Gradient Descent

Nipun Batra
July 26, 2025

IIT Gandhinagar



Revision



Contour Plot And Gradients

2= f(xy) =% + 52
Surface Plot

Contour Plot

50
40
30
20
10

1/65



Contour Plot And Gradients

z="f(x,y)=x*+y’
Surface Plot

Contour Plot

5.0 3 7 50
e
2.5 1 | |40
30
40 > 0.0
Z 2 20
s —2.5 1 N 10
-5 0 -5.0 0
0 5 X -5 0 5

<

Gradient denotes the direction of steepest ascent or the direction
in which there is a maximum increase in f(x,y)

1/65



Contour Plot And Gradients

z="f(x,y)=x*+y’
Surface Plot

Contour Plot

5.0 3 7 50

30
20

Gradient denotes the direction of steepest ascent or the direction
in which there is a maximum increase in f(x,y)

of(x,y)
2x
g;y) 2y

1/65



Introduction



Optimization algorithms

e We often want to minimize/maximize a function

2/65



Optimization algorithms

e We often want to minimize/maximize a function

e We wanted to minimize the cost function:

f(0) = (y — X0)" (y — X8) (1)

2/65



Optimization algorithms

e We often want to minimize/maximize a function

e We wanted to minimize the cost function:
£(8) = (y — X6)" (y — X6) (1)

e Note, here 0 is the parameter vector

2/65



Optimization algorithms

e In general, we have following components:

3/65



Optimization algorithms

e In general, we have following components:

e Maximize or Minimize a function subject to some constraints

3/65



Optimization algorithms

e In general, we have following components:
e Maximize or Minimize a function subject to some constraints

e Today, we will focus on unconstrained optimization (no

constraints)

3/65



Optimization algorithms

In general, we have following components:
e Maximize or Minimize a function subject to some constraints

Today, we will focus on unconstrained optimization (no

constraints)

We will focus on minimization

3/65



Optimization algorithms

In general, we have following components:
e Maximize or Minimize a function subject to some constraints

Today, we will focus on unconstrained optimization (no

constraints)

We will focus on minimization

e Goal:

0" = arg minf(0) (2)
6

3/65



Introduction

e Gradient descent is an optimization algorithm

4/65



Introduction

e Gradient descent is an optimization algorithm

e It is used to find the minimum of a function in unconstrained
settings

4/65



Introduction

e Gradient descent is an optimization algorithm

e It is used to find the minimum of a function in unconstrained
settings

e |t is an iterative algorithm

4/65



Introduction

Gradient descent is an optimization algorithm

It is used to find the minimum of a function in unconstrained

settings

It is an iterative algorithm

e It is a first order optimization algorithm

4/65



Introduction

Gradient descent is an optimization algorithm

It is used to find the minimum of a function in unconstrained

settings

It is an iterative algorithm

e It is a first order optimization algorithm

It is a local search algorithm/greedy

4/65



Gradient Descent Algorithm

1. Initialize @ to some random value

5/65



Gradient Descent Algorithm

1. Initialize @ to some random value

2. Compute the gradient of the cost function at 8, Vf(0)

5/65



Gradient Descent Algorithm

1. Initialize @ to some random value

2. Compute the gradient of the cost function at 8, Vf(0)

3. For lteration i (i = 1,2,...) or until convergence:

5/65



Gradient Descent Algorithm

1. Initialize @ to some random value

2. Compute the gradient of the cost function at 8, Vf(0)

3. For lteration i (i = 1,2,...) or until convergence:
° 9,‘ — 0;_1 — an(O;_l)

5/65



Taylor’s Series



Taylor’s Series

e Taylor's series is a way to approximate a function f(x) around
a point xg using a polynomial

6/65



Taylor’s Series

e Taylor's series is a way to approximate a function f(x) around
a point xg using a polynomial

e The polynomial is given by

09 = 10) + 0 i) 4 0Dy 9

6/65



Taylor’s Series

e Taylor's series is a way to approximate a function f(x) around

a point xg using a polynomial
e The polynomial is given by

f'(xo)

' (x
1 (X— (0)

2!

f(x) = f(xo) + x0) +

e The vector form of the above equation is given by:

(x —x0)% +...

(3)

f(x) = f(x0)+V£(xo) T(x—xo)Jr%(x—xo)Tvzf(xo)(x—xo)+. ..

(4)

6/65



Taylor’s Series

Taylor's series is a way to approximate a function f(x) around

a point xg using a polynomial

e The polynomial is given by
f‘/ X 1 X
f(x)=f(x)+ (1|0) (x —x0) + élo)(x—xo)2+ (3)

The vector form of the above equation is given by:

f(x)= f(x0)+Vf(xo)T(x—xo)Jr%(x—xo)Tvzf(xo)(x—xo)+. .

(4)
where V2f(xg) is the Hessian matrix and Vf(xo) is the
gradient vector

6/65



Taylor’s Series

e Let us consider f(x) = cos(x) and xp =0

7/65



Taylor’s Series

e Let us consider f(x) = cos(x) and xp =0

e Then, we have:

7/65



Taylor’s Series

e Let us consider f(x) = cos(x) and xp =0
e Then, we have:
o f(x0) =cos(0) =1

7/65



Taylor’s Series

Let us consider f(x) = cos(x) and xop = 0
e Then, we have:

f(xo) = cos(0) =1

f'(xo) = —sin(0) =0

7/65



Taylor’s Series

Let us consider f(x) = cos(x) and xop = 0
e Then, we have:

f(xo) = cos(0) =1

f'(xo) = —sin(0) =0

f"(xp) = —cos(0) = —1

7/65



Taylor’s Series

Let us consider f(x) = cos(x) and xop = 0
e Then, we have:

f(xo) = cos(0) =1

f'(xo) = —sin(0) =0

f"(xp) = —cos(0) = —1

e We can write the second order Taylor's series as:

7/65



Taylor’s Series

Let us consider f(x) = cos(x) and xop = 0

e Then, we have:

f(xo) = cos(0) =1

f'(xo) = —sin(0) =0

f"(xp) = —cos(0) = —1

e We can write the second order Taylor's series as:

f(x) =1+0(x—0) + F(x — 02 =1-%

7/65



Taylor’s series

e Let us consider another example: f(x) = x?+2 and xp = 2

8/65



Taylor’s series

e Let us consider another example: f(x) = x?+2 and xp = 2

e Question: How does the first order Taylor's series
approximation look like?

8/65



Taylor’s series

e Let us consider another example: f(x) = x?+2 and xp = 2

e Question: How does the first order Taylor's series
approximation look like?

e First order Taylor's series approximation is given by:

8/65



Taylor’s series

e Let us consider another example: f(x) = x?+2 and xp = 2

Question: How does the first order Taylor's series
approximation look like?

First order Taylor's series approximation is given by:
F(x) = F(x0) + F'(x0)(x — x0) = 6+ 4(x — 2) = 4x — 2

8/65



Taylor’s Series (Alternative form)

e We have:

F(x) = F(x0) + /(1)!‘0) (x = x0) + ’mé!x") (x— xR +... (5

9/65



Taylor’s Series (Alternative form)

e We have:

F(x) = F(x0) + /(1)!‘0) (x = x0) + ’mé!x‘)) (x— xR +... (5

e Let us consider x = xg + Ax where Ax is a small quantity

9/65



Taylor’s Series (Alternative form)

e We have:

F(x) = F(x0) + /(1)!‘0) (x = x0) + ’mé!x") (x— xR +... (5

e Let us consider x = xg + Ax where Ax is a small quantity

e Then, we have:

O py 0 a2 ()

f(Xo + AX) = f(Xo) + 1 ol

9/65



Taylor’s Series (Alternative form)

e We have:
F(x) = f(xo) + f/(lxl‘)) (x — x0) + ’mélx")(x —x)?+... (5)
e Let us consider x = xg + Ax where Ax is a small quantity
e Then, we have:
f(xo + Ax) = f(x0) + f/(l)f’)Ax + f”gO)A% +... (6)

Let us assume Ax is small enough such that Ax? and higher
order terms can be ignored

9/65



Taylor’s Series (Alternative form)

e We have:
F(x) = f(xo) + f/(lxl‘)) (x — x0) + ’mélx")(x —x)?+... (5)
e Let us consider x = xg + Ax where Ax is a small quantity
e Then, we have:
f(xo + Ax) = f(x0) + f/(l)f’)Ax + f”gO)A% +... (6)

Let us assume Ax is small enough such that Ax? and higher

order terms can be ignored

e Then, we have: f(xg + Ax) ~ f(xg) + @Ax

9/65



Taylor’s Series to Gradient Descent

e Then, we have: f(xp + Ax) =~ f(x0) + f/(l)!(O)AX

10/65



Taylor’s Series to Gradient Descent

Ax
e Or, in vector form: f(xg + Ax) = f(xo) + VF(xg) " Ax

e Then, we have: f(xp + Ax) =~ f(x0) + f’(1>!<o)

10/65



Taylor’s Series to Gradient Descent

Ax
e Or, in vector form: f(xg + Ax) = f(xo) + VF(xg) " Ax

e Then, we have: f(xp + Ax) =~ f(x0) + f’(1>!<o)

e Goal: Find Ax such that f(xo + Ax) is minimized

10/65



Taylor’s Series to Gradient Descent

Then, we have: f(xp + Ax) =~ f(xp) + f/(l)!(o)AX

e Or, in vector form: f(xg + Ax) = f(xo) + VF(xg) " Ax

Goal: Find Ax such that f(xo + Ax) is minimized

This is equivalent to minimizing f(xq) + V£ (xg) T Ax

10/65



Taylor’s Series to Gradient Descent

Ax
e Or, in vector form: f(xg + Ax) = f(xo) + VF(xg) " Ax

Then, we have: f(xp + Ax) =~ f(xp) + f/(l)!(o)

Goal: Find Ax such that f(xo + Ax) is minimized
This is equivalent to minimizing f(xq) + V£ (xg) T Ax

This happens when vectors Vf(xo) and Ax are at phase angle
of 180°

10/65



Taylor’s Series to Gradient Descent

' (x

e Then, we have: f(xp + Ax) =~ f(x0) + 1!0)AX

e Or, in vector form: f(xg + Ax) = f(xo) + VF(xg) " Ax

e Goal: Find Ax such that f(xo + Ax) is minimized
e This is equivalent to minimizing f(xg) + V(xo) T Ax

e This happens when vectors Vf(xo) and Ax are at phase angle
of 180°

e This happens when Ax = —aVf(xq) where « is a scalar

10/65



Taylor’s Series to Gradient Descent

' (x

e Then, we have: f(xp + Ax) =~ f(x0) + 1!0)AX

e Or, in vector form: f(xg + Ax) = f(xo) + VF(xg) " Ax

e Goal: Find Ax such that f(xo + Ax) is minimized
e This is equivalent to minimizing f(xg) + V(xo) T Ax

e This happens when vectors Vf(xo) and Ax are at phase angle
of 180°

e This happens when Ax = —aVf(xq) where « is a scalar

e This is the gradient descent algorithm: x; = xg — aVf(xg)

10/65



Effect of learning rate

Low learning rate o = 0.01 : Converges slowly

8 —
= f(z)=2%+2
p @® =200
order 1 appx. at © = z¢
® =19
44 order 1 appx. at © = 13
® »=19
91 order 1 appx. at © = xo
Q® =18
order 1 appx. at z = x3
0

11/65



Effect of learning rate

High learning rate o = 0.8: Converges quickly, but might overshoot

8 7
\ /= fa)=a?+2
s NN ’/ ® 0-200
\ order 1 appx. at z = x
\ / ® z:=-120
44 \ // order 1 appx. at = 1
.\ 27 ® =07
9 ‘\._ - ’. order 1 appx. at © = xo
= ® =043
) g order 1 appx. at z = x3
0 T T T T T

12/65



Effect of learning rate

Very high learning rate a = 1.01: Diverges

8 -
= f()=a?+2
@® =200
61 order 1 appx. at © = z¢
© 1z =-204
44 N\ y) order 1 appx. at = 1
\\ Vs ® =208
94 \i_’, / order 1 appx. at © = xo
Q® =212
order 1 appx. at z = x3
O T T T T T
-2 -1 0 1 2

13/65



Effect of learning rate

Appropriate learning rate a = 0.1

8y S == f(x)=22+2

\ /' @ =20
\ / order 1 appx. at x = g

1\ ® =160
\ order 1 appx. at © = 11

4 \ ® =128
\\ order 1 appx. at © = xo

9 ~ —~ o . Tr3 = 1.02
order 1 appx. at © = x3

® .=08
0 12 Il (l) i é order 1 appx. at . = x4

14 /65



Gradient Descent for linear
regression



Some commonly confused terms

e Loss function is usually a function defined on a data point,
prediction and label, and measures the penalty.

15 /65



Some commonly confused terms

e Loss function is usually a function defined on a data point,
prediction and label, and measures the penalty.

e square loss /(£ (x;;0),yi) = (f (xi;0) — y;)?, used in linear
regression

15 /65



Some commonly confused terms

e Loss function is usually a function defined on a data point,
prediction and label, and measures the penalty.

e square loss /(£ (x;;0),yi) = (f (xi;0) — y;)?, used in linear
regression

e Cost function is usually more general. It might be a sum of

loss functions over your training set plus some model
complexity penalty (regularization). For example:

15 /65



Some commonly confused terms

Loss function is usually a function defined on a data point,
prediction and label, and measures the penalty.

square loss | (f (xi;0),y;) = (f (xi; 8) — yi)*, used in linear

regression

Cost function is usually more general. It might be a sum of
loss functions over your training set plus some model

complexity penalty (regularization). For example:

Mean Squared Error MSE(8) = £ S ( (x;;0) — yi)?

n

15 /65



Some commonly confused terms

e Loss function is usually a function defined on a data point,
prediction and label, and measures the penalty.

e square loss /(£ (x;;0),yi) = (f (xi;0) — y;)?, used in linear
regression

e Cost function is usually more general. It might be a sum of
loss functions over your training set plus some model
complexity penalty (regularization). For example:

e Mean Squared Error MSE(8) = 1 3" | (£ (x;; 0) — vi)?
e Objective function is the most general term for any function

that you optimize during training.

15 /65



Gradient Descent : Example

Learn y = 0y + 01x on following dataset, using gradient descent
where initially (6o, 601) = (4,0) and step-size, o = 0.1, for 2
iterations.

W[N] X
W|N |+

16 / 65



Gradient Descent : Example

Our predictor, y = 09 + 01x

Error for ith datapoint, €; = y; — yi
e1=1—06y— 01

€2 =2 — 06y — 20

€3 =3 —6y— 301

43 +e  14+4302+1402—120,—28601+12000;
MSE = 3 = 3

17 /65



Difference between SSE and MSE

E €? increases as the number of examples increase

So, we use MSE

MSE:%ZE,Z

Here n denotes the number of samples

18 /65



Gradient Descent : Example

OMSE _ 237 1 (yi—0o—61x)(—1) _ 2> €i(—1)
00y n - n

OMSE _ 227 1 (¥i—00—01x;)(—xi) _ 237 4 €i(—x;)
00, n - n

19/65



Gradient Descent : Example

Iteration 1
_ o OMSE
00 = 90 « D60
_ o OMSE
01 = 91 [0 90,

20/65



Gradient Descent : Example

Iteration 1

— _ ~OMSE
90 = 90 « 960

o — 4 — 0.2 (1= DHC-(E+0) (1) +(3-(+0)(-1)

0o = 3.6

— OMSE
91 = 91 — 90,

20/65



Gradient Descent : Example

Iteration 1

_ OMSE
0o =6y — 56

0o = 4 — 0.2((1*(4+0))(*1)+(2*(4+30))(*1)+(3*(4+0))(*1))

0o = 3.6

_ OMSE
01 =01 —« 96,

0; =0 — 0.2((1—(4+0))(—1)+(2—(4+30))(—2)+(3—(4+0))(—3))

0, = —0.67

20/65



Gradient Descent :

Iteration 2

90 — 90 _ aaMSE

OMSE
01 =01 — a%2= 96,

Example

21/65



Gradient Descent : Example

Iteration 2

_ OMSE
Op =6y — 56,

Oy =
1—(3.6—0.67))(—1)+(2—(3.6—0.67x2))(—1)+(3—(3.6—0.67x3))(—1
36— 0.0 DED+H2-(36-067x2) -1+ (3= x3))(~1))

0o = 3.54

_ OMSE
01 =01 —« 26,

21/65



Gradient Descent

Iteration 2

_ OMSE
0p =6y — 56,

0o =

: Example

1-(3.6—0.67))(—1)+(2—(3.6—0.67x2))(—1)+(3—(3.6—0.67x3))(—1
36— 0.0 DD+H2-(36-067x2) -1+ x3))(~1)

0o = 3.54

_ OMSE
01 =01 —« 6.

Oy =

1—(3.6-0.67))(=1)+(2—(3.6—0.67x2))(—2)+(3—(3.6-0.67x3))(~3
3.6 — 0.2(=( NED+R=( A N(=2)+B=( x3))(=3))

0o = —0.55

21/65



Gradient Descent : Example (lteraion 0)

Contour Plot

400

300

200

—— Line fit
——— Actual line

22/65



Gradient Descent : Example (lteraion 2)

Contour Plot

400

300

200

—— Line fit
——— Actual line

23/65



Gradient Descent : Example (lteraion 4)

Contour Plot

400
4 —— Line fit
6 -
300 ——— Actual line
2 200
4 -
100
= 0
50
2 -
-2 25
4 10 0
0 T T T T
—4 -2 0 2 4

X

24 /65



Gradient Descent : Example (lteraion 6)

Contour Plot

400
4 —— Line fit
6 -
300 ——— Actual line
2 200
4 -
100
= 0
50
2 -
-2 25
4 10 0
0 T T T T
—4 -2 0 2 4

X

2565



Gradient Descent : Example (lteraion 8)

Contour Plot

400
4 —— Line fit
6 -
300 ——— Actual line
2 200
4 -
100
= 0
50
2 -
-2 25
4 10 0
0 T T T T
—4 -2 0 2 4

X

26 /65



Gradient Descent : Example (lteraion 10)

Contour Plot

400
4 —— Line fit
6 -
300 ——— Actual line
2 200
4 -
100
= 0
50
2 -
-2 25
4 10 0
0 T T T T
—4 -2 0 2 4

X

27/65



Gradient Descent : Example (lteraion 12)

Contour Plot

400

300

200

—— Line fit
——— Actual line

2865



Gradient Descent : Example (lteraion 14)

Contour Plot

400
4 —— Line fit
6 -
300 ——— Actual line
2 200
4 -
100
= 0
50
2 -
-2 25
4 10 0
0 T T T T
—4 -2 0 2 4

X

29/65



Gradient Descent : Example (lteraion 16)

Contour Plot

400
4 —— Line fit
6 -
300 ——— Actual line
2 200
4 -
100
= 0
50
2 -
-2 25
4 10 0
0 T T T T
—4 -2 0 2 4

X

30/65



Gradient Descent : Example (lteraion 18)

Contour Plot

400
4 —— Line fit
6 -
300 ——— Actual line
2 200
4 -
100
= 0
50
2 -
-2 25
4 10 0
0 T T T T
—4 -2 0 2 4

X

31/65



Gradient Descent : Example (lteraion 20)

Contour Plot

400

300

200

—— Line fit
——— Actual line

32/65



Gradient Descent : Example (lteraion 22)

Contour Plot

400
4 —— Line fit
6 -
300 ——— Actual line
2 200
4 -
100
= 0
50
2 -
-2 25
4 10 0
0 T T T T
—4 -2 0 2 4

X

33/65



Gradient Descent : Example (lteraion 24)

Contour Plot

400
4 —— Line fit
6 -
300 ——— Actual line
2 200
4 -
100
= 0
50
2 -
-2 25
4 10 0
0 T T T T
—4 -2 0 2 4

X

34/65



Gradient Descent : Example (lteraion 26)

Contour Plot

400
4 —— Line fit
6 -
300 ——— Actual line
2 200
4 -
100
= 0
50
2 -
-2 25
4 10 0
0 T T T T
—4 -2 0 2 4

X

35/65



Gradient Descent : Example (lteraion 28)

Contour Plot

400
4 —— Line fit
6 -
300 ——— Actual line
2 200
4 -
100
= 0
50
2 -
-2 25
4 10 0
0 T T T T
—4 -2 0 2 4

X

36/65



Gradient Descent : Example (lteraion 30)

Contour Plot

400

300

200

—— Line fit
——— Actual line

37/65



Gradient Descent : Example (lteraion 32)

Contour Plot

400
4 —— Line fit
6 -
300 ——— Actual line
2 200
4 -
100
= 0
50
2 -
-2 25
4 10 0
0 T T T T
—4 -2 0 2 4

X

38/65



Gradient Descent : Example (lteraion 34)

Contour Plot

400

300

200

—— Line fit
——— Actual line

39/65



Gradient Descent : Example (Iteraion 36)

Contour Plot

400

300

200

—— Line fit
——— Actual line

40/ 65



Gradient Descent : Example (Iteraion 38)

Contour Plot

400
4 —— Line fit
6
300 ——— Actual line
9 200
4 -
100
= 0
50
2 -
-2 25
1 4
4 O o
0 T T T T
—4 -2 0 2 4

X

41/65



Gradient Descent : Example (lteraion 40)

Contour Plot

400
4 —— Line fit
6 -
300 ——— Actual line
2 200
4 -
100
= 0
50
2 -
-2 25
4 10 0
0 T T T T
—4 -2 0 2 4

X

42/65



Iteration vs Epochs for gradient descent

e |teration: Each time you update the parameters of the model

43/65



Iteration vs Epochs for gradient descent

e |teration: Each time you update the parameters of the model

e Epoch: Each time you have seen all the set of examples

43/65



Gradient Descent (GD)

e Dataset: D = {(X,y)} of size n

44 /65



Gradient Descent (GD)

e Dataset: D = {(X,y)} of size n

e Initialize O

44 /65



Gradient Descent (GD)

e Dataset: D = {(X,y)} of size n
e Initialize 0

e For epoch e in [1, E]

44 /65



Gradient Descent (GD)

e Dataset: D = {(X,y)} of size n
e Initialize 0
e For epoch e in [1, E]

e Predict y = pred(X, 6)

44 /65



Gradient Descent (GD)

e Dataset: D = {(X,y)} of size n
e Initialize 0
e For epoch e in [1, E]

e Predict y = pred(X, 6)
e Compute loss: J(0) = loss(y, ¥)

44 /65



Gradient Descent (GD)

e Dataset: D = {(X,y)} of size n
e Initialize 0
e For epoch e in [1, E]

e Predict y = pred(X, 6)

e Compute loss: J(8) = loss(y, ¥)
e Compute gradient: VJ(0) = grad(J)(0)

44 /65



Gradient Descent (GD)

e Dataset: D = {(X,y)} of size n

e Initialize 0

e For epoch e in [1, E]

Predict y = pred(X, 6)

Compute loss: J(6) = loss(y, ¥)
Compute gradient: VJ(0) = grad(J)(0)
Update: 8 = 6 — aVJ(0)

44 /65



Stochastic Gradient Descent (SGD)

e Dataset: D = {(X,y)} of size n

45 /65



Stochastic Gradient Descent (SGD)

e Dataset: D = {(X,y)} of size n

e Initialize O

45 /65



Stochastic Gradient Descent (SGD)

e Dataset: D = {(X,y)} of size n
e Initialize 0

e For epoch e in [1, E]

45 /65



Stochastic Gradient Descent (SGD)

e Dataset: D = {(X,y)} of size n
e Initialize 0
e For epoch e in [1, E]

e Shuffle D

45 /65



Stochastic Gradient Descent (SGD)

e Dataset: D = {(X,y)} of size n
e Initialize 0
e For epoch e in [1, E]

e Shuffle D
e Foriin [1,n]

45 /65



Stochastic Gradient Descent (SGD)

e Dataset: D = {(X,y)} of size n
e Initialize 0
e For epoch e in [1, E]
e Shuffle D
e Foriin [1,n]
e Predict §; = pred(x;, 6)

45 /65



Stochastic Gradient Descent (SGD)

e Dataset: D = {(X,y)} of size n
e Initialize 0
e For epoch e in [1, E]
e Shuffle D
e Foriin [1,n]
e Predict §; = pred(x;, 6)
e Compute loss: J(8) = loss(yi, §i)

45 /65



Stochastic Gradient Descent (SGD)

e Dataset: D = {(X,y)} of size n
e Initialize 0
e For epoch e in [1, E]
e Shuffle D
e Foriin [1,n]
e Predict §; = pred(x;, 6)

e Compute loss: J(0) = loss(yi, i)
e Compute gradient: VJ(0) = grad(J)(0)

45 /65



Stochastic Gradient Descent (SGD)

e Dataset: D = {(X,y)} of size n

o Initialize 0
e For epoch e in [1, E]
e Shuffle D
e Foriin [1,n]
e Predict §; = pred(x;, 6)
e Compute loss: J(0) = loss(yi, i)
e Compute gradient: VJ(0) = grad(J)(0)
e Update: 0 =0 — aVJ(0)

45 /65



Mini-Batch Gradient Descent (MBGD)

e Dataset: D = {(X,y)} of size n

46 /65



Mini-Batch Gradient Descent (MBGD)

e Dataset: D = {(X,y)} of size n

e Initialize O

46 /65



Mini-Batch Gradient Descent (MBGD)

e Dataset: D = {(X,y)} of size n

e Initialize O

e For epoch e in [1, E]

46 /65



Mini-Batch Gradient Descent (MBGD)

e Dataset: D = {(X,y)} of size n

o Initialize 6
e For epoch e in [1, E]
e Shuffle D

46 /65



Mini-Batch Gradient Descent (MBGD)

e Dataset: D = {(X,y)} of size n
o Initialize 6
e For epoch e in [1, E]

e Shuffle D
e Batches = make_batches(D, B)

46 /65



Mini-Batch Gradient Descent (MBGD)

e Dataset: D = {(X,y)} of size n

o Initialize 6
e For epoch e in [1, E]
e Shuffle D

e Batches = make_batches(D, B)
e For b in Batches

46 /65



Mini-Batch Gradient Descent (MBGD)

e Dataset: D = {(X,y)} of size n

o Initialize 6
e For epoch e in [1, E]
e Shuffle D

e Batches = make_batches(D, B)
e For b in Batches

o Xp,yp=b

46 /65



Mini-Batch Gradient Descent (MBGD)

e Dataset: D = {(X,y)} of size n

o Initialize 6
e For epoch e in [1, E]
e Shuffle D

e Batches = make_batches(D, B)
e For b in Batches

® Xp,yp=b
e Predict §, = pred(X», 0)

46 /65



Mini-Batch Gradient Descent (MBGD)

e Dataset: D = {(X,y)} of size n

o Initialize 6
e For epoch e in [1, E]
e Shuffle D

e Batches = make_batches(D, B)
e For b in Batches

® Xp,yp=b
e Predict §, = pred(X», 0)
e Compute loss: J(8) = loss(ys, ¥s)

46 /65



Mini-Batch Gradient Descent (MBGD)

e Dataset: D = {(X,y)} of size n
e Initialize 0
e For epoch e in [1, E]
e Shuffle D
e Batches = make_batches(D, B)
e For b in Batches
Xb,yp = b
Predict §, = pred(Xs, 6)
Compute loss: J(8) = loss(ys, ¥s)
Compute gradient: VJ(0) = grad(J)(0)

46 /65



Mini-Batch Gradient Descent (MBGD)

e Dataset: D = {(X,y)} of size n
e Initialize 0
e For epoch e in [1, E]

e Shuffle D

e Batches = make_batches(D, B)

e For b in Batches
Xp,¥p = b
Predict §, = pred(Xs, 6)
Compute loss: J(8) = loss(ys, ¥s)
Compute gradient: VJ(0) = grad(J)(0)
Update: 8 = 0 — aVJ(0)

46 /65



Gradient Descent vs SGD

Vanilla Gradient Descent

e in Vanilla (Batch) gradient descent: We update params after
going through all the data

47/65



Gradient Descent vs SGD

Vanilla Gradient Descent

e in Vanilla (Batch) gradient descent: We update params after
going through all the data

e Smooth curve for Iteration vs Cost

47/65



Gradient Descent vs SGD

Vanilla Gradient Descent

e in Vanilla (Batch) gradient descent: We update params after
going through all the data

e Smooth curve for Iteration vs Cost

e For a single update, it needs to compute the gradient over all
the samples. Hence takes more time

47/65



Gradient Descent vs SGD

Vanilla Gradient Descent

e in Vanilla (Batch) gradient descent: We update params after
going through all the data

e Smooth curve for Iteration vs Cost

e For a single update, it needs to compute the gradient over all
the samples. Hence takes more time

47/65



Gradient Descent vs SGD

Vanilla Gradient Descent

e in Vanilla (Batch) gradient descent: We update params after
going through all the data

e Smooth curve for Iteration vs Cost

e For a single update, it needs to compute the gradient over all
the samples. Hence takes more time

Stochastic Gradient Descent

e In SGD, we update parameters after seeing each each point

47/65



Gradient Descent vs SGD

Vanilla Gradient Descent

e in Vanilla (Batch) gradient descent: We update params after
going through all the data

e Smooth curve for Iteration vs Cost

e For a single update, it needs to compute the gradient over all
the samples. Hence takes more time

Stochastic Gradient Descent

e In SGD, we update parameters after seeing each each point

e Noisier curve for iteration vs cost

47/65



Gradient Descent vs SGD

Vanilla Gradient Descent
e in Vanilla (Batch) gradient descent: We update params after
going through all the data
e Smooth curve for Iteration vs Cost
e For a single update, it needs to compute the gradient over all

the samples. Hence takes more time

Stochastic Gradient Descent

e In SGD, we update parameters after seeing each each point

e Noisier curve for iteration vs cost

e For a single update, it computes the gradient over one
example. Hence lesser time

47/65



Stochastic Gradient Descent : Example

Learn y = Ay 4 61x on following dataset, using SGD where initially
(6o, 01) = (4,0) and step-size, a = 0.1, for 1 epoch (3 iterations).

=W |IN| X
= WiIN (<<

4865



Stochastic Gradient Descent : Example

Our predictor, y = 0g + 01x

Error for ith datapoint, e; = y; — y;
€1 =2—0y— 260,

€2 =3—0y— 36,

eg3=1—0y— 641

While using SGD, we compute the MSE using only 1 datapoint per
iteration.
So MSE is €2 for iteration 1 and €3 for iteration 2.

49 /65



Stochastic Gradient Descent : Example

Contour plot of the cost functions for the three datapoints

Contour Plot Contour Plot Contour Plot
T 300 M m 135
[ 500 t 120
F 240 r 105
r 400
r 90
r 180
. F300 75
r 60
120
- 200 L 45
60 - 100 B
15
-0 -0 -0
x x x

50 /65



Stochastic Gradient Descent : Example

For Iteration /

E = 2001t ) (1) = 26(1)

51/65



Stochastic Gradient Descent : Example

Iteration 1
_ o OMSE
00 = 90 « 906
_ o OMSE
01 = 91 [0 90,

5265



Stochastic Gradient Descent : Example

Iteration 1

_ OMSE
O0p =6y — 56,

fp=4—01x2x(2—(4+0))(-1)

0o = 3.6

_ . OMSE
01 =01 —« 56,

5265



Stochastic Gradient Descent : Example

Iteration 1

_ OMSE
O0p =6y — 560

fp=4—01x2x(2—(4+0))(-1)
0o = 3.6

_ IOMSE
01 =01 —« 6.

1 =0—0.1x2x(2—(4+0))(-2)

01 =—-0.8

5265



Stochastic Gradient Descent : Example

Iteration 2
_ o OMSE
00 = 90 « 906
_ o OMSE
01 = 91 [0 90,

53 /65



Stochastic Gradient Descent : Example

Iteration 2

_ OMSE
O0p =6y — 56,

fo=3.6—0.1 x2x (3—(3.6— 0.8 x 3))(—1)

0o = 3.96

_ . OMSE
01 =01 —« 56,

53 /65



Stochastic Gradient Descent : Example

Iteration 2

_ OMSE
O0p =6y — 560

fo=3.6—0.1 x2x (3—(3.6— 0.8 x 3))(—1)
0o = 3.96

_ OMSE
01 =01 —« 6.

0p=—-08-0.1x2x(3—(3.6-0.8x3))(-3)

0; =0.28

53 /65



Stochastic Gradient Descent : Example

Iteration 3
_ o OMSE
00 = 90 « 906
_ o OMSE
01 = 91 [0 90,

54 /65



Stochastic Gradient Descent : Example

Iteration 3

_ OMSE
O0p =6y — 56,

fo =3.96 — 0.1 x 2 x (1 — (3.96 +0.28 x 1)) (—1)

0o = 3.312

_ . OMSE
01 =01 —« 56,

54 /65



Stochastic Gradient Descent : Example

Iteration 3

_ OMSE
O0p =6y — 560

fo =3.96 — 0.1 x 2 x (1 — (3.96 +0.28 x 1)) (—1)
fp = 3.312

_ IOMSE
01 =01 —« 6.

fo=0.28 — 0.1 x 2 x (1 — (3.96 + 0.28 x 1)) (—1)

01 = —0.368

54 /65



Stochastic gradient is an unbiased
estimator of the true gradient




True Gradient

Based on Estimation Theory and Machine Learning by Florian
Hartmann

e Let us say we have a dataset D containing input output pairs
{(X17y1)7 (X27.y2)7 ey (XNayN)}

55 /65



True Gradient

Based on Estimation Theory and Machine Learning by Florian
Hartmann

e Let us say we have a dataset D containing input output pairs
{(X17y1)7 (X27.y2)7 ey (XNayN)}

o We can define overall loss as:

1 N
L(9) = D loss(f(xi,0). )
i=1

55 /65



True Gradient

Based on Estimation Theory and Machine Learning by Florian

Hartmann

e Let us say we have a dataset D containing input output pairs

{(X17y1)7 (X27y2)7 SRR (XNa}/N)}

o We can define overall loss as:
1 N
L(9) = N z; loss(f(x;,0), yi)

e |oss can be any loss function such as squared loss,
cross-entropy loss etc.

loss(f(x;,0),y;) = (f(x;,0) — yi)?

55 /65



True Gradient

e The true gradient of the loss function is given by:

1 n
VL=V ; loss ( (xi) , yi)

1 n
== ZV loss (f (xi) , yi)
i=1

56 /65



True Gradient

e The true gradient of the loss function is given by:

1 n
VL=V ; loss ( (xi) , yi)

1 n
== ZV loss (f (xi) , yi)
i=1

e The above is a consequence of linearity of the gradient
operator.

56 /65



Estimator for the true gradient

e |n practice, we do not have access to the true gradient

57 /65



Estimator for the true gradient

e |n practice, we do not have access to the true gradient

e We can only estimate the true gradient using a subset of the
data

57 /65



Estimator for the true gradient

e |n practice, we do not have access to the true gradient
e We can only estimate the true gradient using a subset of the
data

e For SGD, we use a single example to estimate the true
gradient, for mini-batch gradient descent, we use a mini-batch

of examples to estimate the true gradient

57 /65



Estimator for the true gradient

In practice, we do not have access to the true gradient

We can only estimate the true gradient using a subset of the
data

For SGD, we use a single example to estimate the true

gradient, for mini-batch gradient descent, we use a mini-batch

of examples to estimate the true gradient

Let us say we have a sample: (x, y)

57 /65



Estimator for the true gradient

e |n practice, we do not have access to the true gradient

e We can only estimate the true gradient using a subset of the
data

e For SGD, we use a single example to estimate the true
gradient, for mini-batch gradient descent, we use a mini-batch

of examples to estimate the true gradient
e Let us say we have a sample: (x, y)

e The estimated gradient is given by:

VLI = Vloss(f(x),y)

57 /65



Bias of the estimator

e One measure for the quality of an estimator X is its bias or
how far off its estimate is on average from the true value X :

bias(X) = E[X] — X

58 /65



Bias of the estimator

e One measure for the quality of an estimator X is its bias or
how far off its estimate is on average from the true value X :

bias(X) = E[X] — X

e Using the rules of expectation, we can show that the expected
value of the estimated gradient is the true gradient:

E[VI] = Z %V loss (f (x;), vi)
i=1

58 /65



Bias of the estimator

e One measure for the quality of an estimator X is its bias or
how far off its estimate is on average from the true value X :

bias(X) = E[X] — X

e Using the rules of expectation, we can show that the expected
value of the estimated gradient is the true gradient:

E[VI] = Z %V loss (f (x;), vi)
i=1

=VL
e Thus, the estimated gradient is an unbiased estimator of the

true gradient
58 /65



Time Complexity: Gradient Descent
vs Normal Equation for Linear
Regression




Normal Equation

e Consider X € R"*d

59 /65



Normal Equation

e Consider X € R"*d

e n examples and d dimensions

59 /65



Normal Equation

e Consider X € R"*d
e n examples and d dimensions

e What is the time complexity of solving the normal equation
6= (XTX)"1XTy?

59 /65



Normal Equation

e X has dimensions n x d, XT has dimensions d x n

60 /65



Normal Equation

e X has dimensions n x d, XT has dimensions d x n

e XX is a matrix product of matrices of size: d x nand nx d,
which is O(d?n)

60 /65



Normal Equation

e X has dimensions n x d, XT has dimensions d x n

e XX is a matrix product of matrices of size: d x nand nx d,
which is O(d?n)

e Inversion of X7 X is an inversion of a d X d matrix, which is
(’)(d3)

60 /65



Normal Equation

X has dimensions n x d, XT has dimensions d x n

XTX is a matrix product of matrices of size: d x n and n x d,
which is O(d?n)

Inversion of X7 X is an inversion of a d x d matrix, which is
O(d?)

XTy is a matrix vector product of size d x n and n x 1, which
is O(dn)

60 /65



Normal Equation

X has dimensions n x d, XT has dimensions d x n

e XX is a matrix product of matrices of size: d x nand nx d,
which is O(d?n)

e Inversion of X7 X is an inversion of a d X d matrix, which is
O(d?)

e X'y is a matrix vector product of size d x n and n x 1, which
is O(dn)

e (XTX) !XTy is a matrix product of a d x d matrix and
d x 1 matrix, which is O(d?)

60 /65



Normal Equation

X has dimensions n x d, XT has dimensions d x n

e XX is a matrix product of matrices of size: d x nand nx d,
which is O(d?n)

e Inversion of X7 X is an inversion of a d X d matrix, which is
O(d?)

e X'y is a matrix vector product of size d x n and n x 1, which
is O(dn)

e (XTX) !XTy is a matrix product of a d x d matrix and
d x 1 matrix, which is O(d?)

e Overall complexity: O(d?n) + O(d®) + O(dn) + O(d?) =
O(d?n) + O(d?)

60 /65



Normal Equation

X has dimensions n x d, XT has dimensions d x n

e XX is a matrix product of matrices of size: d x nand nx d,
which is O(d?n)

e Inversion of X7 X is an inversion of a d X d matrix, which is
O(d?)

e X'y is a matrix vector product of size d x n and n x 1, which
is O(dn)

e (XTX) !XTy is a matrix product of a d x d matrix and
d x 1 matrix, which is O(d?)

e Overall complexity: O(d?n) + O(d®) + O(dn) + O(d?) =
O(d?n) + O(d?)

e Scales cubic in the number of columns/features of X

60 /65



Gradient Descent

Start with random values of 6y and 6
Till convergence

o 0o ="ty — 06390(262)

61/65



Gradient Descent

Start with random values of 6y and 6
Till convergence

[ 90—90 0589 (26
e 01 =07 — 0‘89 O €

)
)

2
i
2
i

61/65



Gradient Descent

Start with random values of 6y and 6
Till convergence

L] 90—90 O‘da (262)
o 01 =01 — 0‘89 (262)

e Question: Can you write the above for d dimensional data in
vectorised form?

61/65



Gradient Descent

Start with random values of 6y and 6
Till convergence

° 90—90 ad@ (262)
o 01 =01 — 0‘89 (262)

e Question: Can you write the above for d dimensional data in
vectorised form?

o 0o =10p — azl (y—X6)' (y—X6)
91291—aai¢91(y—X9)T(y—X9)

00/—061—0489 (y — X0)" (y — X6)

61/65



Gradient Descent

Start with random values of 6y and 6
Till convergence

° 90—90 ad@ (262)
01 =01 — 0‘89 > €?)
Question: Can you write the above for d dimensional data in

vectorised form?
0o = 0o — oz (y — X6)' (y — X0)
01 = 01— a0 (y — X0) " (y — X0)

Od—Od—aag (y — X0)" (y — X6)
O:G—Q%(y—xe) (y — X0)

61/65



Gradient Descent

—X6)'(y — X6)
5 (yT —07TXT) (y — X60)
— 2 (y'y—6"XTy —y X6 +6"XX0)
= —2XTy +2XT"X6
—2XT(X0 — y)

I Yo
Q:%Q:Q

62 /65



Gradient Descent

We can write the vectorised update equation as follows, for each
iteration

0=6—aX"(X0—y)

63/65



Gradient Descent

We can write the vectorised update equation as follows, for each
iteration

0=6—aX"(X0—y)

For t iterations, what is the computational complexity of our
gradient descent solution?

63/65



Gradient Descent

We can write the vectorised update equation as follows, for each
iteration

0=6—aX"(X0—y)

For t iterations, what is the computational complexity of our
gradient descent solution?

Hint, rewrite the above as: 8 = 8 — aX ' X0 + aXTy

63/65



Gradient Descent

We can write the vectorised update equation as follows, for each
iteration

0=6—aX"(X0—y)

For t iterations, what is the computational complexity of our
gradient descent solution?

Hint, rewrite the above as: 8 = 8 — aX ' X0 + aXTy

Complexity of computing X"y is O(dn)

63/65



Gradient Descent

We can write the vectorised update equation as follows, for each
iteration

0=6—aX"(X0—y)

For t iterations, what is the computational complexity of our
gradient descent solution?

Hint, rewrite the above as: 8 = 8 — aX ' X0 + aXTy
Complexity of computing X"y is O(dn)

Complexity of computing aX Ty once we have Xy is O(d) since
X"y has d entries

63/65



Gradient Descent

We can write the vectorised update equation as follows, for each

iteration
0=6—aX"(X0—y)

For t iterations, what is the computational complexity of our

gradient descent solution?
Hint, rewrite the above as: 8 = 8 — aX ' X0 + aXTy
Complexity of computing X"y is O(dn)

Complexity of computing aX Ty once we have Xy is O(d) since
X"y has d entries

Complexity of computing X X is O(d?n) and then multiplying
with « is O(d?)

63/65



Gradient Descent

We can write the vectorised update equation as follows, for each
iteration

0=6—aX"(X0—y)

For t iterations, what is the computational complexity of our
gradient descent solution?

Hint, rewrite the above as: 8 = 8 — aX ' X0 + aXTy
Complexity of computing X"y is O(dn)

Complexity of computing aX Ty once we have Xy is O(d) since
X"y has d entries

Complexity of computing X X is O(d?n) and then multiplying
with « is O(d?)

All of the above need only be calculated once!
63/ 65



Gradient Descent

64 /65



Gradient Descent

For each of the t iterations, we now need to first multiply aX X
with @ which is matrix multiplication of a d X d matrix with a
d x 1, which is O(d?)

64 /65



Gradient Descent

For each of the t iterations, we now need to first multiply aX X
with @ which is matrix multiplication of a d X d matrix with a
d x 1, which is O(d?)

The remaining subtraction/addition can be done in O(d) for each
iteration.

64 /65



Gradient Descent

For each of the t iterations, we now need to first multiply aX X
with @ which is matrix multiplication of a d X d matrix with a
d x 1, which is O(d?)

The remaining subtraction/addition can be done in O(d) for each

iteration.

What is overall computational complexity?

64 /65



Gradient Descent

For each of the t iterations, we now need to first multiply aX X
with @ which is matrix multiplication of a d X d matrix with a
d x 1, which is O(d?)

The remaining subtraction/addition can be done in O(d) for each

iteration.
What is overall computational complexity?

O(td?) + O(d?n) = O((t + n)d?)

64 /65



Gradient Descent (Alternative)

65 /65



Gradient Descent (Alternative)

If we do not rewrite the expression = 8 — aX ' (X6 —y)

For each iteration, we have:

e Computing X0 is O(nd)

65 /65



Gradient Descent (Alternative)

If we do not rewrite the expression = 8 — aX ' (X6 —y)

For each iteration, we have:

e Computing X0 is O(nd)
e Computing X0 —y is O(n)

65 /65



Gradient Descent (Alternative)

If we do not rewrite the expression = 8 — aX ' (X6 —y)
For each iteration, we have:

e Computing X0 is O(nd)

e Computing X0 —y is O(n)

e Computing aX ' is O(nd)

65 /65



Gradient Descent (Alternative)

If we do not rewrite the expression = 8 — aX ' (X6 —y)
For each iteration, we have:

e Computing X0 is O(nd)

e Computing X0 —y is O(n)

e Computing aX " is O(nd)

e Computing aX " (X80 —y) is O(nd)

65 /65



Gradient Descent (Alternative)

If we do not rewrite the expression = 8 — aX ' (X6 —y)

For each iteration, we have:

e Computing X0 is O(nd)

e Computing X0 —y is O(n)

Computing aX' is O(nd)

Computing aX (X0 —y) is O(nd)
Computing 8 = 0 — aXT (X80 —y) is O(n)

65 /65



Gradient Descent (Alternative)

If we do not rewrite the expression = 8 — aX ' (X6 —y)

For each iteration, we have:

e Computing X0 is O(nd)

e Computing X0 —y is O(n)

Computing aX' is O(nd)

Computing aX (X0 —y) is O(nd)
Computing 8 = 0 — aXT (X80 —y) is O(n)

65 /65



Gradient Descent (Alternative)

If we do not rewrite the expression = 8 — aX ' (X6 —y)

For each iteration, we have:

e Computing X0 is O(nd)

e Computing X0 —y is O(n)

Computing aX' is O(nd)

Computing aX (X0 —y) is O(nd)
Computing 8 = 6 — aX T (X0 —y) is O(n)

What is overall computational complexity?

65 /65



Gradient Descent (Alternative)

If we do not rewrite the expression = 8 — aX ' (X6 —y)

For each iteration, we have:

e Computing X0 is O(nd)

e Computing X0 —y is O(n)

Computing aX' is O(nd)

Computing aX (X0 —y) is O(nd)
Computing 8 = 6 — aX T (X0 —y) is O(n)

What is overall computational complexity?

O(ndt)

65 /65



	Revision
	Introduction
	Taylor's Series
	Gradient Descent for linear regression
	Stochastic gradient is an unbiased estimator of the true gradient
	Time Complexity: Gradient Descent vs Normal Equation for Linear Regression

