Gradient Descent

Nipun Batra
February 4, 2024
IIT Gandhinagar

Revision

Contour Plot And Gradients

Contour Plot And Gradients

$$
z=f(x, y)=x^{2}+y^{2}
$$

Gradient denotes the direction of steepest ascent or the direction in which there is a maximum increase in $f(x, y)$

Contour Plot And Gradients

$$
z=f(x, y)=x^{2}+y^{2}
$$

Gradient denotes the direction of steepest ascent or the direction in which there is a maximum increase in $f(x, y)$
$\nabla f(x, y)=\left[\begin{array}{l}\frac{\partial f(x, y)}{\partial x} \\ \frac{\partial f(x, y)}{\partial y}\end{array}\right]=\left[\begin{array}{l}2 x \\ 2 y\end{array}\right]$

Introduction

Optimization algorithms

- We often want to minimize/maximize a function

Optimization algorithms

- We often want to minimize/maximize a function
- We wanted to minimize the cost function:

$$
\begin{equation*}
f(\theta)=(y-X \theta)^{T}(y-X \theta) \tag{1}
\end{equation*}
$$

Optimization algorithms

- We often want to minimize/maximize a function
- We wanted to minimize the cost function:

$$
\begin{equation*}
f(\theta)=(y-X \theta)^{T}(y-X \theta) \tag{1}
\end{equation*}
$$

- Note, here θ is the parameter vector

Optimization algorithms

- In general, we have following components:

Optimization algorithms

- In general, we have following components:
- Maximize or Minimize a function subject to some constraints

Optimization algorithms

- In general, we have following components:
- Maximize or Minimize a function subject to some constraints
- Today, we will focus on unconstrained optimization (no constraints)

Optimization algorithms

- In general, we have following components:
- Maximize or Minimize a function subject to some constraints
- Today, we will focus on unconstrained optimization (no constraints)
- We will focus on minimization

Optimization algorithms

- In general, we have following components:
- Maximize or Minimize a function subject to some constraints
- Today, we will focus on unconstrained optimization (no constraints)
- We will focus on minimization
- Goal:

$$
\begin{equation*}
\theta^{*}=\underset{\theta}{\arg \min } f(\theta) \tag{2}
\end{equation*}
$$

Introduction

- Gradient descent is an optimization algorithm

Introduction

- Gradient descent is an optimization algorithm
- It is used to find the minimum of a function in unconstrained settings

Introduction

- Gradient descent is an optimization algorithm
- It is used to find the minimum of a function in unconstrained settings
- It is an iterative algorithm

Introduction

- Gradient descent is an optimization algorithm
- It is used to find the minimum of a function in unconstrained settings
- It is an iterative algorithm
- It is a first order optimization algorithm

Introduction

- Gradient descent is an optimization algorithm
- It is used to find the minimum of a function in unconstrained settings
- It is an iterative algorithm
- It is a first order optimization algorithm
- It is a local search algorithm/greedy

Gradient Descent Algorithm

1. Initialize θ to some random value

Gradient Descent Algorithm

1. Initialize θ to some random value
2. Compute the gradient of the cost function at $\theta, \nabla f(\theta)$

Gradient Descent Algorithm

1. Initialize θ to some random value
2. Compute the gradient of the cost function at $\theta, \nabla f(\theta)$
3. For Iteration $i(i=1,2, \ldots)$ or until convergence:

Gradient Descent Algorithm

1. Initialize θ to some random value
2. Compute the gradient of the cost function at $\theta, \nabla f(\theta)$
3. For Iteration $i(i=1,2, \ldots)$ or until convergence:

- $\theta_{i} \leftarrow \theta_{i-1}-\alpha \nabla f\left(\theta_{i-1}\right)$

Taylor's Series

Taylor's Series

- Taylor's series is a way to approximate a function $f(x)$ around a point x_{0} using a polynomial

Taylor's Series

- Taylor's series is a way to approximate a function $f(x)$ around a point x_{0} using a polynomial
- The polynomial is given by

$$
\begin{equation*}
f(x)=f\left(x_{0}\right)+\frac{f^{\prime}\left(x_{0}\right)}{1!}\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\ldots \tag{3}
\end{equation*}
$$

Taylor's Series

- Taylor's series is a way to approximate a function $f(x)$ around a point x_{0} using a polynomial
- The polynomial is given by

$$
\begin{equation*}
f(x)=f\left(x_{0}\right)+\frac{f^{\prime}\left(x_{0}\right)}{1!}\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\ldots \tag{3}
\end{equation*}
$$

- The vector form of the above equation is given by:

$$
\begin{equation*}
f(\vec{x})=f\left(\overrightarrow{x_{0}}\right)+\nabla f\left(\overrightarrow{x_{0}}\right)^{T}\left(\vec{x}-\overrightarrow{x_{0}}\right)+\frac{1}{2}\left(\vec{x}-\overrightarrow{x_{0}}\right)^{T} \nabla^{2} f\left(\overrightarrow{x_{0}}\right)\left(\vec{x}-\overrightarrow{x_{0}}\right)+\ldots \tag{4}
\end{equation*}
$$

Taylor's Series

- Taylor's series is a way to approximate a function $f(x)$ around a point x_{0} using a polynomial
- The polynomial is given by

$$
\begin{equation*}
f(x)=f\left(x_{0}\right)+\frac{f^{\prime}\left(x_{0}\right)}{1!}\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\ldots \tag{3}
\end{equation*}
$$

- The vector form of the above equation is given by:

$$
\begin{equation*}
f(\vec{x})=f\left(\overrightarrow{x_{0}}\right)+\nabla f\left(\overrightarrow{x_{0}}\right)^{T}\left(\vec{x}-\overrightarrow{x_{0}}\right)+\frac{1}{2}\left(\vec{x}-\overrightarrow{x_{0}}\right)^{T} \nabla^{2} f\left(\overrightarrow{x_{0}}\right)\left(\vec{x}-\overrightarrow{x_{0}}\right)+\ldots \tag{4}
\end{equation*}
$$

- where $\nabla^{2} f\left(\overrightarrow{x_{0}}\right)$ is the Hessian matrix and $\nabla f\left(\overrightarrow{x_{0}}\right)$ is the gradient vector

Taylor's Series

- Let us consider $f(x)=\cos (x)$ and $x_{0}=0$

Taylor's Series

- Let us consider $f(x)=\cos (x)$ and $x_{0}=0$
- Then, we have:

Taylor's Series

- Let us consider $f(x)=\cos (x)$ and $x_{0}=0$
- Then, we have:
- $f\left(x_{0}\right)=\cos (0)=1$

Taylor's Series

- Let us consider $f(x)=\cos (x)$ and $x_{0}=0$
- Then, we have:
- $f\left(x_{0}\right)=\cos (0)=1$
- $f^{\prime}\left(x_{0}\right)=-\sin (0)=0$

Taylor's Series

- Let us consider $f(x)=\cos (x)$ and $x_{0}=0$
- Then, we have:
- $f\left(x_{0}\right)=\cos (0)=1$
- $f^{\prime}\left(x_{0}\right)=-\sin (0)=0$
- $f^{\prime \prime}\left(x_{0}\right)=-\cos (0)=-1$

Taylor's Series

- Let us consider $f(x)=\cos (x)$ and $x_{0}=0$
- Then, we have:
- $f\left(x_{0}\right)=\cos (0)=1$
- $f^{\prime}\left(x_{0}\right)=-\sin (0)=0$
- $f^{\prime \prime}\left(x_{0}\right)=-\cos (0)=-1$
- We can write the second order Taylor's series as:

Taylor's Series

- Let us consider $f(x)=\cos (x)$ and $x_{0}=0$
- Then, we have:
- $f\left(x_{0}\right)=\cos (0)=1$
- $f^{\prime}\left(x_{0}\right)=-\sin (0)=0$
- $f^{\prime \prime}\left(x_{0}\right)=-\cos (0)=-1$
- We can write the second order Taylor's series as:
- $f(x)=1+0(x-0)+\frac{-1}{2!}(x-0)^{2}=1-\frac{x^{2}}{2}$

Taylor's series

- Let us consider another example: $f(x)=x^{2}+2$ and $x_{0}=2$

Taylor's series

- Let us consider another example: $f(x)=x^{2}+2$ and $x_{0}=2$
- Question: How does the first order Taylor's series approximation look like?

Taylor's series

- Let us consider another example: $f(x)=x^{2}+2$ and $x_{0}=2$
- Question: How does the first order Taylor's series approximation look like?
- First order Taylor's series approximation is given by:

Taylor's series

- Let us consider another example: $f(x)=x^{2}+2$ and $x_{0}=2$
- Question: How does the first order Taylor's series approximation look like?
- First order Taylor's series approximation is given by:
- $f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)=6+4(x-2)=4 x-2$

Taylor's Series (Alternative form)

- We have:

$$
\begin{equation*}
f(x)=f\left(x_{0}\right)+\frac{f^{\prime}\left(x_{0}\right)}{1!}\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\ldots \tag{5}
\end{equation*}
$$

Taylor's Series (Alternative form)

- We have:

$$
\begin{equation*}
f(x)=f\left(x_{0}\right)+\frac{f^{\prime}\left(x_{0}\right)}{1!}\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\ldots \tag{5}
\end{equation*}
$$

- Let us consider $x=x_{0}+\Delta x$ where Δx is a small quantity

Taylor's Series (Alternative form)

- We have:

$$
\begin{equation*}
f(x)=f\left(x_{0}\right)+\frac{f^{\prime}\left(x_{0}\right)}{1!}\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\ldots \tag{5}
\end{equation*}
$$

- Let us consider $x=x_{0}+\Delta x$ where Δx is a small quantity
- Then, we have:

$$
\begin{equation*}
f\left(x_{0}+\Delta x\right)=f\left(x_{0}\right)+\frac{f^{\prime}\left(x_{0}\right)}{1!} \Delta x+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!} \Delta x^{2}+\ldots \tag{6}
\end{equation*}
$$

Taylor's Series (Alternative form)

- We have:

$$
\begin{equation*}
f(x)=f\left(x_{0}\right)+\frac{f^{\prime}\left(x_{0}\right)}{1!}\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\ldots \tag{5}
\end{equation*}
$$

- Let us consider $x=x_{0}+\Delta x$ where Δx is a small quantity
- Then, we have:

$$
\begin{equation*}
f\left(x_{0}+\Delta x\right)=f\left(x_{0}\right)+\frac{f^{\prime}\left(x_{0}\right)}{1!} \Delta x+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!} \Delta x^{2}+\ldots \tag{6}
\end{equation*}
$$

- Let us assume Δx is small enough such that Δx^{2} and higher order terms can be ignored

Taylor's Series (Alternative form)

- We have:

$$
\begin{equation*}
f(x)=f\left(x_{0}\right)+\frac{f^{\prime}\left(x_{0}\right)}{1!}\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\ldots \tag{5}
\end{equation*}
$$

- Let us consider $x=x_{0}+\Delta x$ where Δx is a small quantity
- Then, we have:

$$
\begin{equation*}
f\left(x_{0}+\Delta x\right)=f\left(x_{0}\right)+\frac{f^{\prime}\left(x_{0}\right)}{1!} \Delta x+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!} \Delta x^{2}+\ldots \tag{6}
\end{equation*}
$$

- Let us assume Δx is small enough such that Δx^{2} and higher order terms can be ignored
- Then, we have: $f\left(x_{0}+\Delta x\right) \approx f\left(x_{0}\right)+\frac{f^{\prime}\left(x_{0}\right)}{1!} \Delta x$

Taylor's Series to Gradient Descent

- Then, we have: $f\left(x_{0}+\Delta x\right) \approx f\left(x_{0}\right)+\frac{f^{\prime}\left(x_{0}\right)}{1!} \Delta x$

Taylor's Series to Gradient Descent

- Then, we have: $f\left(x_{0}+\Delta x\right) \approx f\left(x_{0}\right)+\frac{f^{\prime}\left(x_{0}\right)}{1!} \Delta x$
- Or, in vector form: $f\left(\overrightarrow{x_{0}}+\Delta \vec{x}\right) \approx f\left(\overrightarrow{x_{0}}\right)+\nabla f\left(\overrightarrow{x_{0}}\right)^{T} \Delta \vec{x}$

Taylor's Series to Gradient Descent

- Then, we have: $f\left(x_{0}+\Delta x\right) \approx f\left(x_{0}\right)+\frac{f^{\prime}\left(x_{0}\right)}{1!} \Delta x$
- Or, in vector form: $f\left(\overrightarrow{x_{0}}+\Delta \vec{x}\right) \approx f\left(\overrightarrow{x_{0}}\right)+\nabla f\left(\overrightarrow{x_{0}}\right)^{T} \Delta \vec{x}$
- Goal: Find $\Delta \vec{x}$ such that $f\left(\overrightarrow{x_{0}}+\Delta \vec{x}\right)$ is minimized

Taylor's Series to Gradient Descent

- Then, we have: $f\left(x_{0}+\Delta x\right) \approx f\left(x_{0}\right)+\frac{f^{\prime}\left(x_{0}\right)}{1!} \Delta x$
- Or, in vector form: $f\left(\overrightarrow{x_{0}}+\Delta \vec{x}\right) \approx f\left(\overrightarrow{x_{0}}\right)+\nabla f\left(\overrightarrow{x_{0}}\right)^{T} \Delta \vec{x}$
- Goal: Find $\Delta \vec{x}$ such that $f\left(\overrightarrow{x_{0}}+\Delta \vec{x}\right)$ is minimized
- This is equivalent to minimizing $f\left(\overrightarrow{x_{0}}\right)+\nabla f\left(\overrightarrow{x_{0}}\right)^{T} \Delta \vec{x}$

Taylor's Series to Gradient Descent

- Then, we have: $f\left(x_{0}+\Delta x\right) \approx f\left(x_{0}\right)+\frac{f^{\prime}\left(x_{0}\right)}{1!} \Delta x$
- Or, in vector form: $f\left(\overrightarrow{x_{0}}+\Delta \vec{x}\right) \approx f\left(\overrightarrow{x_{0}}\right)+\nabla f\left(\overrightarrow{x_{0}}\right)^{T} \Delta \vec{x}$
- Goal: Find $\Delta \vec{x}$ such that $f\left(\overrightarrow{x_{0}}+\Delta \vec{x}\right)$ is minimized
- This is equivalent to minimizing $f\left(\overrightarrow{x_{0}}\right)+\nabla f\left(\overrightarrow{x_{0}}\right)^{T} \Delta \vec{x}$
- This happens when vectors $\nabla f\left(\overrightarrow{x_{0}}\right)$ and $\Delta \vec{x}$ are at phase angle of 180°

Taylor's Series to Gradient Descent

- Then, we have: $f\left(x_{0}+\Delta x\right) \approx f\left(x_{0}\right)+\frac{f^{\prime}\left(x_{0}\right)}{1!} \Delta x$
- Or, in vector form: $f\left(\overrightarrow{x_{0}}+\Delta \vec{x}\right) \approx f\left(\overrightarrow{x_{0}}\right)+\nabla f\left(\overrightarrow{x_{0}}\right)^{T} \Delta \vec{x}$
- Goal: Find $\Delta \vec{x}$ such that $f\left(\overrightarrow{x_{0}}+\Delta \vec{x}\right)$ is minimized
- This is equivalent to minimizing $f\left(\overrightarrow{x_{0}}\right)+\nabla f\left(\overrightarrow{x_{0}}\right)^{T} \Delta \vec{x}$
- This happens when vectors $\nabla f\left(\overrightarrow{x_{0}}\right)$ and $\Delta \vec{x}$ are at phase angle of 180°
- This happens when $\Delta \vec{x}=-\alpha \nabla f\left(\overrightarrow{x_{0}}\right)$ where α is a scalar

Taylor's Series to Gradient Descent

- Then, we have: $f\left(x_{0}+\Delta x\right) \approx f\left(x_{0}\right)+\frac{f^{\prime}\left(x_{0}\right)}{1!} \Delta x$
- Or, in vector form: $f\left(\overrightarrow{x_{0}}+\Delta \vec{x}\right) \approx f\left(\overrightarrow{x_{0}}\right)+\nabla f\left(\overrightarrow{x_{0}}\right)^{T} \Delta \vec{x}$
- Goal: Find $\Delta \vec{x}$ such that $f\left(\overrightarrow{x_{0}}+\Delta \vec{x}\right)$ is minimized
- This is equivalent to minimizing $f\left(\overrightarrow{x_{0}}\right)+\nabla f\left(\overrightarrow{x_{0}}\right)^{T} \Delta \vec{x}$
- This happens when vectors $\nabla f\left(\overrightarrow{x_{0}}\right)$ and $\Delta \vec{x}$ are at phase angle of 180°
- This happens when $\Delta \vec{x}=-\alpha \nabla f\left(\overrightarrow{x_{0}}\right)$ where α is a scalar
- This is the gradient descent algorithm: $\overrightarrow{x_{1}}=\overrightarrow{x_{0}}-\alpha \nabla f\left(\overrightarrow{x_{0}}\right)$

Effect of learning rate

Low learning rate $\alpha=0.01$: Converges slowly

Effect of learning rate

High learning rate $\alpha=0.8$: Converges quickly, but might overshoot

Effect of learning rate

Very high learning rate $\alpha=1.01$: Diverges

Effect of learning rate

Appropriate learning rate $\alpha=0.1$

Gradient Descent for linear regression

Some commonly confused terms

- Loss function is usually a function defined on a data point, prediction and label, and measures the penalty.

Some commonly confused terms

- Loss function is usually a function defined on a data point, prediction and label, and measures the penalty.
- square loss I $\left(f\left(x_{i} \mid \theta\right), y_{i}\right)=\left(f\left(x_{i} \mid \theta\right)-y_{i}\right)^{2}$, used in linear regression

Some commonly confused terms

- Loss function is usually a function defined on a data point, prediction and label, and measures the penalty.
- square loss $I\left(f\left(x_{i} \mid \theta\right), y_{i}\right)=\left(f\left(x_{i} \mid \theta\right)-y_{i}\right)^{2}$, used in linear regression
- Cost function is usually more general. It might be a sum of loss functions over your training set plus some model complexity penalty (regularization). For example:

Some commonly confused terms

- Loss function is usually a function defined on a data point, prediction and label, and measures the penalty.
- square loss $I\left(f\left(x_{i} \mid \theta\right), y_{i}\right)=\left(f\left(x_{i} \mid \theta\right)-y_{i}\right)^{2}$, used in linear regression
- Cost function is usually more general. It might be a sum of loss functions over your training set plus some model complexity penalty (regularization). For example:
- Mean Squared Error $\operatorname{MSE}(\theta)=\frac{1}{N} \sum_{i=1}^{N}\left(f\left(x_{i} \mid \theta\right)-y_{i}\right)^{2}$

Some commonly confused terms

- Loss function is usually a function defined on a data point, prediction and label, and measures the penalty.
- square loss I $\left(f\left(x_{i} \mid \theta\right), y_{i}\right)=\left(f\left(x_{i} \mid \theta\right)-y_{i}\right)^{2}$, used in linear regression
- Cost function is usually more general. It might be a sum of loss functions over your training set plus some model complexity penalty (regularization). For example:
- Mean Squared Error $\operatorname{MSE}(\theta)=\frac{1}{N} \sum_{i=1}^{N}\left(f\left(x_{i} \mid \theta\right)-y_{i}\right)^{2}$
- Objective function is the most general term for any function that you optimize during training.

Gradient Descent : Example

Learn $y=\theta_{0}+\theta_{1} x$ on following dataset, using gradient descent where initially $\left(\theta_{0}, \theta_{1}\right)=(4,0)$ and step-size, $\alpha=0.1$, for 2 iterations.

\mathbf{x}	\mathbf{y}
1	1
2	2
3	3

Gradient Descent : Example

Our predictor, $\hat{y}=\theta_{0}+\theta_{1} x$

Error for $i^{\text {th }}$ datapoint, $\epsilon_{i}=y_{i}-\hat{y}_{i}$
$\epsilon_{1}=1-\theta_{0}-\theta_{1}$
$\epsilon_{2}=2-\theta_{0}-2 \theta_{1}$
$\epsilon_{3}=3-\theta_{0}-3 \theta_{1}$

MSE $=\frac{\epsilon_{1}^{2}+\epsilon_{2}^{2}+\epsilon_{3}^{2}}{3}=\frac{14+3 \theta_{0}^{2}+14 \theta_{1}^{2}-12 \theta_{0}-28 \theta_{1}+12 \theta_{0} \theta_{1}}{3}$

Difference between SSE and MSE

$\sum \epsilon_{i}^{2}$ increases as the number of examples increase

So, we use MSE

$$
M S E=\frac{1}{n} \sum \epsilon_{i}^{2}
$$

Here n denotes the number of samples

Gradient Descent : Example

$$
\begin{aligned}
& \frac{\partial M S E}{\partial \theta_{0}}=\frac{2 \sum_{i}\left(y_{i}-\theta_{0}-\theta_{1} x_{i}\right)(-1)}{N}=\frac{2 \sum_{i} \epsilon_{i}(-1)}{N} \\
& \frac{\partial M S E}{\partial \theta_{1}}=\frac{2 \sum_{i}\left(y_{i}-\theta_{0}-\theta_{1} x_{i}\right)\left(-x_{i}\right)}{N}=\frac{2 \sum_{i} \epsilon_{i}\left(-x_{i}\right)}{N}
\end{aligned}
$$

Gradient Descent : Example

Iteration 1

$$
\begin{aligned}
& \theta_{0}=\theta_{0}-\alpha \frac{\partial M S E}{\partial \theta_{0}} \\
& \theta_{1}=\theta_{1}-\alpha \frac{\partial M S E}{\partial \theta_{1}}
\end{aligned}
$$

Gradient Descent : Example

Iteration 1

$$
\begin{aligned}
& \theta_{0}=\theta_{0}-\alpha \frac{\partial M S E}{\partial \theta_{0}} \\
& \theta_{0}=4-0.2 \frac{((1-(4+0))(-1)+(2-(4+0))(-1)+(3-(4+0))(-1))}{3} \\
& \theta_{0}=3.6
\end{aligned}
$$

$$
\theta_{1}=\theta_{1}-\alpha \frac{\partial M S E}{\partial \theta_{1}}
$$

Gradient Descent : Example

Iteration 1

$\theta_{0}=\theta_{0}-\alpha \frac{\partial M S E}{\partial \theta_{0}}$
$\theta_{0}=4-0.2 \frac{((1-(4+0))(-1)+(2-(4+0))(-1)+(3-(4+0))(-1))}{3}$
$\theta_{0}=3.6$
$\theta_{1}=\theta_{1}-\alpha \frac{\partial M S E}{\partial \theta_{1}}$
$\theta_{1}=0-0.2 \frac{((1-(4+0))(-1)+(2-(4+0))(-2)+(3-(4+0))(-3))}{3}$
$\theta_{1}=-0.67$

Gradient Descent : Example

Iteration 2

$$
\begin{aligned}
& \theta_{0}=\theta_{0}-\alpha \frac{\partial M S E}{\partial \theta_{0}} \\
& \theta_{1}=\theta_{1}-\alpha \frac{\partial M S E}{\partial \theta_{1}}
\end{aligned}
$$

Gradient Descent : Example

Iteration 2
$\theta_{0}=\theta_{0}-\alpha \frac{\partial M S E}{\partial \theta_{0}}$
$\theta_{0}=$
$3.6-0.2 \frac{((1-(3.6-0.67))(-1)+(2-(3.6-0.67 \times 2))(-1)+(3-(3.6-0.67 \times 3))(-1))}{3}$
$\theta_{0}=3.54$
$\theta_{1}=\theta_{1}-\alpha \frac{\partial M S E}{\partial \theta_{1}}$

Gradient Descent : Example

Iteration 2

$\theta_{0}=\theta_{0}-\alpha \frac{\partial M S E}{\partial \theta_{0}}$
$\theta_{0}=$
$3.6-0.2 \frac{((1-(3.6-0.67))(-1)+(2-(3.6-0.67 \times 2))(-1)+(3-(3.6-0.67 \times 3))(-1))}{3}$
$\theta_{0}=3.54$
$\theta_{1}=\theta_{1}-\alpha \frac{\partial M S E}{\partial \theta_{1}}$
$\theta_{0}=$
$3.6-0.2 \frac{((1-(3.6-0.67))(-1)+(2-(3.6-0.67 \times 2))(-2)+(3-(3.6-0.67 \times 3))(-3))}{3}$
$\theta_{0}=-0.55$

Gradient Descent : Example (Iteraion 0)

Gradient Descent : Example (Iteraion 2)

Gradient Descent : Example (Iteraion 4)

Gradient Descent : Example (Iteraion 6)

Gradient Descent : Example (Iteraion 8)

Gradient Descent : Example (Iteraion 10)

Gradient Descent : Example (Iteraion 12)

Gradient Descent : Example (Iteraion 14)

Gradient Descent : Example (Iteraion 16)

Gradient Descent : Example (Iteraion 18)

Gradient Descent : Example (Iteraion 20)

Gradient Descent : Example (Iteraion 22)

Gradient Descent : Example (Iteraion 24)

Gradient Descent : Example (Iteraion 26)

Gradient Descent : Example (Iteraion 28)

Gradient Descent : Example (Iteraion 30)

Gradient Descent : Example (Iteraion 32)

Gradient Descent : Example (Iteraion 34)

Gradient Descent : Example (Iteraion 36)

Gradient Descent : Example (Iteraion 38)

Gradient Descent : Example (Iteraion 40)

Iteration v/s Epcohs for gradient descent

- Iteration: Each time you update the parameters of the model

Iteration v/s Epcohs for gradient descent

- Iteration: Each time you update the parameters of the model
- Epoch: Each time you have seen all the set of examples

Gradient Descent (GD)

- Dataset: $D=\{(X, y)\}$ of size N
- Initialize θ
- For epoch e in $[1, E]$
- Predict $\hat{y}=\operatorname{pred}(X, \theta)$
- Compute loss: $J(\theta)=\operatorname{loss}(y, \hat{y})$
- Compute gradient: $\nabla J(\theta)=\operatorname{grad}(J)(\theta)$
- Update: $\theta=\theta-\alpha \nabla J(\theta)$

Stochastic Gradient Descent (SGD)

- Dataset: $D=\{(X, y)\}$ of size N
- Initialize θ
- For epoch e in $[1, E]$
- Shuffle D
- For i in $[1, N]$
- Predict $\hat{y}_{i}=\operatorname{pred}\left(X_{i}, \theta\right)$
- Compute loss: $J(\theta)=\operatorname{loss}\left(y_{i}, \hat{y}_{i}\right)$
- Compute gradient: $\nabla J(\theta)=\operatorname{grad}(J)(\theta)$
- Update: $\theta=\theta-\alpha \nabla J(\theta)$

Mini-Batch Gradient Descent (MBGD)

- Dataset: $D=\{(X, y)\}$ of size N
- Initialize θ
- For epoch e in $[1, E]$
- Shuffle D
- Batches = make_batches (D, B)
- For b in Batches
- $X_{-} b, y_{-} b=b$
- Predict \hat{y} - $b=\operatorname{pred}\left(X _b, \theta\right)$
- Compute loss: $J(\theta)=\operatorname{loss}\left(y _b, \hat{y_{-}} b\right)$
- Compute gradient: $\nabla J(\theta)=\operatorname{grad}(J)(\theta)$
- Update: $\theta=\theta-\alpha \nabla J(\theta)$

Gradient Descent vs SGD

Vanilla Gradient Descent

- in Vanilla (Batch) gradient descent: We update params after going through all the data

Gradient Descent vs SGD

Vanilla Gradient Descent

- in Vanilla (Batch) gradient descent: We update params after going through all the data
- Smooth curve for Iteration vs Cost

Gradient Descent vs SGD

Vanilla Gradient Descent

- in Vanilla (Batch) gradient descent: We update params after going through all the data
- Smooth curve for Iteration vs Cost
- For a single update, it needs to compute the gradient over all the samples. Hence takes more time

Gradient Descent vs SGD

Vanilla Gradient Descent

- in Vanilla (Batch) gradient descent: We update params after going through all the data
- Smooth curve for Iteration vs Cost
- For a single update, it needs to compute the gradient over all the samples. Hence takes more time

Gradient Descent vs SGD

Vanilla Gradient Descent

- in Vanilla (Batch) gradient descent: We update params after going through all the data
- Smooth curve for Iteration vs Cost
- For a single update, it needs to compute the gradient over all the samples. Hence takes more time

Stochastic Gradient Descent

- In SGD, we update parameters after seeing each each point

Gradient Descent vs SGD

Vanilla Gradient Descent

- in Vanilla (Batch) gradient descent: We update params after going through all the data
- Smooth curve for Iteration vs Cost
- For a single update, it needs to compute the gradient over all the samples. Hence takes more time

Stochastic Gradient Descent

- In SGD, we update parameters after seeing each each point
- Noisier curve for iteration vs cost

Gradient Descent vs SGD

Vanilla Gradient Descent

- in Vanilla (Batch) gradient descent: We update params after going through all the data
- Smooth curve for Iteration vs Cost
- For a single update, it needs to compute the gradient over all the samples. Hence takes more time

Stochastic Gradient Descent

- In SGD, we update parameters after seeing each each point
- Noisier curve for iteration vs cost
- For a single update, it computes the gradient over one example. Hence lesser time

Stochastic Gradient Descent : Example

Learn $y=\theta_{0}+\theta_{1} x$ on following dataset, using SGD where initially $\left(\theta_{0}, \theta_{1}\right)=(4,0)$ and step-size, $\alpha=0.1$, for 1 epoch (3 iterations).

\mathbf{x}	\mathbf{y}
2	2
3	3
1	1

Stochastic Gradient Descent : Example

Our predictor, $\hat{y}=\theta_{0}+\theta_{1} x$

Error for $i^{\text {th }}$ datapoint, $e_{i}=y_{i}-\hat{y}_{i}$
$\epsilon_{1}=2-\theta_{0}-2 \theta_{1}$
$\epsilon_{2}=3-\theta_{0}-3 \theta_{1}$
$\epsilon_{3}=1-\theta_{0}-\theta_{1}$

While using SGD, we compute the MSE using only 1 datapoint per iteration.
So MSE is ϵ_{1}^{2} for iteration 1 and ϵ_{2}^{2} for iteration 2.

Stochastic Gradient Descent : Example

Contour plot of the cost functions for the three datapoints

Stochastic Gradient Descent : Example

For Iteration i
$\frac{\partial M S E}{\partial \theta_{0}}=2\left(y_{i}-\theta_{0}-\theta_{1} x_{i}\right)(-1)=2 \epsilon_{i}(-1)$
$\frac{\partial M S E}{\partial \theta_{1}}=2\left(y_{i}-\theta_{0}-\theta_{1} x_{i}\right)\left(-x_{i}\right)=2 \epsilon_{i}\left(-x_{i}\right)$

Stochastic Gradient Descent : Example

Iteration 1

$$
\begin{aligned}
& \theta_{0}=\theta_{0}-\alpha \frac{\partial M S E}{\partial \theta_{0}} \\
& \theta_{1}=\theta_{1}-\alpha \frac{\partial M S E}{\partial \theta_{1}}
\end{aligned}
$$

Stochastic Gradient Descent : Example

Iteration 1
$\theta_{0}=\theta_{0}-\alpha \frac{\partial M S E}{\partial \theta_{0}}$
$\theta_{0}=4-0.1 \times 2 \times(2-(4+0))(-1)$
$\theta_{0}=3.6$
$\theta_{1}=\theta_{1}-\alpha \frac{\partial M S E}{\partial \theta_{1}}$

Stochastic Gradient Descent : Example

Iteration 1

$$
\begin{aligned}
& \theta_{0}=\theta_{0}-\alpha \frac{\partial M S E}{\partial \theta_{0}} \\
& \theta_{0}=4-0.1 \times 2 \times(2-(4+0))(-1) \\
& \theta_{0}=3.6 \\
& \theta_{1}=\theta_{1}-\alpha \frac{\partial M S E}{\partial \theta_{1}} \\
& \theta_{1}=0-0.1 \times 2 \times(2-(4+0))(-2) \\
& \theta_{1}=-0.8
\end{aligned}
$$

Stochastic Gradient Descent : Example

Iteration 2

$$
\begin{aligned}
& \theta_{0}=\theta_{0}-\alpha \frac{\partial M S E}{\partial \theta_{0}} \\
& \theta_{1}=\theta_{1}-\alpha \frac{\partial M S E}{\partial \theta_{1}}
\end{aligned}
$$

Stochastic Gradient Descent : Example

Iteration 2
$\theta_{0}=\theta_{0}-\alpha \frac{\partial M S E}{\partial \theta_{0}}$
$\theta_{0}=3.6-0.1 \times 2 \times(3-(3.6-0.8 \times 3))(-1)$
$\theta_{0}=3.96$
$\theta_{1}=\theta_{1}-\alpha \frac{\partial M S E}{\partial \theta_{1}}$

Stochastic Gradient Descent : Example

Iteration 2

$$
\begin{aligned}
& \theta_{0}=\theta_{0}-\alpha \frac{\partial M S E}{\partial \theta_{0}} \\
& \theta_{0}=3.6-0.1 \times 2 \times(3-(3.6-0.8 \times 3))(-1) \\
& \theta_{0}=3.96 \\
& \theta_{1}=\theta_{1}-\alpha \frac{\partial M S E}{\partial \theta_{1}} \\
& \theta_{0}=-0.8-0.1 \times 2 \times(3-(3.6-0.8 \times 3))(-3) \\
& \theta_{1}=0.28
\end{aligned}
$$

Stochastic Gradient Descent : Example

Iteration 3

$$
\begin{aligned}
& \theta_{0}=\theta_{0}-\alpha \frac{\partial M S E}{\partial \theta_{0}} \\
& \theta_{1}=\theta_{1}-\alpha \frac{\partial M S E}{\partial \theta_{1}}
\end{aligned}
$$

Stochastic Gradient Descent : Example

Iteration 3
$\theta_{0}=\theta_{0}-\alpha \frac{\partial M S E}{\partial \theta_{0}}$
$\theta_{0}=3.96-0.1 \times 2 \times(1-(3.96+0.28 \times 1))(-1)$
$\theta_{0}=3.312$
$\theta_{1}=\theta_{1}-\alpha \frac{\partial M S E}{\partial \theta_{1}}$

Stochastic Gradient Descent : Example

Iteration 3

$$
\begin{aligned}
& \theta_{0}=\theta_{0}-\alpha \frac{\partial M S E}{\partial \theta_{0}} \\
& \theta_{0}=3.96-0.1 \times 2 \times(1-(3.96+0.28 \times 1))(-1) \\
& \theta_{0}=3.312 \\
& \theta_{1}=\theta_{1}-\alpha \frac{\partial M S E}{\partial \theta_{1}} \\
& \theta_{0}=0.28-0.1 \times 2 \times(1-(3.96+0.28 \times 1))(-1) \\
& \theta_{1}=-0.368
\end{aligned}
$$

Stochastic gradient is an unbiased estimator of the true gradient

True Gradient

Based on Estimation Theory and Machine Learning by Florian Hartmann

- Let us say we have a dataset \mathcal{D} containing input output pairs $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{N}, y_{N}\right)\right\}$

True Gradient

Based on Estimation Theory and Machine Learning by Florian Hartmann

- Let us say we have a dataset \mathcal{D} containing input output pairs $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{N}, y_{N}\right)\right\}$
- We can define overall loss as:

$$
L(\theta)=\frac{1}{N} \sum_{i=1}^{N} \operatorname{loss}\left(f\left(x_{i}, \theta\right), y_{i}\right)
$$

True Gradient

Based on Estimation Theory and Machine Learning by Florian Hartmann

- Let us say we have a dataset \mathcal{D} containing input output pairs $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{N}, y_{N}\right)\right\}$
- We can define overall loss as:

$$
L(\theta)=\frac{1}{N} \sum_{i=1}^{N} \operatorname{loss}\left(f\left(x_{i}, \theta\right), y_{i}\right)
$$

- loss can be any loss function such as squared loss, cross-entropy loss etc.

$$
\operatorname{loss}\left(f\left(x_{i}, \theta\right), y_{i}\right)=\left(f\left(x_{i}, \theta\right)-y_{i}\right)^{2}
$$

True Gradient

- The true gradient of the loss function is given by:

$$
\begin{aligned}
\nabla L & =\nabla \frac{1}{n} \sum_{i=1}^{n} \operatorname{loss}\left(f\left(x_{i}\right), y_{i}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} \nabla \operatorname{loss}\left(f\left(x_{i}\right), y_{i}\right)
\end{aligned}
$$

True Gradient

- The true gradient of the loss function is given by:

$$
\begin{aligned}
\nabla L & =\nabla \frac{1}{n} \sum_{i=1}^{n} \operatorname{loss}\left(f\left(x_{i}\right), y_{i}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} \nabla \operatorname{loss}\left(f\left(x_{i}\right), y_{i}\right)
\end{aligned}
$$

- The above is a consequence of linearity of the gradient operator.

Estimator for the true gradient

- In practice, we do not have access to the true gradient

Estimator for the true gradient

- In practice, we do not have access to the true gradient
- We can only estimate the true gradient using a subset of the data

Estimator for the true gradient

- In practice, we do not have access to the true gradient
- We can only estimate the true gradient using a subset of the data
- For SGD, we use a single example to estimate the true gradient, for mini-batch gradient descent, we use a mini-batch of examples to estimate the true gradient

Estimator for the true gradient

- In practice, we do not have access to the true gradient
- We can only estimate the true gradient using a subset of the data
- For SGD, we use a single example to estimate the true gradient, for mini-batch gradient descent, we use a mini-batch of examples to estimate the true gradient
- Let us say we have a sample: (x, y)

Estimator for the true gradient

- In practice, we do not have access to the true gradient
- We can only estimate the true gradient using a subset of the data
- For SGD, we use a single example to estimate the true gradient, for mini-batch gradient descent, we use a mini-batch of examples to estimate the true gradient
- Let us say we have a sample: (x, y)
- The estimated gradient is given by:

$$
\nabla \tilde{L}=\nabla \operatorname{loss}(f(x), y)
$$

Bias of the estimator

- One measure for the quality of an estimator \tilde{X} is its bias or how far off its estimate is on average from the true value X :

$$
\operatorname{bias}(X)=\mathbb{E}[\tilde{X}]-X
$$

Bias of the estimator

- One measure for the quality of an estimator \tilde{X} is its bias or how far off its estimate is on average from the true value X :

$$
\operatorname{bias}(X)=\mathbb{E}[\tilde{X}]-X
$$

- Using the rules of expectation, we can show that the expected value of the estimated gradient is the true gradient:

$$
\begin{aligned}
\mathbb{E}[\nabla \tilde{L}] & =\sum_{i=1}^{n} \frac{1}{n} \nabla \operatorname{loss}\left(f\left(x_{i}\right), y_{i}\right) \\
& =\frac{1}{n} \nabla \sum_{i=1}^{n} \operatorname{loss}\left(f\left(x_{i}\right), y_{i}\right) \\
& =\nabla L
\end{aligned}
$$

Bias of the estimator

- One measure for the quality of an estimator \tilde{X} is its bias or how far off its estimate is on average from the true value X :

$$
\operatorname{bias}(X)=\mathbb{E}[\tilde{X}]-X
$$

- Using the rules of expectation, we can show that the expected value of the estimated gradient is the true gradient:

$$
\begin{aligned}
\mathbb{E}[\nabla \tilde{L}] & =\sum_{i=1}^{n} \frac{1}{n} \nabla \operatorname{loss}\left(f\left(x_{i}\right), y_{i}\right) \\
& =\frac{1}{n} \nabla \sum_{i=1}^{n} \operatorname{loss}\left(f\left(x_{i}\right), y_{i}\right) \\
& =\nabla L
\end{aligned}
$$

- Thus, the estimated gradient is an unbiased estimator of the true gradient

x	y
$-x_{1}^{\top}$	y_{1}
\vdots	
\vdots	
$-x_{N}{ }^{3}$	

x	y	$\hat{y}=f(x, \theta)$
$-x_{1}^{\top}$	y_{1}	\hat{y}_{1}
\vdots		\vdots
\vdots		\vdots
$-x_{N}^{\top}$	y_{N}	\hat{y}_{N}

LOSS SURFACE OVER

LOSS SURFACE OVER $6 \mathrm{~N}^{\prime}$ EXAMPLES

LOSS SURFACE OVER $6 \mathrm{~N}^{\prime}$ EXAMPLES

CONS DER Ind vidual data points to compute Loss

$$
\nabla L
$$

 losses wot different points

Time Complexity: Gradient Descent v/s Normal Equation for Linear Regression

Normal Equation

- Consider $X \in \mathcal{R}^{N \times D}$

Normal Equation

- Consider $X \in \mathcal{R}^{N \times D}$
- N examples and D dimensions

Normal Equation

- Consider $X \in \mathcal{R}^{N \times D}$
- N examples and D dimensions
- What is the time complexity of solving the normal equation $\hat{\theta}=\left(X^{T} X\right)^{-1} X^{T} y ?$

Normal Equation

- X has dimensions $N \times D, X^{T}$ has dimensions $D \times N$

Normal Equation

- X has dimensions $N \times D, X^{T}$ has dimensions $D \times N$
- $X^{T} X$ is a matrix product of matrices of size: $D \times N$ and $N \times D$, which is $\mathcal{O}\left(D^{2} N\right)$

Normal Equation

- X has dimensions $N \times D, X^{T}$ has dimensions $D \times N$
- $X^{T} X$ is a matrix product of matrices of size: $D \times N$ and $N \times D$, which is $\mathcal{O}\left(D^{2} N\right)$
- Inversion of $X^{\top} X$ is an inversion of a $D \times D$ matrix, which is $\mathcal{O}\left(D^{3}\right)$

Normal Equation

- X has dimensions $N \times D, X^{T}$ has dimensions $D \times N$
- $X^{T} X$ is a matrix product of matrices of size: $D \times N$ and $N \times D$, which is $\mathcal{O}\left(D^{2} N\right)$
- Inversion of $X^{\top} X$ is an inversion of a $D \times D$ matrix, which is $\mathcal{O}\left(D^{3}\right)$
- $X^{T} y$ is a matrix vector product of size $D \times N$ and $N \times 1$, which is $\mathcal{O}(D N)$

Normal Equation

- X has dimensions $N \times D, X^{T}$ has dimensions $D \times N$
- $X^{T} X$ is a matrix product of matrices of size: $D \times N$ and $N \times D$, which is $\mathcal{O}\left(D^{2} N\right)$
- Inversion of $X^{T} X$ is an inversion of a $D \times D$ matrix, which is $\mathcal{O}\left(D^{3}\right)$
- $X^{T} y$ is a matrix vector product of size $D \times N$ and $N \times 1$, which is $\mathcal{O}(D N)$
- $\left(X^{\top} X\right)^{-1} X^{\top} y$ is a matrix product of a $D \times D$ matrix and $D \times 1$ matrix, which is $\mathcal{O}\left(D^{2}\right)$

Normal Equation

- X has dimensions $N \times D, X^{T}$ has dimensions $D \times N$
- $X^{T} X$ is a matrix product of matrices of size: $D \times N$ and $N \times D$, which is $\mathcal{O}\left(D^{2} N\right)$
- Inversion of $X^{T} X$ is an inversion of a $D \times D$ matrix, which is $\mathcal{O}\left(D^{3}\right)$
- $X^{T} y$ is a matrix vector product of size $D \times N$ and $N \times 1$, which is $\mathcal{O}(D N)$
- $\left(X^{\top} X\right)^{-1} X^{\top} y$ is a matrix product of a $D \times D$ matrix and $D \times 1$ matrix, which is $\mathcal{O}\left(D^{2}\right)$
- Overall complexity: $\mathcal{O}\left(D^{2} N\right)+\mathcal{O}\left(D^{3}\right)+\mathcal{O}(D N)+\mathcal{O}\left(D^{2}\right)$ $=\mathcal{O}\left(D^{2} N\right)+\mathcal{O}\left(D^{3}\right)$

Normal Equation

- X has dimensions $N \times D, X^{T}$ has dimensions $D \times N$
- $X^{T} X$ is a matrix product of matrices of size: $D \times N$ and $N \times D$, which is $\mathcal{O}\left(D^{2} N\right)$
- Inversion of $X^{T} X$ is an inversion of a $D \times D$ matrix, which is $\mathcal{O}\left(D^{3}\right)$
- $X^{T} y$ is a matrix vector product of size $D \times N$ and $N \times 1$, which is $\mathcal{O}(D N)$
- $\left(X^{\top} X\right)^{-1} X^{\top} y$ is a matrix product of a $D \times D$ matrix and $D \times 1$ matrix, which is $\mathcal{O}\left(D^{2}\right)$
- Overall complexity: $\mathcal{O}\left(D^{2} N\right)+\mathcal{O}\left(D^{3}\right)+\mathcal{O}(D N)+\mathcal{O}\left(D^{2}\right)$ $=\mathcal{O}\left(D^{2} N\right)+\mathcal{O}\left(D^{3}\right)$
- Scales cubic in the number of columns/features of X

Gradient Descent

Start with random values of θ_{0} and θ_{1}
Till convergence

- $\theta_{0}=\theta_{0}-\alpha \frac{\partial}{\partial \theta_{0}}\left(\sum \epsilon_{i}^{2}\right)$

Gradient Descent

Start with random values of θ_{0} and θ_{1}
Till convergence

- $\theta_{0}=\theta_{0}-\alpha \frac{\partial}{\partial \theta_{0}}\left(\sum \epsilon_{i}^{2}\right)$
- $\theta_{1}=\theta_{1}-\alpha \frac{\partial}{\partial \theta_{1}}\left(\sum \epsilon_{i}^{2}\right)$

Gradient Descent

Start with random values of θ_{0} and θ_{1}
Till convergence

- $\theta_{0}=\theta_{0}-\alpha \frac{\partial}{\partial \theta_{0}}\left(\sum \epsilon_{i}^{2}\right)$
- $\theta_{1}=\theta_{1}-\alpha \frac{\partial}{\partial \theta_{1}}\left(\sum \epsilon_{i}^{2}\right)$
- Question: Can you write the above for D dimensional data in vectorised form?

Gradient Descent

Start with random values of θ_{0} and θ_{1}
Till convergence

- $\theta_{0}=\theta_{0}-\alpha \frac{\partial}{\partial \theta_{0}}\left(\sum \epsilon_{i}^{2}\right)$
- $\theta_{1}=\theta_{1}-\alpha \frac{\partial}{\partial \theta_{1}}\left(\sum \epsilon_{i}^{2}\right)$
- Question: Can you write the above for D dimensional data in vectorised form?
- $\theta_{0}=\theta_{0}-\alpha \frac{\partial}{\partial \theta_{0}}(y-X \theta)^{\top}(y-X \theta)$
$\theta_{1}=\theta_{1}-\alpha \frac{\partial}{\partial \theta_{1}}(y-X \theta)^{\top}(y-X \theta)$
引

$$
\theta_{D}=\theta_{D}-\alpha \frac{\partial}{\partial \theta_{D}}(y-X \theta)^{\top}(y-X \theta)
$$

Gradient Descent

Start with random values of θ_{0} and θ_{1}
Till convergence

- $\theta_{0}=\theta_{0}-\alpha \frac{\partial}{\partial \theta_{0}}\left(\sum \epsilon_{i}^{2}\right)$
- $\theta_{1}=\theta_{1}-\alpha \frac{\partial}{\partial \theta_{1}}\left(\sum \epsilon_{i}^{2}\right)$
- Question: Can you write the above for D dimensional data in vectorised form?
- $\theta_{0}=\theta_{0}-\alpha \frac{\partial}{\partial \theta_{0}}(y-X \theta)^{\top}(y-X \theta)$
$\theta_{1}=\theta_{1}-\alpha \frac{\partial}{\partial \theta_{1}}(y-X \theta)^{\top}(y-X \theta)$
:
$\theta_{D}=\theta_{D}-\alpha \frac{\partial}{\partial \theta_{D}}(y-X \theta)^{\top}(y-X \theta)$
- $\theta=\theta-\alpha \frac{\partial}{\partial \theta}(y-X \theta)^{\top}(y-X \theta)$

Gradient Descent

$$
\begin{aligned}
& \frac{\partial}{\partial \theta}(y-X \theta)^{\top}(y-X \theta) \\
& =\frac{\partial}{\partial \theta}\left(y^{\top}-\theta^{\top} X^{\top}\right)(y-X \theta) \\
& =\frac{\partial}{\partial \theta}\left(y^{\top} y-\theta^{\top} X^{\top} y-y^{\top} x \theta+\theta^{\top} X^{\top} X \theta\right) \\
& =-2 X^{\top} y+2 X^{\top} x \theta \\
& =2 X^{\top}(X \theta-y)
\end{aligned}
$$

Gradient Descent

We can write the vectorised update equation as follows, for each iteration

$$
\theta=\theta-\alpha X^{\top}(X \theta-y)
$$

Gradient Descent

We can write the vectorised update equation as follows, for each iteration

$$
\theta=\theta-\alpha X^{\top}(X \theta-y)
$$

For t iterations, what is the computational complexity of our gradient descent solution?

Gradient Descent

We can write the vectorised update equation as follows, for each iteration
$\theta=\theta-\alpha X^{\top}(X \theta-y)$
For t iterations, what is the computational complexity of our gradient descent solution?
Hint, rewrite the above as: $\theta=\theta-\alpha X^{\top} X \theta+\alpha X^{\top} y$

Gradient Descent

We can write the vectorised update equation as follows, for each iteration
$\theta=\theta-\alpha X^{\top}(X \theta-y)$
For t iterations, what is the computational complexity of our gradient descent solution?
Hint, rewrite the above as: $\theta=\theta-\alpha X^{\top} X \theta+\alpha X^{\top} y$
Complexity of computing $X^{\top} y$ is $\mathcal{O}(D N)$

Gradient Descent

We can write the vectorised update equation as follows, for each iteration
$\theta=\theta-\alpha X^{\top}(X \theta-y)$
For t iterations, what is the computational complexity of our gradient descent solution?

Hint, rewrite the above as: $\theta=\theta-\alpha X^{\top} X \theta+\alpha X^{\top} y$
Complexity of computing $X^{\top} y$ is $\mathcal{O}(D N)$
Complexity of computing $\alpha X^{\top} y$ once we have $X^{\top} y$ is $\mathcal{O}(D)$ since $X^{\top} y$ has D entries

Gradient Descent

We can write the vectorised update equation as follows, for each iteration
$\theta=\theta-\alpha X^{\top}(X \theta-y)$
For t iterations, what is the computational complexity of our gradient descent solution?
Hint, rewrite the above as: $\theta=\theta-\alpha X^{\top} X \theta+\alpha X^{\top} y$
Complexity of computing $X^{\top} y$ is $\mathcal{O}(D N)$
Complexity of computing $\alpha X^{\top} y$ once we have $X^{\top} y$ is $\mathcal{O}(D)$ since $X^{\top} y$ has D entries

Complexity of computing $X^{\top} X$ is $\mathcal{O}\left(D^{2} N\right)$ and then multiplying with α is $\mathcal{O}\left(D^{2}\right)$

Gradient Descent

We can write the vectorised update equation as follows, for each iteration
$\theta=\theta-\alpha X^{\top}(X \theta-y)$
For t iterations, what is the computational complexity of our gradient descent solution?

Hint, rewrite the above as: $\theta=\theta-\alpha X^{\top} X \theta+\alpha X^{\top} y$
Complexity of computing $X^{\top} y$ is $\mathcal{O}(D N)$
Complexity of computing $\alpha X^{\top} y$ once we have $X^{\top} y$ is $\mathcal{O}(D)$ since $X^{\top} y$ has D entries

Complexity of computing $X^{\top} X$ is $\mathcal{O}\left(D^{2} N\right)$ and then multiplying with α is $\mathcal{O}\left(D^{2}\right)$

All of the above need only be calculated once!

Gradient Descent

Gradient Descent

For each of the t iterations, we now need to first multiply $\alpha X^{\top} X$ with θ which is matrix multiplication of a $D \times D$ matrix with a $D \times 1$, which is $\mathcal{O}\left(D^{2}\right)$

Gradient Descent

For each of the t iterations, we now need to first multiply $\alpha X^{\top} X$ with θ which is matrix multiplication of a $D \times D$ matrix with a $D \times 1$, which is $\mathcal{O}\left(D^{2}\right)$

The remaining subtraction/addition can be done in $\mathcal{O}(D)$ for each iteration.

Gradient Descent

For each of the t iterations, we now need to first multiply $\alpha X^{\top} X$ with θ which is matrix multiplication of a $D \times D$ matrix with a $D \times 1$, which is $\mathcal{O}\left(D^{2}\right)$

The remaining subtraction/addition can be done in $\mathcal{O}(D)$ for each iteration.

What is overall computational complexity?

Gradient Descent

For each of the t iterations, we now need to first multiply $\alpha X^{\top} X$ with θ which is matrix multiplication of a $D \times D$ matrix with a $D \times 1$, which is $\mathcal{O}\left(D^{2}\right)$

The remaining subtraction/addition can be done in $\mathcal{O}(D)$ for each iteration.

What is overall computational complexity?
$\mathcal{O}\left(t D^{2}\right)+\mathcal{O}\left(D^{2} N\right)=\mathcal{O}\left((t+N) D^{2}\right)$

Gradient Descent (Alternative)

Gradient Descent (Alternative)

If we do not rewrite the expression $\theta=\theta-\alpha X^{\top}(X \theta-y)$
For each iteration, we have:

- Computing $X \theta$ is $\mathcal{O}(N D)$

Gradient Descent (Alternative)

If we do not rewrite the expression $\theta=\theta-\alpha X^{\top}(X \theta-y)$
For each iteration, we have:

- Computing $X \theta$ is $\mathcal{O}(N D)$
- Computing $X \theta-y$ is $\mathcal{O}(N)$

Gradient Descent (Alternative)

If we do not rewrite the expression $\theta=\theta-\alpha X^{\top}(X \theta-y)$
For each iteration, we have:

- Computing $X \theta$ is $\mathcal{O}(N D)$
- Computing $X \theta-y$ is $\mathcal{O}(N)$
- Computing αX^{\top} is $\mathcal{O}(N D)$

Gradient Descent (Alternative)

If we do not rewrite the expression $\theta=\theta-\alpha X^{\top}(X \theta-y)$
For each iteration, we have:

- Computing $X \theta$ is $\mathcal{O}(N D)$
- Computing $X \theta-y$ is $\mathcal{O}(N)$
- Computing αX^{\top} is $\mathcal{O}(N D)$
- Computing $\alpha X^{\top}(X \theta-y)$ is $\mathcal{O}(N D)$

Gradient Descent (Alternative)

If we do not rewrite the expression $\theta=\theta-\alpha X^{\top}(X \theta-y)$
For each iteration, we have:

- Computing $X \theta$ is $\mathcal{O}(N D)$
- Computing $X \theta-y$ is $\mathcal{O}(N)$
- Computing αX^{\top} is $\mathcal{O}(N D)$
- Computing $\alpha X^{\top}(X \theta-y)$ is $\mathcal{O}(N D)$
- Computing $\theta=\theta-\alpha X^{\top}(X \theta-y)$ is $\mathcal{O}(N)$

Gradient Descent (Alternative)

If we do not rewrite the expression $\theta=\theta-\alpha X^{\top}(X \theta-y)$
For each iteration, we have:

- Computing $X \theta$ is $\mathcal{O}(N D)$
- Computing $X \theta-y$ is $\mathcal{O}(N)$
- Computing αX^{\top} is $\mathcal{O}(N D)$
- Computing $\alpha X^{\top}(X \theta-y)$ is $\mathcal{O}(N D)$
- Computing $\theta=\theta-\alpha X^{\top}(X \theta-y)$ is $\mathcal{O}(N)$

Gradient Descent (Alternative)

If we do not rewrite the expression $\theta=\theta-\alpha X^{\top}(X \theta-y)$
For each iteration, we have:

- Computing $X \theta$ is $\mathcal{O}(N D)$
- Computing $X \theta-y$ is $\mathcal{O}(N)$
- Computing αX^{\top} is $\mathcal{O}(N D)$
- Computing $\alpha X^{\top}(X \theta-y)$ is $\mathcal{O}(N D)$
- Computing $\theta=\theta-\alpha X^{\top}(X \theta-y)$ is $\mathcal{O}(N)$

What is overall computational complexity?

Gradient Descent (Alternative)

If we do not rewrite the expression $\theta=\theta-\alpha X^{\top}(X \theta-y)$
For each iteration, we have:

- Computing $X \theta$ is $\mathcal{O}(N D)$
- Computing $X \theta-y$ is $\mathcal{O}(N)$
- Computing αX^{\top} is $\mathcal{O}(N D)$
- Computing $\alpha X^{\top}(X \theta-y)$ is $\mathcal{O}(N D)$
- Computing $\theta=\theta-\alpha X^{\top}(X \theta-y)$ is $\mathcal{O}(N)$

What is overall computational complexity?
$\mathcal{O}(N D t)$

