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Optimization algorithms

e We often want to minimize/maximize a function

e \We wanted to minimize the cost function:
F(0) = (y — X0) " (y — X0) (1)

e Note, here 0 is the parameter vector
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Optimization algorithms

In general, we have following components:

e Maximize or Minimize a function subject to some constraints

Today, we will focus on unconstrained optimization (no

constraints)

We will focus on minimization

e Goal:

0" = argeminf(é’) (2)
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Introduction

Gradient descent is an optimization algorithm

It is used to find the minimum of a function in unconstrained

settings

It is an iterative algorithm

It is a first order optimization algorithm

It is a local search algorithm /greedy
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Gradient Descent Algorithm

1. Initialize 0 to some random value

2. Compute the gradient of the cost function at 6, Vf(6)

3. For Iteration i (i =1,2,...) or until convergence:
e 0+ 0;_1— an(@,-_l)
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Taylor’s Series

e Taylor's series is a way to approximate a function f(x) around
a point xg using a polynomial

e The polynomial is given by

f‘/ X 1 X
f(x) = f(x0) + (110) (x — x0) + ;0) (x—x0)+... (3)
e The vector form of the above equation is given by:
o I N e
f(xX) = f(Xo)—l—Vf(xo)T(X—X0)+§(x—xo)TV2f(X0)(X—X0)+. .

(4)
e where V2f(xp) is the Hessian matrix and V£(xp) is the

gradient vector
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Taylor’s Series

e Let us consider f(x) = cos(x) and xp =0

e Then, we have:

o f(xp) =cos(0) =1

o f'(xp) = —sin(0) =0

e ’(xp) = —cos(0) = —1

e We can write the second order Taylor's series as:

o f(x)=140(x-0)+ 5 (x—02=1-%
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Taylor’s series

e Let us consider another example: f(x) = x?+2 and xp = 2

Question: How does the first order Taylor's series
approximation look like?

First order Taylor's series approximation is given by:
F(x) = F(x0) + F'(x0)(x — x0) = 6 + 4(x — 2) = 4x — 2



Taylor’s Series (Alternative form)

e \We have:




Taylor’s Series (Alternative form)

e \We have:

f/(Xo)
1!

f"(Xo)
2!

f(x) =f(x) + (x —x0) + (x—=x0)2+... (5)

e Let us consider x = xg + Ax where Ax is a small quantity



Taylor’s Series (Alternative form)

e \We have:

f/(Xo)
1!

f"(Xo)
2!

f(x) =f(x) + (x —x0) + (x—=x0)2+... (5)

e Let us consider x = xg + Ax where Ax is a small quantity

e Then, we have:

MAX+MAX2+... (6)

f(Xo + AX) = f(Xo) + 1 ol



Taylor’s Series (Alternative form)

e \We have:

f'(x0)
1!

f"(Xo)
2!

f(x) =f(x) + (x —x0) + (x—=x0)2+... (5)

e Let us consider x = xg + Ax where Ax is a small quantity
e Then, we have:

f’(Xo)AX N " (x0)

2
V AL (6)

f(Xo -+ AX) = f(Xo) +

e Let us assume Ax is small enough such that Ax? and higher

order terms can be ignored



Taylor’s Series (Alternative form)

e \We have:

f'(x0)
1!

f"(Xo)
2!

f(x) =f(x) + (x —x0) + (x—=x0)2+... (5)

Let us consider x = xp + Ax where Ax is a small quantity

Then, we have:

f’(Xo)AX N " (x0)

2
V AL (6)

f(Xo -+ AX) = f(Xo) +

Let us assume Ax is small enough such that Ax? and higher

order terms can be ignored

e Then, we have: f(xo + Ax) = f(x0) + fl(l)fo)AX
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Taylor’s Series to Gradient Descent

e Then, we have: f(xp + Ax) = f(x0) + f/gTO)AX
e Or, in vector form: f(xp + AX) ~ f(xg) + VF(x0) T AX
e Goal: Find AX such that f(xp + AX) is minimized

e This is equivalent to minimizing f(xg) + Vf(x0) T AX

e This happens when vectors Vf(xg) and Ax are at phase angle
of 180°

e This happens when AX = —aVf(xp) where « is a scalar

e This is the gradient descent algorithm: xi = xp — aVf(xg)

10



Effect of learning rate

Low learning rate a« = 0.01 : Converges slowly
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Effect of learning rate

High learning rate a = 0.8: Converges quickly, but might overshoot
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Effect of learning rate

Very high learning rate o = 1.01: Diverges
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Effect of learning rate

Appropriate learning rate a = 0.1
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Gradient Descent for linear
regression
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Some commonly confused terms

e Loss function is usually a function defined on a data point,
prediction and label, and measures the penalty.

e square loss / (f (xi|60),y;) = (f (xi|0) — yi)?, used in linear
regression

e Cost function is usually more general. It might be a sum of
loss functions over your training set plus some model
complexity penalty (regularization). For example:

e Mean Squared Error MSE(0) = L SN ( (xi]6) — yi)?
e Objective function is the most general term for any function

that you optimize during training.

ii5)



Gradient Descent : Example

Learn y = 0y + 01x on following dataset, using gradient descent
where initially (6o, 601) = (4,0) and step-size, o = 0.1, for 2
iterations.

W[N| | X
W[N |+ |

16



Gradient Descent : Example

Our predictor, y = 09 + 01x

Error for it" datapoint, €; = y; — Vi
€e1=1—0y— 01

€2 =2 — 06y — 204

€3 =3 — 6y — 301

e +e3+e3 144302+ 1462 — 1265 — 2861 + 12606,

MSE = 3 3

17



Difference between SSE and MSE

E €2 increases as the number of examples increase

So, we use MSE

MSE:%ZE%

Here n denotes the number of samples

18



Gradient Descent : Example

23 (vi— 00— 01x) (=1) 23> ei(-1)

OMSE  ~ 4 B
00y N N N
23 (vi — 00 — 01x) (=xi) 2> €i (—xi)

OMSE "5
00, N - N

19



Gradient Descent : Example

Iteration 1
OMSE

Oy = 0y —

0 0— & 90,

6, — 6, a@l\/lSE

001
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Gradient Descent : Example

Iteration 1

OMSE
009

g =0y — o

0o = 4 — 0_2((1—(4+0))(—1)+(2—(4+30))(—1)+(3—(4+0))(—1))

0o = 3.6

OMSE
001

91:91—04

20



Gradient Descent : Example

Iteration 1

0o = 4 — 0_2((1*(4+0))(*1)+(2*(4+30))(*1)+(3*(4+0))(*1))

0o = 3.6

OMSE
001

91:91—04

61 = 0 — 0.2(I=(HONDHE=(4+0)(-2)+(3-(++0)(=3)

01 = —0.67
20



Gradient Descent : Example

Iteration 2
OMSE
0o = 0y —
0 0—« 50,
M
6, = 6, a@ SE

001

21



Gradient Descent : Example

Iteration 2
OMSE

Oy = 0y —

0 0— & 50,

Oy =

1—(3.6—0.67))(—1)+(2—(3.6—0.67x2))(—1)+(3—(3.6—0.67x3))(—1
3.6 — 0.0 DDHE=(3.6-0.67x2))(— 1)+ x3))(=1))

0o = 3.54

OMSE
001

01 =01 — «

21



Gradient Descent : Example

Iteration 2
OMSE

Oy = 0y —

0 0— & 50,

Oy =

1—(3.6—-0.67))(—1)+(2—(3.6—0.67x2))(—1)+(3—(3.6—-0.67x3))(—1
3.6 — 0.0~ D(DHE=(3.6-0.67x2)) 1)+ x3))(~1))

0o = 3.54

OMSE
61 =61 —
1 1—«Q 90,
6o =

1—(3.6-0.67))(—1)+(2—(3.6—0.67x2))(—2)+(3—(3.6-0.67x3))(—3
3.6 — 0.2=( N(E=1)+2=( 3X N(=2)+B=( x3))(=3))

6o = —0.55 21



Gradient Descent : Example (lteraion 0)

Contour Plot

400
4 ) 64 —— Line fit
300 ——— Actual line
9 200
4 -
100
= 0
50
2 -
-2 25
1 4
4 O o
0
—4 -2 0 2 4

X
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Gradient Descent : Example (lteraion 2)

Contour Plot

400
. 6 —— Line fit
300 ——— Actual line
200
4 -
100
50
2 -
25
10 0
0 T T T T T T
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Gradient Descent : Example (lteraion 4)

Contour Plot

400
4 X —— Line fit
. 6
300 ——— Actual line
2 200
4 -
100
> 0
50
2 -
-2 25
4 10 0
0
—4 -2 0 2 4

X
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Gradient Descent : Example (lteraion 6)

Contour Plot

400
4 ) 64 —— Line fit
300 ——— Actual line
9 200
4 -
100
= 0
50
2 -
-2 25
1 4
4 O o
0
—4 -2 0 2 4

X
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Gradient Descent : Example (lteraion 8)

Contour Plot

400
4 ) 64 —— Line fit
300 ——— Actual line
9 200
4 -
100
= 0
50
2 -
-2 25
1 4
4 O o
0
—4 -2 0 2 4

X
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Gradient Descent : Example (Iteraion 10)

Contour Plot

400
4 ) . —— Line fit
300 6 ——— Actual line
9 200
4 -
100
= 0
50
2 -
-2 25
1 4
4 O o
0
—4 -2 0 2 4

X
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Gradient Descent : Example (lteraion 12)

Contour Plot

400
. 6 —— Line fit
300 ——— Actual line
200
4 -
100
50
2 -
25
10 0
0 T T T T T T
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Gradient Descent : Example (Iteraion 14)

Contour Plot

400
4 X —— Line fit
. 6
300 ——— Actual line
2 200
4 -
100
> 0
50
2 -
-2 25
4 10 0
0
—4 -2 0 2 4

X
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Gradient Descent : Example (Iteraion 16)

Contour Plot

400
4 ) . —— Line fit
300 6 ——— Actual line
9 200
4 -
100
= 0
50
2 -
-2 25
1 4
4 O o
0
—4 -2 0 2 4

X
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Gradient Descent : Example (Iteraion 18)

Contour Plot

400
4 ) . —— Line fit
300 6 ——— Actual line
9 200
4 -
100
= 0
50
2 -
-2 25
1 4
4 O o
0 T T
—4 -2 0 2 4

X
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Gradient Descent : Example (Iteraion 20)

Contour Plot

400
64 —— Line fit
300 ——— Actual line
200
4 -
100
50
2 -
25
10 0
0 T T T T T T
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Gradient Descent : Example (lteraion 22)

Contour Plot

400
4 X —— Line fit
. 6
300 ——— Actual line
2 200
4 -
100
> 0
50
2 -
-2 25
4 10 0
0 T T
—4 -2 0 2 4

X
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Gradient Descent : Example (lteraion 24)

Contour Plot

400
4 X —— Line fit
. 6
300 ——— Actual line
2 200
4 -
100
> 0
50
2 -
-2 25
4 10 0
0
—4 -2 0 2 4

X
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Gradient Descent : Example (Iteraion 26)

Contour Plot

400
4 ) . —— Line fit
300 6 ——— Actual line
9 200
4 -
100
= 0
50
2 -
-2 25
1 4
4 O o
0
—4 -2 0 2 4

X
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Gradient Descent : Example (Iteraion 28)

Contour Plot

400
4 ) . —— Line fit
300 6 ——— Actual line
9 200
4 -
100
= 0
50
2 -
-2 25
1 4
4 O o
0
—4 -2 0 2 4

X
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Gradient Descent : Example (Iteraion 30)

Contour Plot

400
64 —— Line fit
300 ——— Actual line
200
4 -
100
50
2 -
25
10 0
0 T T T T T T
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Gradient Descent : Example (Iteraion 32)

Contour Plot

400
4 ) . —— Line fit
300 6 ——— Actual line
9 200
4 -
100
= 0
50
2 -
-2 25
1 4
4 O o
0
—4 -2 0 2 4

X
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Gradient Descent : Example (Iteraion 34)

Contour Plot

400
64 —— Line fit
300 ——— Actual line
200
4 -
100
50
2 -
25
10 0
0 T T T T T T
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Gradient Descent : Example (Iteraion 36)

Contour Plot

400
64 —— Line fit
300 ——— Actual line
200
4 -
100
50
2 -
25
10 0
0 T T T T T T
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Gradient Descent : Example (Iteraion 38)

Contour Plot

400
4 ) . —— Line fit
300 6 ——— Actual line
9 200
4 -
100
= 0
50
2 -
-2 25
1 4
4 O o
0
—4 -2 0 2 4

X
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Gradient Descent : Example (Iteraion 40)

Contour Plot

400
4 ) . —— Line fit
300 6 ——— Actual line
9 200
4 -
100
= 0
50
2 -
-2 25
1 4
4 O o
0
—4 -2 0 2 4

X
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Iteration v/s Epcohs for gradient descent

e |teration: Each time you update the parameters of the model
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Iteration v/s Epcohs for gradient descent

e |teration: Each time you update the parameters of the model

e Epoch: Each time you have seen all the set of examples
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Gradient Descent (GD)

e Dataset: D = {(X,y)} of size N

e Initialize 0

e For epoch e in [1, E]

Predict y = pred(X, )

Compute loss: J(0) = loss(y, y)
Compute gradient: VJ(0) = grad(J)(0)
Update: 8 =0 — aVJ(0)

44



Stochastic Gradient Descent (SGD)

e Dataset: D = {(X,y)} of size N

o Initialize 0
e For epoch e in [1, E]
e Shuffle D
e For iin [1,N]
e Predict y; = pred(Xi, 6)
e Compute loss: J(6) = loss(yi, yi)
e Compute gradient: VJ(0) = grad(J)(6)
e Update: 6 =60 — aVJ(0)

45



Mini-Batch Gradient Descent (MBGD)

e Dataset: D = {(X,y)} of size N
o Initialize 0
e For epoch e in [1, E]

e Shuffle D

e Batches = make_batches(D, B)

e For b in Batches
X by b=b
Predict y_b = pred(X_b, )
Compute loss: J(0) = loss(y_b, y_b)
Compute gradient: VJ(0) = grad(J)(0)
Update: 0 = 6 — aVJ(0)

46



Gradient Descent vs SGD

Vanilla Gradient Descent

e in Vanilla (Batch) gradient descent: We update params after
going through all the data
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Gradient Descent vs SGD

Vanilla Gradient Descent

e in Vanilla (Batch) gradient descent: We update params after
going through all the data

e Smooth curve for Iteration vs Cost

e For a single update, it needs to compute the gradient over all

the samples. Hence takes more time
Stochastic Gradient Descent

e In SGD, we update parameters after seeing each each point
e Noisier curve for iteration vs cost
e For a single update, it computes the gradient over one

example. Hence lesser time

47



Stochastic Gradient Descent : Example

Learn y = g + 01x on following dataset, using SGD where initially
(6o, 01) = (4,0) and step-size, a = 0.1, for 1 epoch (3 iterations).

=W N| X
= WN (<<
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Stochastic Gradient Descent : Example

Our predictor, y = 09 + 01x

Error for ith datapoint, e; = y; — y;
€1 =2—0y— 260,

e =3 —0y— 3601

e3=1—0y— 64

While using SGD, we compute the MSE using only 1 datapoint per
iteration.
So MSE is e% for iteration 1 and e% for iteration 2.
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Stochastic Gradient Descent : Example

Contour plot of the cost functions for the three datapoints

Contour Plot Contour Plot Contour Plot

T 400 T 400 400
r 300 r 300 r 300
r 200 r 200 r 200
- 100 - 100 - 100
50 50 50
25 25 25
10 10 10
-0 -0 -0

-5 5
x x x
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Stochastic Gradient Descent : Example

For lteration /

OMSE
9

2(yi — 0o — b1x;) (—1) = 2¢; (1)

OMSE
061

2(yi — 0o — 01x;) (—x) = 2¢; (—x;)
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Stochastic Gradient Descent : Example

Iteration 1
OMSE

Oy = 0y —

0 0— & 90,

0, — 0, — a@l\/lSE

001
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Stochastic Gradient Descent : Example

Iteration 1

OMSE

0o = Oy —
0= "0 A5y,

fo=4—01x2x(2—(4+0))(-1)
fo = 3.6

OMSE
001

01 =01 —«
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Stochastic Gradient Descent : Example

Iteration 1

OMSE
000

0y =0y — «
0p=4—-01x2x%x(2—(440))(-1)
O = 3.6

OMSE
001

91:91—()[
01 =0—-01x2x(2—(4+0))(-2)

01 =—0.8
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Stochastic Gradient Descent : Example

Iteration 2
OMSE

Oy = 0y —

0 0— & 90,

0, — 0, — a@l\/lSE

001

53



Stochastic Gradient Descent : Example

Iteration 2

OMSE

0o = Oy —
0= "0 A5y,

fo=3.6—0.1 x2x (3—(3.6—0.8 x 3))(—1)
fo = 3.96

OMSE
001

01 =01 —«
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Stochastic Gradient Descent : Example

Iteration 2

OMSE
000

0y =0y — «
p=36—-01x2x(3—(3.6-0.8x3))(-1)
0o = 3.96

OMSE
001

91 = 91 —
0o = —0.8—0.1 x 2 x (3— (3.6 — 0.8 x 3)) (—3)

01 =0.28
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Stochastic Gradient Descent : Example

Iteration 3
OMSE

O = 0y —

0 0 —« 90,

0, — 0; — a@l\/lSE

001
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Stochastic Gradient Descent : Example

Iteration 3

OMSE

0o = Oy —
0= "0 A5y,

fo =3.96 — 0.1 x 2 x (1 — (3.96 +0.28 x 1)) (—1)
0o = 3.312

OMSE
001

01 =01 —«
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Stochastic Gradient Descent : Example

Iteration 3

OMSE
000

0y =0y — «
0p=3.96—-0.1 x2x(1—(3.96+0.28 x1))(-1)
0o = 3.312

OMSE
001

91 = 91 —
0p =028 —0.1 x2x (1 —(3.9640.28 x 1)) (—1)

01 = —0.368
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Stochastic gradient is an unbiased
estimator of the true gradient



Based on Estimation Theory and Machine Learning by Florian
Hartmann

e Let us say we have a dataset D containing input output pairs

{Ga,y), (2, ¥2), -, (v, yw)
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Based on Estimation Theory and Machine Learning by Florian
Hartmann

e Let us say we have a dataset D containing input output pairs

{(Xlayl)v (X25.y2)7 DY (XNu.yN)}
e \We can define overall loss as:

1 N
L) = 5 Z loss(f(xi, 0), yi)
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Based on Estimation Theory and Machine Learning by Florian

Hartmann

e Let us say we have a dataset D containing input output pairs

{(X17y1)7 (X25.y2)7 DY (XNu.yN)}
e \We can define overall loss as:

1 N
L) = 5 Z loss(f(xi,0), yi)

e loss can be any loss function such as squared loss,
cross-entropy loss etc.

loss(f(xi, 0),yi) = (f(xi,0) — %)2
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e The true gradient of the loss function is given by:
vL=vl Z joss ( (x3) , i)
- n Pt 1) yl

1 n
== ZV loss (f (xi) , yi)
i=1
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e The true gradient of the loss function is given by:

1 n
VL=V- ; loss ( (xi) , yi)

1 n
== ZV loss (f (xi) , yi)
i=1

e The above is a consequence of linearity of the gradient
operator.
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Estimator for the true gradient

e |n practice, we do not have access to the true gradient
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Estimator for the true gradient

e |n practice, we do not have access to the true gradient

e We can only estimate the true gradient using a subset of the
data
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Estimator for the true gradient

e |n practice, we do not have access to the true gradient
e We can only estimate the true gradient using a subset of the
data

e For SGD, we use a single example to estimate the true
gradient, for mini-batch gradient descent, we use a mini-batch

of examples to estimate the true gradient
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Estimator for the true gradient

e |n practice, we do not have access to the true gradient

e We can only estimate the true gradient using a subset of the
data

e For SGD, we use a single example to estimate the true
gradient, for mini-batch gradient descent, we use a mini-batch

of examples to estimate the true gradient

e Let us say we have a sample: (x, y)
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Estimator for the true gradient

e |n practice, we do not have access to the true gradient

e We can only estimate the true gradient using a subset of the
data

e For SGD, we use a single example to estimate the true
gradient, for mini-batch gradient descent, we use a mini-batch

of examples to estimate the true gradient
e Let us say we have a sample: (x, y)

e The estimated gradient is given by:

VI = Vloss(f(x),y)
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Bias of the estimator

e One measure for the quality of an estimator X is its bias or
how far off its estimate is on average from the true value X :

bias(X) = E[X] — X
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Bias of the estimator

e One measure for the quality of an estimator X is its bias or
how far off its estimate is on average from the true value X :

bias(X) = E[X] — X

e Using the rules of expectation, we can show that the expected
value of the estimated gradient is the true gradient:

E[VZ] = Z %V loss (f (i), i)
i=1

1 n
= nV; loss (f (x;) , i)

=VL
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Bias of the estimator

e One measure for the quality of an estimator X is its bias or
how far off its estimate is on average from the true value X :

bias(X) = E[X] — X

e Using the rules of expectation, we can show that the expected
value of the estimated gradient is the true gradient:

E[VZ] = Z %V loss (f (i), i)
i=1

1 n
= HVZ;'OSSU(X,‘) Vi)

=VL
e Thus, the estimated gradient is an unbiased estimator of the

true gradient
58
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Time Complexity: Gradient Descent
v/s Normal Equation for Linear
Regression



Normal Equation

e Consider X € RNxD
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Normal Equation

e Consider X € RNxD

e N examples and D dimensions

59



Normal Equation

e Consider X € RVxP
e N examples and D dimensions

e What is the time complexity of solving the normal equation
0=(XTX)"1XTy?
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Normal Equation

e X has dimensions N x D, XT has dimensions D x N
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Normal Equation

e X has dimensions N x D, XT has dimensions D x N

e XX is a matrix product of matrices of size: D x N and
N x D, which is O(D?N)
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Normal Equation

e X has dimensions N x D, XT has dimensions D x N

e XX is a matrix product of matrices of size: D x N and
N x D, which is O(D?N)

e Inversion of X7 X is an inversion of a D x D matrix, which is
O(D?)
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Normal Equation

e X has dimensions N x D, XT has dimensions D x N

e XX is a matrix product of matrices of size: D x N and
N x D, which is O(D?N)

e Inversion of X7 X is an inversion of a D x D matrix, which is
O(D3)

e X Ty is a matrix vector product of size D x N and N x 1,
which is O(DN)
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Normal Equation

e X has dimensions N x D, X' has dimensions D x N

e XX is a matrix product of matrices of size: D x N and

N x D, which is O(D?N)

Inversion of X7 X is an inversion of a D x D matrix, which is
O(D3)

X Ty is a matrix vector product of size D x N and N x 1,
which is O(DN)

(XTX)"1XTy is a matrix product of a D x D matrix and

D x 1 matrix, which is O(D?)
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Normal Equation

e X has dimensions N x D, XT has dimensions D x N

e XX is a matrix product of matrices of size: D x N and
N x D, which is O(D?N)

e Inversion of X7 X is an inversion of a D x D matrix, which is
O(D3)

e X Ty is a matrix vector product of size D x N and N x 1,
which is O(DN)

e (XTX)"1XTy is a matrix product of a D x D matrix and
D x 1 matrix, which is O(D?)

e Overall complexity: O(D?N) + O(D3?) + O(DN) + O(D?)
= O(D?N) + O(D?)
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Normal Equation

e X has dimensions N x D, XT has dimensions D x N

e XX is a matrix product of matrices of size: D x N and
N x D, which is O(D?N)

e Inversion of X7 X is an inversion of a D x D matrix, which is
O(D3)

e X Ty is a matrix vector product of size D x N and N x 1,
which is O(DN)

e (XTX)"1XTy is a matrix product of a D x D matrix and
D x 1 matrix, which is O(D?)

e Overall complexity: O(D?N) + O(D3?) + O(DN) + O(D?)
= O(D?N) + O(D3)

e Scales cubic in the number of columns/features of X
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Gradient Descent

Start with random values of 0y and 6
Till convergence
0

— 0 — a (X &2
* o=t~ oz (S )
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Gradient Descent

Start with random values of 0y and 6
Till convergence

Y 2
° 90:90—05690(26,-)
9 2
° 91:91—04691(26,)

61



Gradient Descent

Start with random values of 0y and 6
Till convergence

Y 2
° 90:90—05690(26,-)
9 2
° 91:91—04691(26,)

e Question: Can you write the above for D dimensional data in
vectorised form?
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Gradient Descent

Start with random values of 0y and 6
Till convergence

o e
090—90—05690( 6)
0 2
091—91—a69(§ €7)

e Question: Can you write the above for D dimensional data in
vectorised form?

e 0y=10— aae (y — X0)" (y — X8)
01 =01 — O‘ae (y — XH) (y — X0)

fp :0D—a%(y—X9)T(y—X9)
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Gradient Descent

Start with random values of 0y and 6
Till convergence

0 e
090—90—04690( 6)
0 2
001—91—a69(§ €7)

Question: Can you write the above for D dimensional data in
vectorised form?

Oo = 0 — O‘ae (y — XH) (y — X0)

01 =01 — O‘ae (y — X9) (y — X0)

GDIHD—OZ%()/—XG)T(}/—XG)
9:9—04%(y—X9)T(y—X9)
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Gradient Descent

=g (vT —07XT) (y - X0)
= % (yTy — GTXTy = yTXG + HTXTXH)
= 2XTy+2XTx0

=2XT(X0 —y)
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Gradient Descent

We can write the vectorised update equation as follows, for each
iteration

0=0—aX"(X0—y)
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Gradient Descent

We can write the vectorised update equation as follows, for each
iteration

0=0—aX"(X0—y)

For t iterations, what is the computational complexity of our
gradient descent solution?
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Gradient Descent

We can write the vectorised update equation as follows, for each
iteration

0=0—aX"(X0—y)

For t iterations, what is the computational complexity of our
gradient descent solution?

Hint, rewrite the above as: 0 = 6 — aX " X6 + aXTy
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Gradient Descent

We can write the vectorised update equation as follows, for each
iteration

0=0—aX"(X0—y)

For t iterations, what is the computational complexity of our
gradient descent solution?

Hint, rewrite the above as: 0 = 6 — aX " X6 + aXTy

Complexity of computing X "y is O(DN)
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Gradient Descent

We can write the vectorised update equation as follows, for each

iteration
0=0—aX"(X0—y)

For t iterations, what is the computational complexity of our

gradient descent solution?
Hint, rewrite the above as: 0 = 6 — aX " X6 + aXTy
Complexity of computing X "y is O(DN)

Complexity of computing aX "y once we have Xy is O(D) since
X Ty has D entries
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Gradient Descent

We can write the vectorised update equation as follows, for each

iteration
0=0—aX"(X0—y)

For t iterations, what is the computational complexity of our

gradient descent solution?
Hint, rewrite the above as: 0 = 6 — aX " X6 + aXTy
Complexity of computing X "y is O(DN)

Complexity of computing aX "y once we have Xy is O(D) since
X Ty has D entries

Complexity of computing X ' X is O(D?N) and then multiplying
with a is O(D?)
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Gradient Descent

We can write the vectorised update equation as follows, for each
iteration

0=0—aX"(X0—y)

For t iterations, what is the computational complexity of our
gradient descent solution?

Hint, rewrite the above as: 0 = 6 — aX " X6 + aXTy
Complexity of computing X "y is O(DN)

Complexity of computing aX "y once we have Xy is O(D) since
X Ty has D entries

Complexity of computing X ' X is O(D?N) and then multiplying
with a is O(D?)

All of the above need only be calculated once! -



Gradient Descent
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Gradient Descent

For each of the t iterations, we now need to first multiply aX ™ X
with 6 which is matrix multiplication of a D x D matrix with a
D x 1, which is O(D?)
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Gradient Descent

For each of the t iterations, we now need to first multiply aX ™ X
with 6 which is matrix multiplication of a D x D matrix with a
D x 1, which is O(D?)

The remaining subtraction/addition can be done in O(D) for each
iteration.
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Gradient Descent

For each of the t iterations, we now need to first multiply aX ™ X
with 6 which is matrix multiplication of a D x D matrix with a
D x 1, which is O(D?)

The remaining subtraction/addition can be done in O(D) for each

iteration.

What is overall computational complexity?
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Gradient Descent

For each of the t iterations, we now need to first multiply aX ™ X
with 6 which is matrix multiplication of a D x D matrix with a
D x 1, which is O(D?)

The remaining subtraction/addition can be done in O(D) for each

iteration.
What is overall computational complexity?

O(tD?) + O(D?N) = O((t + N)D?)
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Gradient Descent (Alternative)
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Gradient Descent (Alternative)

If we do not rewrite the expression 6 = 6 — aX (X6 — y)

For each iteration, we have:

e Computing X6 is O(ND)
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Gradient Descent (Alternative)

If we do not rewrite the expression 6 = 6 — aX (X6 — y)

For each iteration, we have:

e Computing X6 is O(ND)
e Computing X0 — y is O(N)
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Gradient Descent (Alternative)

If we do not rewrite the expression 6 = 6 — aX (X6 — y)
For each iteration, we have:

e Computing X0 is O(ND)

e Computing X0 — y is O(N)

e Computing aX " is O(ND)
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Gradient Descent (Alternative)

If we do not rewrite the expression 6 = 6 — aX (X6 — y)
For each iteration, we have:

e Computing X6 is O(ND)

e Computing X0 — y is O(N)

e Computing aX " is O(ND)

e Computing aX (X6 — y) is O(ND)

e Computing 0 = 0 — aXT (X0 — y) is O(N)

What is overall computational complexity?
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Gradient Descent (Alternative)

If we do not rewrite the expression 6 = 6 — aX (X6 — y)
For each iteration, we have:

e Computing X6 is O(ND)

e Computing X0 — y is O(N)

e Computing aX " is O(ND)

e Computing aX (X6 — y) is O(ND)

e Computing 0 = 0 — aXT (X0 — y) is O(N)
What is overall computational complexity?

O(NDt)
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