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e For each value of y, we find x that minimizes g(x, y)
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Minimax Inequality

e We just showed For all x,y miny q(x,y) < max, q(x,y)
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Minimax Inequality

e We just showed For all x,y miny q(x,y) < max, q(x,y)
e The equality occursat x =1,y =4
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Minimax Inequality

e Let us now find max, min, g(x, y)
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Minimax Inequality

e Similarly, let us now find min, max, q(x, y)
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Minimax Inequality

e Similarly, let us now find min, max, q(x, y)

e We can thus see our Minimax inequality

maxy miny g(x, y) < miny max, q(x, y)
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Idea: Convert constrained problem to an unconstrained problem
J(x) = f(x) + ) 1(gi(x))
i=1

where 1(z) is an infinite step function

l(z):{ 0 ifz<0

oo  otherwise

This would give infinte penalty if constraint is not satisfied. But,

this formulation is hard to solve too.
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Revisiting the Lagrange multipliers

Idea: Introduce Lagrange multipliers (A; > 0) to “approximate”
J(x)

£(x,A) = F(x) + D Nigi(x)
i=1

What is the relationship between £(x, ) and J(x) given A\; > 07
When A > 0, the Lagrangian £(x, \) is a lower bound of J(x).

Hence, the maximum of £(x,A) with respect to A is

J(x) = T L(x,A)
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Revisiting the Lagrange multipliers

J(x) = e L(x, A)

But, our original problem was minimizing J(x), which is equivalent

to:

min max £(x, \)
x€R4 A>0

Using the Minimax inequality, we can write:

min max £(x, A) > max min £(x, A)
xeRd A>0 A>0 xcRd

We can write the dual objective as a function of \ as
D(A) = mingcpa £(x, A)
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Revisiting the Lagrange multipliers

e Primal objective:

miny f(x)
subject to  gi(x) <0 forall i=1,...,m
e Or, primal objective = J(x) > maxy D(\)

Or, primal objective (in terms of x) > dual objective (in terms
of \)

For SVM like formulations, primal objective is the same as

dual objective (strong duality)

For some problems, there is a “daulity-gap” between the two

objectives
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