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Ensemble Methods

Use multiple models for prediction.

Most winning entries of Kaggle competition using ensemble

learning.
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Ensemble Methods

Use multiple models for prediction.

Most winning entries of Kaggle competition using ensemble

learning.

Example:

Classifier 1 - Good

Classifier 2 - Good

Classifier 3 - Bad

Using Majority Voting, we predict Good.
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Ensemble Methods

Use multiple models for prediction.

Most winning entries of Kaggle competition using ensemble

learning.

Example:

Regressor 1 - 20

Regressor 2 - 30

Regressor 3 - 30

Using Average, we predict
80

3
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Intuition

Based on Ensemble methods in ML by Dietterich

Three reasons why ensembles make sense:

1) Statistical: Sometimes if data is less, many competing

hypothesis can be learnt all giving same accuracy on training

data.

Eg. We can learn many decision trees for the same data giving

same accuracy.
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Intuition

2) Computational: Even if data is enough, some

classifiers/regressors can get stuck in local optima/apply

greedy strategies. Computationally learning the “best”

hypothesis can be non-trivial.

Eg. Decision Trees employ greedy critera
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Intuition

3) Representational: Some classifiers/regressors can not learn

the true form/representation.

Eg. Decision Trees can only learn axis-parallel splits.
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Representation of Limited Depth DTs vs RFs

Notebook: ensemble-representation.html

Input data

.75

Decision Tree (Depth 1)

.85

Random Forest

.65 .68
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https://nipunbatra.github.io/ml-teaching/notebooks/ensemble-representation.html


Representation of Limited Depth DTs vs RFs

Notebook: ensemble-representation.html

Input data

.90

Decision Tree (Depth 2)

.90

Random Forest

.68 .82
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https://nipunbatra.github.io/ml-teaching/notebooks/ensemble-representation.html


Necessary and Sufficient Conditions

1) A necessary and sufficient condition for an ensemble of

classifiers to be more accurate than any of its individual members

is if the classifiers are accurate and diverse.

2) An accurate classier: is one that has an error rate of better than

random guessing on new x values.

3) Two classifiers are diverse: if they make different errors on new

data points
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Necessary and Sufficient Conditions

Imagine that we have an ensemble of three classifiers (h1, h2, h3)

and consider a new case x.

If the three classifiers are identical, i.e. not diverse, then when

h1(x) is wrong h2(x) and h3(x) will also be wrong.

However, if the errors made by the classifiers are uncorrelated, then

when h1(x) is wrong, h2(x) and h3(x) may be correct, so that a

majority vote will correctly class.
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Intuition for Ensemble Methods from Quantitative Perspective

Error Probability of each model = ε = 0.3

Pr(ensemble being wrong) = 3C2(ε
2)(1−ε)3−2+3C3(ε

3)(1−ε)3−3

= 0.19 ≤ 0.3
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Some calculations

0 10 20
0

5 · 10−2

0.1

0.15

k

P
(X

=
k
)

Probability that majority vote (11 out of 21) is wrong = 0.026

k = 11, ϵ = 0.3
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Some calculations

0 10 20
0

5 · 10−2

0.1

0.15

k

P
(X

=
k
)

Probability that majority vote (11 out of 21) is wrong = 0.826

k = 11, ϵ = 0.6
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Ensemble Methods

Where does ensemble learning not work well?
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Ensemble Methods

Where does ensemble learning not work well?

• The base model is bad.

• All models give similar prediction or the models are highly

correlated.
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Bagging

Also known as Bootstrap Aggregation.
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Bagging

Also known as Bootstrap Aggregation.

Key idea : Reduce Variance

How to learn different classifiers while feeding in the same data?

Think about cross-validation!

We will create multiple datasets from our single dataset using

“sampling with replacement”.
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Bagging

Consider our dataset has n samples, D1,D2,D3, . . . ,Dn.

For each model in the ensemble, we create a new dataset of size n

by sampling uniformly with replacement.

14



Bagging

Consider our dataset has n samples, D1,D2,D3, . . . ,Dn.

For each model in the ensemble, we create a new dataset of size n

by sampling uniformly with replacement.

Round 1 : D1,D3,D6,D1, . . . ,Dn

Round 2 : D2,D4,D1,D80, . . . ,D3...

14



Bagging

Consider our dataset has n samples, D1,D2,D3, . . . ,Dn.

For each model in the ensemble, we create a new dataset of size n

by sampling uniformly with replacement.

Round 1 : D1,D3,D6,D1, . . . ,Dn

Round 2 : D2,D4,D1,D80, . . . ,D3...

Repetition of samples is possible.

14



Bagging

Consider our dataset has n samples, D1,D2,D3, . . . ,Dn.

For each model in the ensemble, we create a new dataset of size n

by sampling uniformly with replacement.

Round 1 : D1,D3,D6,D1, . . . ,Dn

Round 2 : D2,D4,D1,D80, . . . ,D3...

Repetition of samples is possible.

We can train the same classifier/models on each of these different

“Bagging Rounds”.
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Bagging : Classification Example

Consider the dataset below. Points (3,3) and (5,8) are anomalies.

1 2 3 4 5 6 7 8
X1

1

2

3

4

5

6

7

8
X 2
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Bagging : Classification Example

Decision Boundary for decision tree with depth 6.

1 2 3 4 5 6 7 8
X1

1

2

3

4

5

6

7

8
X 2
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Bagging : Classification Example

Lets use bagging with ensemble of 5 trees.
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Bagging : Classification Example
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Bagging : Classification Example

Using majority voting to combine all predictions, we get the

decision boundary below.
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Bagging

Summary

• We take “strong” learners and combine them to reduce

variance.

• All learners are independent of each other.
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Boosting

• We take “weak” learners and combine them to reduce bias.

• All learners are incrementally built.

• Incremental building: Incrementally try to classify “harder”

samples correctly.
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Boosting : AdaBoost

Consider we have a dataset of N samples.

Sample i has weight wi . There are M classifers in ensemble.
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Boosting : AdaBoost

Consider we have a dataset of N samples.

Sample i has weight wi . There are M classifers in ensemble.

1. Initialize weights of data samples, wi =
1

N
2. For m = 1 . . .M

2.1 Learn classifier using current weights w ′
i s

2.2 Compute the weighted error, errm =

∑
i

wi (incorrect)∑
i

wi

2.3 Compute αm =
1

2
loge

(
1− errm
errm

)

err1 =
0.3

1

α1 =
1

2
log

(
1− 0.3

0.3

)
= 0.42
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Boosting : AdaBoost

Consider we have a dataset of N samples.

Sample i has weight wi . There are M classifers in ensemble.

1. Initialize weights of data samples, wi =
1

N
2. For m = 1 . . .M

2.1 Learn classifier using current weights w ′
i s

2.2 Compute the weighted error, errm =

∑
i

wi (incorrect)∑
i

wi

2.3 Compute αm =
1

2
loge

(
1− errm
errm

)
2.4 For samples which were predicted correctly, wi = wie

−αm

2.5 For samples which were predicted incorrectly, wi = wie
αm
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Boosting : AdaBoost
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Boosting : AdaBoost
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Boosting : AdaBoost

Consider we have a dataset of N samples.

Sample i has weight wi . There are M classifers in ensemble.

1. Initialize weights of data samples, wi =
1

N
2. For m = 1 . . .M

2.1 Learn classifier using current weights w ′
i s

2.2 Compute the weighted error, errm =

∑
i

wi (incorrect)∑
i

wi

2.3 Compute αm =
1

2
loge

(
1− errm
errm

)
2.4 For samples which were predicted correctly, wi = wie

−αm

2.5 For samples which were predicted incorrectly, wi = wie
αm

2.6 Normalize w ′
i s to sum up to 1.
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Boosting : AdaBoost
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Boosting : AdaBoost

Consider we have a dataset of N samples.

Sample i has weight wi . There are M classifers in ensemble.

1. Initialize weights of data samples, wi =
1

N
2. For m = 1 . . .M

2.1 Learn classifier using current weights w ′
i s

2.2 Compute the weighted error, errm =

∑
i

wi (incorrect)∑
i

wi

2.3 Compute αm =
1

2
loge

(
1− errm
errm

)

err2 =
0.21

1

α2 =
1

2
log

(
1− 0.21

0.21

)
= 0.66
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Boosting : AdaBoost

Consider we have a dataset of N samples.

Sample i has weight wi . There are M classifers in ensemble.

1. Initialize weights of data samples, wi =
1

N
2. For m = 1 . . .M

2.1 Learn classifier using current weights w ′
i s
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∑
i
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i
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2.3 Compute αm =
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loge

(
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2.4 For samples which were predicted correctly, wi = wie
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Boosting : AdaBoost
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Consider we have a dataset of N samples.

Sample i has weight wi . There are M classifers in ensemble.

1. Initialize weights of data samples, wi =
1

N
2. For m = 1 . . .M

2.1 Learn classifier using current weights w ′
i s

2.2 Compute the weighted error, errm =

∑
i

wi (incorrect)∑
i

wi

2.3 Compute αm =
1

2
loge

(
1− errm
errm

)
2.4 For samples which were predicted correctly, wi = wie

−αm

2.5 For samples which were predicted incorrectly, wi = wie
αm

2.6 Normalize w ′
i s to sum up to 1.
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Boosting : AdaBoost
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Boosting : AdaBoost

Consider we have a dataset of N samples.

Sample i has weight wi . There are M classifers in ensemble.

1. Initialize weights of data samples, wi =
1

N
2. For m = 1 . . .M

2.1 Learn classifier using current weights w ′
i s

2.2 Compute the weighted error, errm =

∑
i

wi (incorrect)∑
i

wi

2.3 Compute αm =
1

2
loge

(
1− errm
errm

)

err3 =
0.12

1

α3 =
1

2
log

(
1− 0.12

0.12

)
= 0.99
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Boosting: Adaboost

Intuitively, after each iteration, importance of wrongly classified

samples is increased by increasing their weights and importance of

correctly classified samples is decreased by decreasing their weights.
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Boosting: Adaboost

Testing

• For each sample x , compute the prediction of each classifier

hm(x).

• Final prediction is the sign of the sum of weighted predictions,

given as:

• SIGN(α1h1(x) + α2h2(x) + . . . + αMhM(x))
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Boosting: Adaboost

Example

α1 = 0.42 α2 = 0.66 α3 = 0.99

Let us say, yellow class is +1 and

blue class is -1

Prediction = SIGN(0.42*-1 +

0.66*-1 + 0.99*+1) = Negative

= blue

41



Boosting: Adaboost

Example

α1 = 0.42

α2 = 0.66 α3 = 0.99

Let us say, yellow class is +1 and

blue class is -1

Prediction = SIGN(0.42*-1 +

0.66*-1 + 0.99*+1) = Negative

= blue

41



Boosting: Adaboost

Example

α1 = 0.42 α2 = 0.66

α3 = 0.99

Let us say, yellow class is +1 and

blue class is -1

Prediction = SIGN(0.42*-1 +

0.66*-1 + 0.99*+1) = Negative

= blue

41



Boosting: Adaboost

Example

α1 = 0.42 α2 = 0.66 α3 = 0.99

Let us say, yellow class is +1 and

blue class is -1

Prediction = SIGN(0.42*-1 +

0.66*-1 + 0.99*+1) = Negative

= blue

41



Boosting: Adaboost

Example

α1 = 0.42 α2 = 0.66 α3 = 0.99

Let us say, yellow class is +1 and

blue class is -1

Prediction = SIGN(0.42*-1 +

0.66*-1 + 0.99*+1) = Negative

= blue

41



Boosting: Adaboost

Example

α1 = 0.42 α2 = 0.66 α3 = 0.99

Let us say, yellow class is +1 and

blue class is -1

Prediction = SIGN(0.42*-1 +

0.66*-1 + 0.99*+1) = Negative

= blue

41



Boosting: Adaboost

Example

α1 = 0.42 α2 = 0.66 α3 = 0.99

Let us say, yellow class is +1 and

blue class is -1

Prediction = SIGN(0.42*-1 +

0.66*-1 + 0.99*+1) = Negative

= blue

41



Intuition behind weight update formula

Notebook: boosting-

explanation.ipynb
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ADABoost for regresion

From Paper: Improving Regressors using Boosting Techniques

43



Random Forest

• Random Forest is an ensemble of decision trees.

• We have two types of bagging: bootstrap (on data) and

random subspace (of features).

• As features are randomly selected, we learn decorrelated trees

and helps in reducing variance.
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Random Forest

There are 3 parameters while training a random forest number of

trees, number of features (m), maximum depth.

Training Algorithm

• For i th tree (i ∈ {1 · · ·N}), select n samples from total N

samples with replacement.

• Learn Decision Tree on selected samples for i th round.

Learning Decision Tree (for RF)

• For each split, select m features from total available M

features and train a decision tree on selected features
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Dataset

46



Decision Tree # 0

Notebook: ensemble-feature-importance.ipynb

node #0
petal_width ≤ 0.75
entropy = 1.573
samples = 94

value = [47, 44, 59]
class = virginica

node #1
entropy = 0.0
samples = 31

value = [47, 0, 0]
class = setosa

True

node #2
petal_length ≤ 4.85

entropy = 0.985
samples = 63

value = [0, 44, 59]
class = virginica

False

node #3
petal_width ≤ 1.65
entropy = 0.348
samples = 32

value = [0, 43, 3]
class = versicolor

node #8
sepal_length ≤ 6.6

entropy = 0.127
samples = 31

value = [0, 1, 56]
class = virginica

node #4
entropy = 0.0
samples = 29

value = [0, 42, 0]
class = versicolor

node #5
sepal_width ≤ 3.0
entropy = 0.811

samples = 3
value = [0, 1, 3]
class = virginica

node #6
entropy = 0.0
samples = 2

value = [0, 0, 3]
class = virginica

node #7
entropy = 0.0
samples = 1

value = [0, 1, 0]
class = versicolor

node #9
entropy = 0.0
samples = 15

value = [0, 0, 27]
class = virginica

node #10
petal_length ≤ 5.2
entropy = 0.211
samples = 16

value = [0, 1, 29]
class = virginica

node #11
entropy = 0.0
samples = 1

value = [0, 1, 0]
class = versicolor

node #12
entropy = 0.0
samples = 15

value = [0, 0, 29]
class = virginica
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Decision Tree # 1

Notebook: ensemble-feature-importance.ipynb

node #0
petal_width ≤ 0.8
entropy = 1.564
samples = 100

value = [46, 62, 42]
class = versicolor

node #1
entropy = 0.0
samples = 33

value = [46, 0, 0]
class = setosa

True

node #2
petal_width ≤ 1.75
entropy = 0.973
samples = 67

value = [0, 62, 42]
class = versicolor

False

node #3
petal_length ≤ 4.95

entropy = 0.387
samples = 39

value = [0, 61, 5]
class = versicolor

node #10
petal_length ≤ 4.85

entropy = 0.176
samples = 28

value = [0, 1, 37]
class = virginica

node #4
entropy = 0.0
samples = 35

value = [0, 58, 0]
class = versicolor

node #5
petal_length ≤ 5.45

entropy = 0.954
samples = 4

value = [0, 3, 5]
class = virginica

node #6
sepal_width ≤ 2.45

entropy = 0.971
samples = 3

value = [0, 3, 2]
class = versicolor

node #9
entropy = 0.0
samples = 1

value = [0, 0, 3]
class = virginica

node #7
entropy = 0.0
samples = 1

value = [0, 0, 2]
class = virginica

node #8
entropy = 0.0
samples = 2

value = [0, 3, 0]
class = versicolor

node #11
sepal_width ≤ 3.1
entropy = 0.918

samples = 2
value = [0, 1, 2]
class = virginica

node #14
entropy = 0.0
samples = 26

value = [0, 0, 35]
class = virginica

node #12
entropy = 0.0
samples = 1

value = [0, 0, 2]
class = virginica

node #13
entropy = 0.0
samples = 1

value = [0, 1, 0]
class = versicolor
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Decision Tree # 2

Notebook: ensemble-feature-importance.ipynb

node #0
sepal_length ≤ 5.55

entropy = 1.582
samples = 98

value = [51, 46, 53]
class = virginica

node #1
petal_width ≤ 0.8
entropy = 0.823
samples = 40

value = [49, 12, 1]
class = setosa

True

node #6
petal_width ≤ 1.55
entropy = 1.103
samples = 58

value = [2, 34, 52]
class = virginica

False

node #2
entropy = 0.0
samples = 29

value = [49, 0, 0]
class = setosa

node #3
petal_width ≤ 1.6
entropy = 0.391
samples = 11

value = [0, 12, 1]
class = versicolor

node #4
entropy = 0.0
samples = 10

value = [0, 12, 0]
class = versicolor

node #5
entropy = 0.0
samples = 1

value = [0, 0, 1]
class = virginica

node #7
petal_width ≤ 0.75
entropy = 0.501
samples = 24

value = [2, 32, 1]
class = versicolor

node #12
petal_length ≤ 4.65

entropy = 0.232
samples = 34

value = [0, 2, 51]
class = virginica

node #8
entropy = 0.0
samples = 2

value = [2, 0, 0]
class = setosa

node #9
petal_length ≤ 5.0
entropy = 0.196
samples = 22

value = [0, 32, 1]
class = versicolor

node #10
entropy = 0.0
samples = 21

value = [0, 32, 0]
class = versicolor

node #11
entropy = 0.0
samples = 1

value = [0, 0, 1]
class = virginica

node #13
entropy = 0.0
samples = 1

value = [0, 1, 0]
class = versicolor

node #14
petal_width ≤ 1.7
entropy = 0.137
samples = 33

value = [0, 1, 51]
class = virginica

node #15
petal_length ≤ 5.45

entropy = 0.811
samples = 2

value = [0, 1, 3]
class = virginica

node #18
entropy = 0.0
samples = 31

value = [0, 0, 48]
class = virginica

node #16
entropy = 0.0
samples = 1

value = [0, 1, 0]
class = versicolor

node #17
entropy = 0.0
samples = 1

value = [0, 0, 3]
class = virginica

49

https://nipunbatra.github.io/ml-teaching/notebooks/ensemble-feature-importance.ipynb


Decision Tree # 3

Notebook: ensemble-feature-importance.ipynb

node #0
sepal_length ≤ 5.55

entropy = 1.573
samples = 96

value = [44, 59, 47]
class = versicolor

node #1
sepal_width ≤ 2.8
entropy = 1.011
samples = 38

value = [43, 12, 3]
class = setosa

True

node #8
petal_width ≤ 1.7
entropy = 1.075
samples = 58

value = [1, 47, 44]
class = versicolor

False

node #2
sepal_length ≤ 4.95

entropy = 0.722
samples = 7

value = [0, 12, 3]
class = versicolor

node #7
entropy = 0.0
samples = 31

value = [43, 0, 0]
class = setosa

node #3
sepal_width ≤ 2.45

entropy = 0.985
samples = 2

value = [0, 4, 3]
class = versicolor

node #6
entropy = 0.0
samples = 5

value = [0, 8, 0]
class = versicolor

node #4
entropy = 0.0
samples = 1

value = [0, 4, 0]
class = versicolor

node #5
entropy = 0.0
samples = 1

value = [0, 0, 3]
class = virginica

node #9
sepal_width ≤ 3.7
entropy = 0.287
samples = 31

value = [1, 47, 1]
class = versicolor

node #18
entropy = 0.0
samples = 27

value = [0, 0, 43]
class = virginica

node #10
petal_width ≤ 1.45
entropy = 0.146
samples = 30

value = [0, 47, 1]
class = versicolor

node #17
entropy = 0.0
samples = 1

value = [1, 0, 0]
class = setosa

node #11
entropy = 0.0
samples = 20

value = [0, 34, 0]
class = versicolor

node #12
sepal_width ≤ 2.35

entropy = 0.371
samples = 10

value = [0, 13, 1]
class = versicolor

node #13
sepal_length ≤ 6.1

entropy = 0.811
samples = 2

value = [0, 3, 1]
class = versicolor

node #16
entropy = 0.0
samples = 8

value = [0, 10, 0]
class = versicolor

node #14
entropy = 0.0
samples = 1

value = [0, 0, 1]
class = virginica

node #15
entropy = 0.0
samples = 1

value = [0, 3, 0]
class = versicolor
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Decision Tree # 4

Notebook: ensemble-feature-importance.ipynb

node #0
petal_width ≤ 0.7
entropy = 1.561
samples = 95

value = [50, 61, 39]
class = versicolor

node #1
entropy = 0.0
samples = 31

value = [50, 0, 0]
class = setosa

True

node #2
petal_width ≤ 1.75
entropy = 0.965
samples = 64

value = [0, 61, 39]
class = versicolor

False

node #3
petal_length ≤ 4.95

entropy = 0.435
samples = 41

value = [0, 61, 6]
class = versicolor

node #10
entropy = 0.0
samples = 23

value = [0, 0, 33]
class = virginica

node #4
entropy = 0.0
samples = 35

value = [0, 56, 0]
class = versicolor

node #5
petal_width ≤ 1.55
entropy = 0.994

samples = 6
value = [0, 5, 6]
class = virginica

node #6
entropy = 0.0
samples = 3

value = [0, 0, 5]
class = virginica

node #7
petal_length ≤ 5.45

entropy = 0.65
samples = 3

value = [0, 5, 1]
class = versicolor

node #8
entropy = 0.0
samples = 2

value = [0, 5, 0]
class = versicolor

node #9
entropy = 0.0
samples = 1

value = [0, 0, 1]
class = virginica
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Decision Tree # 5

Notebook: ensemble-feature-importance.ipynb

node #0
petal_width ≤ 0.8
entropy = 1.584
samples = 94

value = [49, 53, 48]
class = versicolor

node #1
entropy = 0.0
samples = 28

value = [49, 0, 0]
class = setosa

True

node #2
petal_length ≤ 4.95

entropy = 0.998
samples = 66

value = [0, 53, 48]
class = versicolor

False

node #3
sepal_width ≤ 2.85

entropy = 0.367
samples = 35

value = [0, 53, 4]
class = versicolor

node #8
entropy = 0.0
samples = 31

value = [0, 0, 44]
class = virginica

node #4
petal_width ≤ 1.6
entropy = 0.477
samples = 23

value = [0, 35, 4]
class = versicolor

node #7
entropy = 0.0
samples = 12

value = [0, 18, 0]
class = versicolor

node #5
entropy = 0.0
samples = 20

value = [0, 35, 0]
class = versicolor

node #6
entropy = 0.0
samples = 3

value = [0, 0, 4]
class = virginica
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Decision Tree # 6

Notebook: ensemble-feature-importance.ipynb

node #0
petal_width ≤ 0.7
entropy = 1.568
samples = 95

value = [46, 43, 61]
class = virginica

node #1
entropy = 0.0
samples = 27

value = [46, 0, 0]
class = setosa

True

node #2
petal_length ≤ 4.75

entropy = 0.978
samples = 68

value = [0, 43, 61]
class = virginica

False

node #3
sepal_length ≤ 4.95

entropy = 0.281
samples = 28

value = [0, 39, 2]
class = versicolor

node #6
petal_length ≤ 5.15

entropy = 0.341
samples = 40

value = [0, 4, 59]
class = virginica

node #4
entropy = 0.0
samples = 1

value = [0, 0, 2]
class = virginica

node #5
entropy = 0.0
samples = 27

value = [0, 39, 0]
class = versicolor

node #7
petal_width ≤ 1.75
entropy = 0.634
samples = 17

value = [0, 4, 21]
class = virginica

node #14
entropy = 0.0
samples = 23

value = [0, 0, 38]
class = virginica

node #8
petal_width ≤ 1.55
entropy = 0.918

samples = 5
value = [0, 4, 2]

class = versicolor

node #13
entropy = 0.0
samples = 12

value = [0, 0, 19]
class = virginica

node #9
petal_width ≤ 1.45
entropy = 0.918

samples = 3
value = [0, 1, 2]
class = virginica

node #12
entropy = 0.0
samples = 2

value = [0, 3, 0]
class = versicolor

node #10
entropy = 0.0
samples = 1

value = [0, 1, 0]
class = versicolor

node #11
entropy = 0.0
samples = 2

value = [0, 0, 2]
class = virginica
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Decision Tree # 7

Notebook: ensemble-feature-importance.ipynb

node #0
petal_length ≤ 2.6
entropy = 1.571
samples = 101

value = [58, 41, 51]
class = setosa

node #1
entropy = 0.0
samples = 37

value = [58, 0, 0]
class = setosa

True

node #2
petal_length ≤ 4.75

entropy = 0.991
samples = 64

value = [0, 41, 51]
class = virginica

False

node #3
entropy = 0.0
samples = 28

value = [0, 37, 0]
class = versicolor

node #4
petal_length ≤ 5.15

entropy = 0.376
samples = 36

value = [0, 4, 51]
class = virginica

node #5
petal_width ≤ 1.75
entropy = 0.702
samples = 15

value = [0, 4, 17]
class = virginica

node #16
entropy = 0.0
samples = 21

value = [0, 0, 34]
class = virginica

node #6
sepal_length ≤ 6.5

entropy = 1.0
samples = 6

value = [0, 4, 4]
class = versicolor

node #15
entropy = 0.0
samples = 9

value = [0, 0, 13]
class = virginica

node #7
petal_length ≤ 4.95

entropy = 0.918
samples = 4

value = [0, 2, 4]
class = virginica

node #14
entropy = 0.0
samples = 2

value = [0, 2, 0]
class = versicolor

node #8
entropy = 0.0
samples = 1

value = [0, 1, 0]
class = versicolor

node #9
sepal_length ≤ 6.15

entropy = 0.722
samples = 3

value = [0, 1, 4]
class = virginica

node #10
petal_width ≤ 1.55
entropy = 0.918

samples = 2
value = [0, 1, 2]
class = virginica

node #13
entropy = 0.0
samples = 1

value = [0, 0, 2]
class = virginica

node #11
entropy = 0.0
samples = 1

value = [0, 0, 2]
class = virginica

node #12
entropy = 0.0
samples = 1

value = [0, 1, 0]
class = versicolor
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Decision Tree # 8

Notebook: ensemble-feature-importance.ipynb

node #0
petal_width ≤ 0.7
entropy = 1.575
samples = 91

value = [42, 54, 54]
class = versicolor

node #1
entropy = 0.0
samples = 29

value = [42, 0, 0]
class = setosa

True

node #2
sepal_length ≤ 6.25

entropy = 1.0
samples = 62

value = [0, 54, 54]
class = versicolor

False

node #3
petal_length ≤ 4.8

entropy = 0.76
samples = 29

value = [0, 39, 11]
class = versicolor

node #14
petal_width ≤ 1.75
entropy = 0.825
samples = 33

value = [0, 15, 43]
class = virginica

node #4
sepal_length ≤ 4.95

entropy = 0.384
samples = 22

value = [0, 37, 3]
class = versicolor

node #9
petal_width ≤ 1.55
entropy = 0.722

samples = 7
value = [0, 2, 8]
class = virginica

node #5
sepal_width ≤ 2.45

entropy = 0.811
samples = 2

value = [0, 1, 3]
class = virginica

node #8
entropy = 0.0
samples = 20

value = [0, 36, 0]
class = versicolor

node #6
entropy = 0.0
samples = 1

value = [0, 1, 0]
class = versicolor

node #7
entropy = 0.0
samples = 1

value = [0, 0, 3]
class = virginica

node #10
entropy = 0.0
samples = 2

value = [0, 0, 4]
class = virginica

node #11
petal_width ≤ 1.7
entropy = 0.918

samples = 5
value = [0, 2, 4]
class = virginica

node #12
entropy = 0.0
samples = 1

value = [0, 2, 0]
class = versicolor

node #13
entropy = 0.0
samples = 4

value = [0, 0, 4]
class = virginica

node #15
petal_length ≤ 5.05

entropy = 0.742
samples = 9

value = [0, 15, 4]
class = versicolor

node #18
entropy = 0.0
samples = 24

value = [0, 0, 39]
class = virginica

node #16
entropy = 0.0
samples = 7

value = [0, 15, 0]
class = versicolor

node #17
entropy = 0.0
samples = 2

value = [0, 0, 4]
class = virginica
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Decision Tree # 9

Notebook: ensemble-feature-importance.ipynb

node #0
petal_length ≤ 2.6

entropy = 1.57
samples = 96

value = [55, 40, 55]
class = setosa

node #1
entropy = 0.0
samples = 36

value = [55, 0, 0]
class = setosa

True

node #2
petal_length ≤ 4.95

entropy = 0.982
samples = 60

value = [0, 40, 55]
class = virginica

False

node #3
sepal_length ≤ 5.95

entropy = 0.446
samples = 30

value = [0, 39, 4]
class = versicolor

node #8
sepal_length ≤ 6.6

entropy = 0.137
samples = 30

value = [0, 1, 51]
class = virginica

node #4
entropy = 0.0
samples = 15

value = [0, 23, 0]
class = versicolor

node #5
petal_width ≤ 1.65
entropy = 0.722
samples = 15

value = [0, 16, 4]
class = versicolor

node #6
entropy = 0.0
samples = 12

value = [0, 16, 0]
class = versicolor

node #7
entropy = 0.0
samples = 3

value = [0, 0, 4]
class = virginica

node #9
entropy = 0.0
samples = 16

value = [0, 0, 33]
class = virginica

node #10
sepal_length ≤ 6.75

entropy = 0.297
samples = 14

value = [0, 1, 18]
class = virginica

node #11
petal_width ≤ 2.0
entropy = 0.722

samples = 4
value = [0, 1, 4]
class = virginica

node #14
entropy = 0.0
samples = 10

value = [0, 0, 14]
class = virginica

node #12
entropy = 0.0
samples = 1

value = [0, 1, 0]
class = versicolor

node #13
entropy = 0.0
samples = 3

value = [0, 0, 4]
class = virginica
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Feature Importance1

𝜑1 𝜑𝑀 𝜑2 

… 

Importance of variable Xj for an ensemble of M trees φm is:

Imp(Xj) =
1

M

M∑
m=1

∑
t∈φm

1(jt = j)
[
p(t)∆i(t)

]
,

where jt denotes the variable used at node t, p(t) = Nt/N and

∆i(t) is the impurity reduction at node t:

∆i(t) = i(t)− NtL

Nt
i(tL)−

Ntr

Nt
i(tR)

1Slide Courtesy Gilles Louppe
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Computed Feature Importance

Notebook: ensemble-feature-importance.ipynb

sepal length sepal width petal length petal width
0.0

0.1

0.2

0.3

0.4

0.5

58

https://nipunbatra.github.io/ml-teaching/notebooks/ensemble-feature-importance.ipynb

