
CONVEXITY OF CROSS ENTROPY LODS
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What can we say
about D :

Fach i = (0 , 1) ; 1-y eCo , 1]

many [1-y] = 0 . Sx05 = 0 . 25
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Hjk = xjding(joy)x =XjTDx

What can we say
about D :

Fach i = (0 , 1) ; 1-y eCo , 1]

many [1-y] = 0 . Sx05 = 0 . 25

Thus D is diagonal matrix where diagonal

entries are blu O and 0 . 25
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Iteratively Reweighted Last squares

1) First Order Update Rule
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Typically g : gradient
TJ(0)

H : Messian
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Iteratively Reweighted Last squares

It) Second Order Update Rule

OHH = (Dx)" Xp[X0 + - a (y -y)]
=(xDx)xTDzt ; It = XAt

- 5(y -y)

-
Contrast wh weighted linear regression =Vf(bt)
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