Regression

