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Parametric vs Non-Parametric Models

number of parame-
ters are less)

Parametric Non-Parametric
Parameter Number of param- | Number of parame-
eters is fixed w.rt | tersgrowsw.rt. toan
dataset size increase in dataset
size
Speed Quicker (as the | Longer (as number

of parameters are
less)

Assumptions

Strong Assumptions
(like linearity in Lin-
ear Regression)

Very few (sometimes
no) assumptions

Examples

Linear Regression

KNN, Decision Tree




Lazy vs Eager Strategies

Lazy Eager

Train Time | 0 #£0

Test Long (due to com- | Quick (as  only
parison with train | “parameters” are
data) involved)

Memory Store/Memorise en- | Store only learnt pa-
tire data rameters

Utility Useful for online
settings

Examples | KNN Linear Regression,

Decision Tree
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Important Considerations

- What are the features that will be considered for data
similarity?

- What is the distance metric that will be used to calculate
data similarity?

- What is the aggregation function that is going to be used?

- What are the number of neighbors that you are going to
take into consideration?

- What is the computational complexity of the algorithm
that you are implementing?



Important Considerations: Distance Metric

The Distance Metric acts as a measure of similarity between
the points.



Important Considerations: Distance Metric

The Distance Metric acts as a measure of similarity between
the points.
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Euclidean Distance



Important Considerations: Distance Metric
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Important Considerations: Distance Metric

The Distance Metric acts as a measure of similarity between

the points.
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Important Considerations: Value of K

Choosing the correct value of K is difficult.

Low values of K will result in each point having a very high
influence on the final output = noise will influence the
result

High values of K will result in smoother decision boundaries
— lower variance but also higher bias
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Dataset K =1 High Variance



Important Considerations: Value of K

K=3 K = 9 High Bias



Aggregating data

There are different ways to go about aggregating the data from
the K nearest neighbors.

- Median
- Mean
- Mode
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KNN Algorithm

- Keep the entire dataset: (x,y)
- For a query vector g:

1. Find the k-closest data point(s) x*
2. Predict y*
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Curse of Dimensionality

With an increase in the number of dimensions:

1. the distance between points starts to increase
2. the variation in distances between points starts to
decrease

102 4

Ratio of max to min distances

2.5 5.0 7.5 10.0 12.5 15.0 17.5
Number of dimensions (d)

For a unifromly random dataset 10



Curse of Dimensionality

With an increase in the number of dimensions:

1. the distance between points starts to increase

2. the variation in distances between points starts to
decrease

Due to this, distance metrics lose their efficacy as a similarity
metric.

n



Approximate Nearest Neighbors

Doing an exhaustive search over all the points is time
consuming, especially if you have a large number of data
points.
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Example of a big dataset
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Approximate Nearest Neighbors

Doing an exhaustive search over all the points is time
consuming, especially if you have a large number of data
points.

If you are willing to sacrifice accuracy there are algorithms that
can give you improvements that go into orders of magnitude.

Such techniques include:

- Locality sensitive hashing
- Vector approximation files
- Greedy search in proximity neighborhood graphs

12



Locality sensitive hashing

Normal hash functions H(x) try to keep the collision of points
across bins uniform.

Elements LSH Table Hash Table
° L(x)| Collisions |[H(x)| Collisions
[ [ ] H(X)
® ° 7 ¥ 1 |eee® 1 e 0@

o, ' N 2 o0 2 leec 0@
° ° 3 o000 00®|| 3 (00000

4 |o ° 4 @0

e® o o 5 |ee 5| e

[

Example of a big dataset
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Locality sensitive hashing

Normal hash functions H(x) try to keep the collision of points

across bins uniform.

A locality sensitive hash (LSH) function L(x) would be designed

such that similar values are mapped to similar bins.

Elements LSH Table Hash Table
° HEX) L(x)| Collisions |[H(x)| Collisions
e ® o ° L |1 [®°® 1 (e o@
oo e - |2 oo || 2 [e0cee
o, 3 |eoeeee0e0|| 3 (00000
4 |o ° 4 @0
0® o o 5 |ee® 5| @
°

Example of a big dataset
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Locality sensitive hashing

A locality sensitive hash (LSH) function L(x) would be designed
such that similar values are mapped to similar bins.

For such cases, all elements in a bin would be given the same
label, which again can be decided on the basis of different
aggregation methods

Elements LSH Table Hash Table
° L(x)| Collisions [|[H(x)| Collisions
° e HKX
° ° L | 1[®®® 1|0 o0
°q @ - |2 oo || 2 [e0cee
) ® 3 eo0o0e00®|| 3 00000
4 |o ) 4 (@0
e® o o 5 |lee® 5| @
)

Example of a big dataset
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