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What would be the decision boundary of a decision tree classifier?
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Decision Boundary for a tree with depth 1
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Decision Boundary for a tree with no depth limit
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Are deeper trees always better?

As we saw, deeper trees learn more complex decision boundaries.



Are deeper trees always better?

As we saw, deeper trees learn more complex decision boundaries.

But, sometimes this can lead to poor generalization



An example

Consider the dataset below
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Underfitting

Underfitting is also known as high bias, since it has a very biased
incorrect assumption.
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Overfitting is also known as high variance, since very small
changes in data can lead to very different models.
Decision tree learned has depth of 10.
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Intution for Variance

A small change in data can lead to very different models.

Dataset 1 Dataset 2
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Intution for Variance

les = 30
value = [16, 14]
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A Good Fit
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Accuracy vs Depth Curve
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Accuracy vs Depth Curve

,_
L

o
o

=Y
L

Accuracy

'S
L

| = Train
Test

o

0.0

As depth increases, train accuracy improves
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Accuracy vs Depth Curve
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Accuracy vs Depth Curve
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As depth increases, train accuracy improves
As depth increases, test accuracy improves till a point
At very high depths, test accuracy is not good (overfitting).
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Accuracy vs Depth Curve : Underfitting

The highlighted region is the underfitting region.
Model is too simple (less depth) to learn from the data.
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Accuracy vs Depth Curve : Overfitting

The highlighted region is the overfitting region.
Model is complex (high depth) and hence also learns the anomalies

in data.
1.0 1
0.8 - /
B
Q
£ 0.6 -
=
S —— Train
< 0.4 -
Test
0.2 - Underfitting
Overfitting
0.0 T T T T

2 4 6 8 13



Accuracy vs Depth Curve

The highlighted region is the good fit region.

We want to maximize test accuracy while being in this region.
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The big question!?

How to find the optimal depth for a decision tree?
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The big question!?

How to find the optimal depth for a decision tree?

Use cross-validation!

ii5)



Our General Training Flow
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Actual Labels
Training *

—»| Predicting

Error Metric
Calculation

Y

Predicted
Labels

Y

Accuracy

16



K-Fold cross-validation: Utilise full dataset for testing

FOLD 1 Train Test
FOLD 2 Train Test Train
FOLD 3| Train Test Train

FOLD 4 Test Train
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The Validation Set

Train Data Validation Test Data ]
Predicting Y
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Nested Cross Validation

Divide your training set into K equal parts.
Cyclically use 1 part as “validation set” and the rest for training.

Here K =4
FOLD 1 Train Validation
FOLD 2 Train Validation Train
FOLD 3 Train Validation Train
FOLD 4 Validation Train
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Nested Cross Validation

Average out the validation accuracy across all the folds
Use the model with highest validation accuracy

~
FOLD 1 Train Validation
Average out
Validation Accuracy
. o ) across all folds.
FOLD 2 Train Validation Train

> Select the

hyperparameter for
FOLD 3 Train Validation Train which the model
gives the highest
average validation
accuracy

FOLD 4 Validation Train
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Next time: Ensemble Learning

How to combine various models?

Why to combine multiple models?
e How can we reduce bias?

How can we reduce variance?
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