Linear Regression

Nipun Batra and the teaching staff
January 27, 2024
IIT Gandhinagar

Setup

Linear Regression

- O / P is continuous in nature.

Linear Regression

- O / P is continuous in nature.
- Examples of linear systems:

Linear Regression

- O / P is continuous in nature.
- Examples of linear systems:
- $F=m a$

Linear Regression

- O / P is continuous in nature.
- Examples of linear systems:
- $F=m a$
- $v=u+a t$

Task at hand

- TASK: Predict Weight $=f($ height $)$

Height	Weight
3	29
4	35
5	39
2	20
6	41
7	$?$
8	$?$
1	$?$

The first part of the dataset are the training points. The latter ones are testing points.

Scatter Plot

Matrix representation of the expression

- weight $t_{1} \approx \theta_{0}+\theta_{1}{ }^{*}$ height $_{1}$
- weight $2_{2} \approx \theta_{0}+\theta_{1}{ }^{*}$ height $_{2}$
- weight $_{N} \approx \theta_{0}+\theta_{1}{ }^{*}$ height $_{N}$

Matrix representation of the expression

- weight ${ }_{1} \approx \theta_{0}+\theta_{1}{ }^{*}$ height $_{1}$
- weight $2_{2} \approx \theta_{0}+\theta_{1}{ }^{*}$ height $_{2}$
- weight $_{N} \approx \theta_{0}+\theta_{1}{ }^{*}$ height $_{N}$
weight $_{i} \approx \theta_{0}+\theta_{1}{ }^{*}$ height $_{i}$

Matrix representation of the expression

$$
\left[\begin{array}{c}
\text { weight }_{1} \\
\text { weight }_{2} \\
\ldots \\
\text { weight }_{N}
\end{array}\right]=\left[\begin{array}{cc}
1 & \text { height }_{1} \\
1 & \text { height }_{2} \\
\ldots & \ldots \\
1 & \text { height }_{N}
\end{array}\right]\left[\begin{array}{c}
\theta_{0} \\
\theta_{1}
\end{array}\right]
$$

Matrix representation of the expression

$$
\begin{gathered}
{\left[\begin{array}{c}
\text { weight }_{1} \\
\text { weight }_{2} \\
\ldots \\
\text { weight }_{N}
\end{array}\right]=\left[\begin{array}{cc}
1 & \text { height }_{1} \\
1 & \text { height }_{2} \\
\ldots & \ldots \\
1 & \text { height }_{N}
\end{array}\right]\left[\begin{array}{c}
\theta_{0} \\
\theta_{1}
\end{array}\right]} \\
W_{N \times 1}=X_{N \times 2} \theta_{2 \times 1}
\end{gathered}
$$

Matrix representation of the expression

$$
\begin{gathered}
{\left[\begin{array}{c}
\text { weight }_{1} \\
\text { weight }_{2} \\
\ldots \\
\text { weight }_{N}
\end{array}\right]=\left[\begin{array}{cc}
1 & \text { height }_{1} \\
1 & \text { height }_{2} \\
\ldots & \ldots \\
1 & \text { height }_{N}
\end{array}\right]\left[\begin{array}{c}
\theta_{0} \\
\theta_{1}
\end{array}\right]} \\
W_{N \times 1}=X_{N \times 2} \theta_{2 \times 1}
\end{gathered}
$$

- θ_{0} - Bias Term/Intercept Term

Matrix representation of the expression

$$
\begin{gathered}
{\left[\begin{array}{c}
\text { weight }_{1} \\
\text { weight }_{2} \\
\ldots \\
\text { weight }_{N}
\end{array}\right]=\left[\begin{array}{cc}
1 & \text { height }_{1} \\
1 & \text { height }_{2} \\
\ldots & \ldots \\
1 & \text { height }_{N}
\end{array}\right]\left[\begin{array}{c}
\theta_{0} \\
\theta_{1}
\end{array}\right]} \\
W_{N \times 1}=X_{N \times 2} \theta_{2 \times 1}
\end{gathered}
$$

- θ_{0} - Bias Term/Intercept Term
- θ_{1} - Slope

Extension to multiple dimensions

In the previous example $y=f(x)$, where x is one-dimensional.

Extension to multiple dimensions

In the previous example $y=f(x)$, where x is one-dimensional. Examples in multiple dimensions.

Extension to multiple dimensions

In the previous example $y=f(x)$, where x is one-dimensional.
Examples in multiple dimensions.
One example is to predict the water demand of the IITGN campus

Extension to multiple dimensions

In the previous example $y=f(x)$, where x is one-dimensional.
Examples in multiple dimensions.
One example is to predict the water demand of the IITGN campus

Demand $=\mathrm{f}(\#$ occupants, Temperature $)$

Extension to multiple dimensions

In the previous example $y=f(x)$, where x is one-dimensional.
Examples in multiple dimensions.
One example is to predict the water demand of the IITGN campus

Demand $=f(\#$ occupants, Temperature $)$

Demand $=$ Base Demand $+K_{1} * \#$ occupants $+K_{2} *$ Temperature

Intuition

We hope to:

- Learn f: Demand $=f$ (\#occupants, Temperature)
- From training dataset
- To predict the condition for the testing set

Linear Relationship

We have

- $x_{i}=\left[\begin{array}{l}\text { Temperature }_{i} \\ \# \text { Occupants }_{i}\end{array}\right]$

Linear Relationship

We have

- $x_{i}=\left[\begin{array}{c}\text { Temperature }_{i} \\ \# \text { Occupants }_{i}\end{array}\right]$
- Estimated demand for $i^{\text {th }}$ sample is demand $_{i}=\theta_{0}+\theta_{1}$ Temperature $_{i}+\theta_{2}$ Occupants $_{i}$

Linear Relationship

We have

- $x_{i}=\left[\begin{array}{l}\text { Temperature }_{i} \\ \# \text { Occupants }_{i}\end{array}\right]$
- Estimated demand for $i^{\text {th }}$ sample is
demand $_{i}=\theta_{0}+\theta_{1}$ Temperature $_{i}+\theta_{2}$ Occupants $_{i}$
- demand $_{i}=x_{i}^{\prime T} \theta$

Linear Relationship

We have

- $x_{i}=\left[\begin{array}{l}\text { Temperature }_{i} \\ \# \text { Occupants }_{i}\end{array}\right]$
- Estimated demand for $i^{\text {th }}$ sample is
demand $_{i}=\theta_{0}+\theta_{1}$ Temperature $_{i}+\theta_{2}$ Occupants $_{i}$
- $\operatorname{demand}_{i}=x_{i}^{\prime T} \theta$
- where $\theta=\left[\begin{array}{l}\theta_{0} \\ \theta_{1} \\ \theta_{2}\end{array}\right]$

Linear Relationship

We have

- $x_{i}=\left[\begin{array}{c}\text { Temperature }_{i} \\ \# \text { Occupants }_{i}\end{array}\right]$
- Estimated demand for $i^{\text {th }}$ sample is
demand $_{i}=\theta_{0}+\theta_{1}$ Temperature $_{i}+\theta_{2}$ Occupants $_{i}$
- demand $_{i}=x_{i}^{\prime T} \theta$
- where $\theta=\left[\begin{array}{l}\theta_{0} \\ \theta_{1} \\ \theta_{2}\end{array}\right]$
- and $x_{i}^{\prime}=\left[\begin{array}{c}1 \\ \text { Temperature }_{i} \\ \# \text { Occupants }_{i}\end{array}\right]=\left[\begin{array}{c}1 \\ x_{i}\end{array}\right]$

Linear Relationship

We have

- $x_{i}=\left[\begin{array}{c}\text { Temperature }_{i} \\ \# \text { Occupants }_{i}\end{array}\right]$
- Estimated demand for $i^{\text {th }}$ sample is
demand $_{i}=\theta_{0}+\theta_{1}$ Temperature $_{i}+\theta_{2}$ Occupants $_{i}$
- demand $_{i}=x_{i}^{\prime T} \theta$
- where $\theta=\left[\begin{array}{l}\theta_{0} \\ \theta_{1} \\ \theta_{2}\end{array}\right]$
- and $x_{i}^{\prime}=\left[\begin{array}{c}1 \\ \text { Temperature }_{i} \\ \# \text { Occupants }_{i}\end{array}\right]=\left[\begin{array}{c}1 \\ x_{i}\end{array}\right]$
- Notice the transpose in the equation! This is because x_{i} is a column vector

We can expect the following

- Demand increases, if \# occupants increases, then θ_{2} is likely to be positive

We can expect the following

- Demand increases, if \# occupants increases, then θ_{2} is likely to be positive
- Demand increases, if temperature increases, then θ_{1} is likely to be positive

We can expect the following

- Demand increases, if \# occupants increases, then θ_{2} is likely to be positive
- Demand increases, if temperature increases, then θ_{1} is likely to be positive
- Base demand is independent of the temperature and the \# occupants, but, likely positive, thus θ_{0} is likely positive.

Normal Equation

Generalized Linear Regression Format

- Assuming N samples for training

Generalized Linear Regression Format

- Assuming N samples for training
- $\#$ Features $=M$

Generalized Linear Regression Format

- Assuming N samples for training
- $\#$ Features $=M$

Generalized Linear Regression Format

- Assuming N samples for training
- $\#$ Features $=M$

$$
\left[\begin{array}{c}
\hat{y_{1}} \\
\hat{y_{2}} \\
\vdots \\
\hat{y_{N}}
\end{array}\right]_{N \times 1}=\left[\begin{array}{ccccc}
1 & x_{1,1} & x_{1,2} & \ldots & x_{1, M} \\
1 & x_{2,1} & x_{2,2} & \ldots & x_{2, M} \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
1 & x_{N, 1} & x_{N, 2} & \ldots & x_{N, M}
\end{array}\right]_{N \times(M+1)}\left[\begin{array}{c}
\theta_{0} \\
\theta_{1} \\
\vdots \\
\theta_{M}
\end{array}\right]_{(M+1) \times 1}
$$

Generalized Linear Regression Format

- Assuming N samples for training
- $\#$ Features $=M$

$$
\left[\begin{array}{c}
\hat{y_{1}} \\
\hat{y_{2}} \\
\vdots \\
\hat{y_{N}}
\end{array}\right]_{N \times 1}=\left[\begin{array}{ccccc}
1 & x_{1,1} & x_{1,2} & \ldots & x_{1, M} \\
1 & x_{2,1} & x_{2,2} & \ldots & x_{2, M} \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
1 & x_{N, 1} & x_{N, 2} & \ldots & x_{N, M}
\end{array}\right]_{N \times(M+1)}\left[\begin{array}{c}
\theta_{0} \\
\theta_{1} \\
\vdots \\
\theta_{M}
\end{array}\right]_{(M+1) \times 1}
$$

$$
\hat{Y}=X \theta
$$

Relationships between feature and target variables

- There could be different $\theta_{0}, \theta_{1} \ldots \theta_{M}$. Each of them can represents a relationship.
- Given multiples values of $\theta_{0}, \theta_{1} \ldots \theta_{M}$ how to choose which is the best?
- Let us consider an example in 2 d

Relationships between feature and target variables

Out of the three fits, which one do we choose?

Relationships between feature and target variables

We have $\hat{y}=2+1 x$ as one relationship.

Relationships between feature and target variables

How far is our estimated \hat{y} from ground truth y ?

Error terms

- $y_{i}=\hat{y}_{i}+\epsilon_{i}$ where $\epsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)$

Error terms

- $y_{i}=\hat{y}_{i}+\epsilon_{i}$ where $\epsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)$
- y_{i} denotes the ground truth for $i^{\text {th }}$ sample

Error terms

- $y_{i}=\hat{y}_{i}+\epsilon_{i}$ where $\epsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)$
- y_{i} denotes the ground truth for $i^{\text {th }}$ sample
- \hat{y}_{i} denotes the prediction for $i^{\text {th }}$ sample, where $\hat{y}_{i}=x_{i}^{\prime T} \theta$

Error terms

- $y_{i}=\hat{y}_{i}+\epsilon_{i}$ where $\epsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)$
- y_{i} denotes the ground truth for $i^{\text {th }}$ sample
- \hat{y}_{i} denotes the prediction for $i^{\text {th }}$ sample, where $\hat{y}_{i}=x_{i}^{\prime T} \theta$
- ϵ_{i} denotes the error/residual for $i^{\text {th }}$ sample

Error terms

- $y_{i}=\hat{y}_{i}+\epsilon_{i}$ where $\epsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)$
- y_{i} denotes the ground truth for $i^{\text {th }}$ sample
- \hat{y}_{i} denotes the prediction for $i^{\text {th }}$ sample, where $\hat{y}_{i}=x_{i}^{\prime T} \theta$
- ϵ_{i} denotes the error/residual for $i^{t h}$ sample
- θ_{0}, θ_{1} : The parameters of the linear regression

Error terms

- $y_{i}=\hat{y}_{i}+\epsilon_{i}$ where $\epsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)$
- y_{i} denotes the ground truth for $i^{\text {th }}$ sample
- \hat{y}_{i} denotes the prediction for $i^{\text {th }}$ sample, where $\hat{y}_{i}=x_{i}^{\prime T} \theta$
- ϵ_{i} denotes the error/residual for $i^{t h}$ sample
- θ_{0}, θ_{1} : The parameters of the linear regression
- $\epsilon_{i}=y_{i}-\hat{y}_{i}$

Error terms

- $y_{i}=\hat{y}_{i}+\epsilon_{i}$ where $\epsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)$
- y_{i} denotes the ground truth for $i^{\text {th }}$ sample
- \hat{y}_{i} denotes the prediction for $i^{\text {th }}$ sample, where $\hat{y}_{i}=x_{i}^{\prime T} \theta$
- ϵ_{i} denotes the error/residual for $i^{t h}$ sample
- θ_{0}, θ_{1} : The parameters of the linear regression
- $\epsilon_{i}=y_{i}-\hat{y}_{i}$
- $\epsilon_{i}=y_{i}-\left(\theta_{0}+x_{i} \times \theta_{1}\right)$

Good fit

- $\left|\epsilon_{1}\right|,\left|\epsilon_{2}\right|,\left|\epsilon_{3}\right|, \ldots$ should be small.

Good fit

- $\left|\epsilon_{1}\right|,\left|\epsilon_{2}\right|,\left|\epsilon_{3}\right|, \ldots$ should be small.
- minimize $\epsilon_{1}^{2}+\epsilon_{2}^{2}+\cdots+\epsilon_{N}^{2}-L_{2}$ Norm

Good fit

- $\left|\epsilon_{1}\right|,\left|\epsilon_{2}\right|,\left|\epsilon_{3}\right|, \ldots$ should be small.
- minimize $\epsilon_{1}^{2}+\epsilon_{2}^{2}+\cdots+\epsilon_{N}^{2}-L_{2}$ Norm
- minimize $\left|\epsilon_{1}\right|+\left|\epsilon_{2}\right|+\cdots+\left|\epsilon_{n}\right|-L_{1}$ Norm

Normal Equation

$$
Y=X \theta+\epsilon
$$

Normal Equation

$$
Y=X \theta+\epsilon
$$

To Learn: θ

Normal Equation

$$
Y=X \theta+\epsilon
$$

To Learn: θ
Objective: minimize $\epsilon_{1}^{2}+\epsilon_{2}^{2}+\cdots+\epsilon_{N}^{2}$

Normal Equation

$$
\epsilon=\left[\begin{array}{c}
\epsilon_{1} \\
\epsilon_{1} \\
\vdots \\
\epsilon_{N}
\end{array}\right]
$$

Normal Equation

$$
\epsilon=\left[\begin{array}{c}
\epsilon_{1} \\
\epsilon_{1} \\
\vdots \\
\epsilon_{N}
\end{array}\right]
$$

Objective: Minimize $\epsilon^{T} \epsilon$

Derivation of Normal Equation

$$
\begin{aligned}
\epsilon & =y-X \theta \\
\epsilon^{T} & =(y-X \theta)^{T}=y^{T}-\theta^{T} X^{T} \\
\epsilon^{T} \epsilon & =\left(y^{T}-\theta^{T} X^{T}\right)(y-X \theta) \\
& =y^{T} y-\theta^{T} X^{T} y-y^{T} X \theta+\theta^{T} X^{T} X \theta \\
& =y^{T} y-2 y^{T} X \theta+\theta^{T} X^{T} X \theta
\end{aligned}
$$

This is what we wish to minimize

Minimizing the objective function

$$
\begin{equation*}
\frac{\partial \epsilon^{\top} \epsilon}{\partial \theta}=0 \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
& \text { - } \frac{\partial}{\partial \theta} y^{T} y=0 \\
& \text { - } \frac{\partial}{\partial \theta}\left(-2 y^{T} X \theta\right)=\left(-2 y^{T} X\right)^{T}=-2 X^{T} y \\
& \text { - } \frac{\partial}{\partial \theta}\left(\theta^{T} X^{T} X \theta\right)=2 X^{T} X \theta
\end{aligned}
$$

Substitute the values in the top equation

Normal Equation derivation

$$
\begin{gathered}
0=-2 X^{\top} y+2 X^{\top} X \theta \\
X^{\top} y=X^{\top} X \theta
\end{gathered}
$$

$$
\hat{\theta}_{O L S}=\left(X^{T} X\right)^{-1} X^{T} y
$$

Worked out example

x	y
0	0
1	1
2	2
3	3

Given the data above, find θ_{0} and θ_{1}.

Scatter Plot

Worked out example

$$
\begin{align*}
X & =\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 2 \\
1 & 3
\end{array}\right] \\
X^{T} & =\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3
\end{array}\right] \tag{2}\\
X^{T} X & =\left[\begin{array}{cc}
4 & 6 \\
6 & 14
\end{array}\right]
\end{align*}
$$

Given the data above, find θ_{0} and θ_{1}.

Worked out example

$$
\begin{align*}
\left(X^{\top} X\right)^{-1} & =\frac{1}{20}\left[\begin{array}{cc}
14 & -6 \\
-6 & 4
\end{array}\right] \\
X^{T} y & =\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{c}
6 \\
14
\end{array}\right] \tag{3}
\end{align*}
$$

Worked out example

$$
\begin{align*}
\theta & =\left(X^{\top} X\right)^{-1}\left(X^{\top} y\right) \\
{\left[\begin{array}{l}
\theta_{0} \\
\theta_{1}
\end{array}\right] } & =\frac{1}{20}\left[\begin{array}{cc}
14 & -6 \\
-6 & 4
\end{array}\right]\left[\begin{array}{c}
6 \\
14
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \tag{4}
\end{align*}
$$

Scatter Plot

Effect of outlier

x	y
1	1
2	2
3	3
4	0

Compute the θ_{0} and θ_{1}.

Scatter Plot

Worked out example

$$
\begin{align*}
X & =\left[\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 3 \\
1 & 4
\end{array}\right] \\
X^{T} & =\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4
\end{array}\right] \tag{5}\\
X^{T} X & =\left[\begin{array}{cc}
4 & 10 \\
10 & 30
\end{array}\right]
\end{align*}
$$

Given the data above, find θ_{0} and θ_{1}.

Worked out example

$$
\begin{align*}
\left(X^{\top} X\right)^{-1} & =\frac{1}{20}\left[\begin{array}{cc}
30 & -10 \\
-10 & 4
\end{array}\right] \\
X^{\top} y & =\left[\begin{array}{c}
6 \\
14
\end{array}\right] \tag{6}
\end{align*}
$$

Worked out example

$$
\begin{align*}
\theta & =\left(X^{\top} X\right)^{-1}\left(X^{\top} y\right) \\
{\left[\begin{array}{l}
\theta_{0} \\
\theta_{1}
\end{array}\right] } & =\left[\begin{array}{c}
2 \\
(-1 / 5)
\end{array}\right] \tag{7}
\end{align*}
$$

Scatter Plot

Basis Expansion

Variable Transformation

Transform the data, by including the higher power terms in the feature space.

t	s
0	0
1	6
3	24
4	36

The above table represents the data before transformation

Variable Transformation

Add the higher degree features to the previous table

t	t^{2}	s
0	0	0
1	1	6
3	9	24
4	16	36

Variable Transformation

Add the higher degree features to the previous table

t	t^{2}	s
0	0	0
1	1	6
3	9	24
4	16	36

The above table represents the data after transformation

Variable Transformation

Add the higher degree features to the previous table

t	t^{2}	s
0	0	0
1	1	6
3	9	24
4	16	36

The above table represents the data after transformation Now, we can write $\hat{s}=f\left(t, t^{2}\right)$

Variable Transformation

Add the higher degree features to the previous table

t	t^{2}	s
0	0	0
1	1	6
3	9	24
4	16	36

The above table represents the data after transformation
Now, we can write $\hat{s}=f\left(t, t^{2}\right)$
Other transformations: $\log (x), x_{1} \times x_{2}$

A big caveat: Linear in what?! ${ }^{1}$

1. $\hat{s}=\theta_{0}+\theta_{1} * t$ is linear
[^0]
A big caveat: Linear in what?! ${ }^{1}$

1. $\hat{s}=\theta_{0}+\theta_{1} * t$ is linear
2. Is $\hat{s}=\theta_{0}+\theta_{1} * t+\theta_{2} * t^{2}$ linear?
[^1]
A big caveat: Linear in what? ${ }^{1}$

1. $\hat{s}=\theta_{0}+\theta_{1} * t$ is linear
2. Is $\hat{s}=\theta_{0}+\theta_{1} * t+\theta_{2} * t^{2}$ linear?
3. Is $\hat{s}=\theta_{0}+\theta_{1} * t+\theta_{2} * t^{2}+\theta_{3} * \cos \left(t^{3}\right)$ linear?
[^2]
A big caveat: Linear in what? ${ }^{1}$

1. $\hat{s}=\theta_{0}+\theta_{1} * t$ is linear
2. Is $\hat{s}=\theta_{0}+\theta_{1} * t+\theta_{2} * t^{2}$ linear?
3. Is $\hat{s}=\theta_{0}+\theta_{1} * t+\theta_{2} * t^{2}+\theta_{3} * \cos \left(t^{3}\right)$ linear?
4. Is $\hat{s}=\theta_{0}+\theta_{1} * t+\mathrm{e}^{\theta_{2}} * t$ linear?
[^3]
A big caveat: Linear in what? ${ }^{1}$

1. $\hat{s}=\theta_{0}+\theta_{1} * t$ is linear
2. Is $\hat{s}=\theta_{0}+\theta_{1} * t+\theta_{2} * t^{2}$ linear?
3. Is $\hat{s}=\theta_{0}+\theta_{1} * t+\theta_{2} * t^{2}+\theta_{3} * \cos \left(t^{3}\right)$ linear?
4. Is $\hat{s}=\theta_{0}+\theta_{1} * t+\mathrm{e}^{\theta_{2}} * t$ linear?
5. All except \#4 are linear models!
[^4]
A big caveat: Linear in what?! ${ }^{1}$

1. $\hat{s}=\theta_{0}+\theta_{1} * t$ is linear
2. Is $\hat{s}=\theta_{0}+\theta_{1} * t+\theta_{2} * t^{2}$ linear?
3. Is $\hat{s}=\theta_{0}+\theta_{1} * t+\theta_{2} * t^{2}+\theta_{3} * \cos \left(t^{3}\right)$ linear?
4. Is $\hat{s}=\theta_{0}+\theta_{1} * t+\mathrm{e}^{\theta_{2}} * t$ linear?
5. All except $\# 4$ are linear models!
6. Linear refers to the relationship between the parameters that you are estimating (θ) and the outcome
[^5]
Basis Functions

- Linear regression only refers to linear in the parameters
- We can perform an arbitrary nonlinear transformation $\phi(x)$ of the inputs x and then linearly combine the components of this transformation.
- $\phi: \mathbb{R}^{D} \rightarrow \mathbb{R}^{K}$ is called the basis function

Basis Functions

Some examples of basis functions:

- Polynomial basis: $\phi(x)=\left\{1, x, x^{2}, x^{3}, \ldots\right\}$
- Fourier basis: $\phi(x)=\{1, \sin (x), \cos (x), \sin (2 x), \cos (2 x), \ldots\}$
- Gaussian basis: $\phi(x)=\left\{1, \exp \left(-\frac{\left(x-\mu_{1}\right)^{2}}{2 \sigma^{2}}\right), \exp \left(-\frac{\left(x-\mu_{2}\right)^{2}}{2 \sigma^{2}}\right), \ldots\right\}$
- Sigmoid basis: $\phi(x)=\left\{1, \sigma\left(x-\mu_{1}\right), \sigma\left(x-\mu_{2}\right), \ldots\right\}$ where $\sigma(x)=\frac{1}{1+e^{-x}}$

Geometric Interpretation

Linear Combination of Vectors

Let $v_{1}, v_{2}, v_{3}, \ldots, v_{i}$ be vectors in \mathbb{R}^{D}, where D denotes the dimensions.

Linear Combination of Vectors

Let $v_{1}, v_{2}, v_{3}, \ldots, v_{i}$ be vectors in \mathbb{R}^{D}, where D denotes the dimensions.
A linear combination of $v_{1}, v_{2}, v_{3}, \ldots, v_{i}$ is of the following form

Linear Combination of Vectors

Let $v_{1}, v_{2}, v_{3}, \ldots, v_{i}$ be vectors in \mathbb{R}^{D}, where D denotes the dimensions.
A linear combination of $v_{1}, v_{2}, v_{3}, \ldots, v_{i}$ is of the following form

$$
\alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3}+\cdots+\alpha_{i} v_{i}
$$

where $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{i} \in \mathbb{R}$

Span of vectors

Let $v_{1}, v_{2}, \ldots, v_{i}$ be vectors in \mathbb{R}^{D}, with D dimensions.

Span of vectors

Let $v_{1}, v_{2}, \ldots, v_{i}$ be vectors in \mathbb{R}^{D}, with D dimensions. The span of $v_{1}, v_{2}, \ldots, v_{i}$ is denoted by $\operatorname{SPAN}\left\{v_{1}, v_{2}, \ldots, v_{i}\right\}$

Span of vectors

Let $v_{1}, v_{2}, \ldots, v_{i}$ be vectors in \mathbb{R}^{D}, with D dimensions. The span of $v_{1}, v_{2}, \ldots, v_{i}$ is denoted by $\operatorname{SPAN}\left\{v_{1}, v_{2}, \ldots, v_{i}\right\}$

$$
\left\{\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{i} v_{i} \quad \mid \quad \alpha_{1}, \alpha_{2}, \ldots, \alpha_{i} \in \mathbb{R}\right\}
$$

Span of vectors

Let $v_{1}, v_{2}, \ldots, v_{i}$ be vectors in \mathbb{R}^{D}, with D dimensions. The span of $v_{1}, v_{2}, \ldots, v_{i}$ is denoted by $\operatorname{SPAN}\left\{v_{1}, v_{2}, \ldots, v_{i}\right\}$

$$
\left\{\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{i} v_{i} \quad \mid \quad \alpha_{1}, \alpha_{2}, \ldots, \alpha_{i} \in \mathbb{R}\right\}
$$

It is the set of all vectors that can be generated by linear combinations of $v_{1}, v_{2}, \ldots, v_{i}$.

Span of vectors

Let $v_{1}, v_{2}, \ldots, v_{i}$ be vectors in \mathbb{R}^{D}, with D dimensions.
The span of $v_{1}, v_{2}, \ldots, v_{i}$ is denoted by $\operatorname{SPAN}\left\{v_{1}, v_{2}, \ldots, v_{i}\right\}$

$$
\left\{\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{i} v_{i} \quad \mid \quad \alpha_{1}, \alpha_{2}, \ldots, \alpha_{i} \in \mathbb{R}\right\}
$$

It is the set of all vectors that can be generated by linear combinations of $v_{1}, v_{2}, \ldots, v_{i}$.

If we stack the vectors $v_{1}, v_{2}, \ldots, v_{i}$ as columns of a matrix V, then the span of $v_{1}, v_{2}, \ldots, v_{i}$ is given as $V \alpha$ where $\alpha \in \mathbb{R}^{i}$

Example

Find the span of $\left(\left[\begin{array}{l}1 \\ 3\end{array}\right],\left[\begin{array}{l}2 \\ 1\end{array}\right]\right)$

Example

We have $v_{3}=v_{1}+v_{2}$
We have $v_{4}=v_{1}-v_{2}$

Example

Simulating the above example in python using different values of α_{1} and α_{2}

$\operatorname{Span}\left(\left(v_{1}, v_{2}\right)\right) \in \mathcal{R}^{2}$

Example

Find the span of $\left(\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 4\end{array}\right]\right)$

Example

Find the span of $\left(\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 4\end{array}\right]\right)$
Can we obtain a point (x, y) s.t. $x=3 y$?

Example

Find the span of $\left(\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 4\end{array}\right]\right)$
Can we obtain a point (x, y) s.t. $x=3 y$? No

Example

Find the span of $\left(\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 4\end{array}\right]\right)$
Can we obtain a point (x, y) s.t. $x=3 y$?
No
Span of the above set is along the line $y=2 x$

Example

Find the span of $\left(\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ -2 \\ 2\end{array}\right]\right)$

Example

Find the span of $\left(\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ -2 \\ 2\end{array}\right]\right)$

Example

Find the span of $\left(\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ -2 \\ 2\end{array}\right]\right)$

$$
\begin{array}{ll}
\bullet & \text { Origin } \\
- & X_{1}=[1,1,1] \\
- & X_{2}=[2,-2,2]
\end{array}
$$

The span is the plane $z=x$ or $x_{3}=x_{1}$

Geometric Interpretation

Consider X and y as follows.

$$
X=\left(\begin{array}{cc}
1 & 2 \\
1 & -2 \\
1 & 2
\end{array}\right), \quad y=\left(\begin{array}{c}
8.8957 \\
0.6130 \\
1.7761
\end{array}\right)
$$

- We are trying to learn θ for $\hat{y}=X \theta$ such that $\|y-\hat{y}\|_{2}$ is minimised

Geometric Interpretation

Consider X and y as follows.

$$
X=\left(\begin{array}{cc}
1 & 2 \\
1 & -2 \\
1 & 2
\end{array}\right), \quad y=\left(\begin{array}{c}
8.8957 \\
0.6130 \\
1.7761
\end{array}\right)
$$

- We are trying to learn θ for $\hat{y}=X \theta$ such that $\|y-\hat{y}\|_{2}$ is minimised
- Consider the two columns of X. Can we write $X \theta$ as the span

$$
\text { of }\left(\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
2 \\
-2 \\
2
\end{array}\right]\right) ?
$$

Geometric Interpretation

Consider X and y as follows.

$$
X=\left(\begin{array}{cc}
1 & 2 \\
1 & -2 \\
1 & 2
\end{array}\right), \quad y=\left(\begin{array}{c}
8.8957 \\
0.6130 \\
1.7761
\end{array}\right)
$$

- We are trying to learn θ for $\hat{y}=X \theta$ such that $\|y-\hat{y}\|_{2}$ is minimised
- Consider the two columns of X. Can we write $X \theta$ as the span of $\left.\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ -2 \\ 2\end{array}\right]\right)$?
- We wish to find \hat{y} such that

$$
\underset{\hat{y} \in \operatorname{SPAN}\left\{\overline{x_{1}}, \overline{x_{2}}, \ldots, \overline{x_{D}}\right\}}{\arg \min }\|y-\hat{y}\|_{2}
$$

Geometric Interpretation

Span of $\left.\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ -2 \\ 2\end{array}\right]\right)$

Geometric Interpretation

- We seek a \hat{y} in the span of the columns of X such that it is closest to y

Geometric Interpretation

- This happens when $y-\hat{y} \perp x_{j} \forall j$ or $x_{j}^{T}(y-\hat{y})=0$

Geometric Interpretation

- This happens when $y-\hat{y} \perp x_{j} \forall j$ or $x_{j}^{T}(y-\hat{y})=0$
- $X^{T}(y-X \theta)=0$

Geometric Interpretation

- This happens when $y-\hat{y} \perp x_{j} \forall j$ or $x_{j}^{T}(y-\hat{y})=0$
- $X^{T}(y-X \theta)=0$
- $X^{\top} y=X^{\top} X \theta$ or $\hat{\theta}=\left(X^{\top} X\right)^{-1} X^{\top} y$

Dummy Variables and Multicollinearity

Multi-collinearity

There can be situations where inverse of $X^{\top} X$ is not computable.

Multi-collinearity

There can be situations where inverse of $X^{T} X$ is not computable. This condition arises when the $\left|X^{\top} X\right|=0$.

$$
X=\left[\begin{array}{lll}
1 & 1 & 2 \tag{8}\\
1 & 2 & 4 \\
1 & 3 & 6
\end{array}\right]
$$

Multi-collinearity

There can be situations where inverse of $X^{T} X$ is not computable. This condition arises when the $\left|X^{\top} X\right|=0$.

$$
X=\left[\begin{array}{lll}
1 & 1 & 2 \tag{8}\\
1 & 2 & 4 \\
1 & 3 & 6
\end{array}\right]
$$

The matrix X is not full rank.

Multi-collinearity

It arises when one or more predictor varibale/feature in X can be expressed as a linear combinations of others

How to tackle it?

- Regularize

Multi-collinearity

It arises when one or more predictor varibale/feature in X can be expressed as a linear combinations of others

How to tackle it?

- Regularize
- Drop variables

Multi-collinearity

It arises when one or more predictor varibale/feature in X can be expressed as a linear combinations of others

How to tackle it?

- Regularize
- Drop variables
- Avoid dummy variable trap

Dummy variables

Say Pollution in Delhi $=\mathrm{P}$

Dummy variables

Say Pollution in Delhi $=\mathrm{P}$
$\mathbf{P}=\theta_{0}+\theta_{1} * \#$ Vehicles $+\theta_{1} *$ Wind speed $+\theta_{3} *$ Wind Direction

Dummy variables

Say Pollution in Delhi $=\mathrm{P}$
$\mathrm{P}=\theta_{0}+\theta_{1}{ }^{*} \#$ Vehicles $+\theta_{1}{ }^{*}$ Wind speed $+\theta_{3} *$ Wind Direction

But, wind direction is a categorical variable.

Dummy variables

Say Pollution in Delhi $=\mathrm{P}$
$\mathrm{P}=\theta_{0}+\theta_{1}{ }^{*} \#$ Vehicles $+\theta_{1} *$ Wind speed $+\theta_{3} *$ Wind Direction

But, wind direction is a categorical variable.
It is denoted as follows $\{\mathrm{N}: 0, \mathrm{E}: 1, \mathrm{~W}: 2, \mathrm{~S}: 3\}$

Dummy variables

Say Pollution in Delhi $=\mathrm{P}$
$\mathrm{P}=\theta_{0}+\theta_{1}{ }^{*} \#$ Vehicles $+\theta_{1} *$ Wind speed $+\theta_{3} *$ Wind Direction

But, wind direction is a categorical variable.
It is denoted as follows $\{\mathrm{N}: 0, \mathrm{E}: 1, \mathrm{~W}: 2, \mathrm{~S}: 3\}$

Can we use the direct encoding?

Dummy variables

Say Pollution in Delhi $=\mathrm{P}$
$\mathrm{P}=\theta_{0}+\theta_{1}{ }^{*} \#$ Vehicles $+\theta_{1} *$ Wind speed $+\theta_{3} *$ Wind Direction

But, wind direction is a categorical variable.
It is denoted as follows $\{\mathrm{N}: 0, \mathrm{E}: 1, \mathrm{~W}: 2, \mathrm{~S}: 3\}$

Can we use the direct encoding?
Then this implies that $\mathrm{S}>\mathrm{W}>\mathrm{E}>\mathrm{N}$

Dummy Variables

N -1 Variable encoding

	Is it N?	Is it E ?	Is it W?
N	1	0	0
E	0	1	0
W	0	0	1
S	0	0	0

Dummy Variables

N Variable encoding

	Is it N?	Is it E?	Is it W?	Is it S?
N	1	0	0	0
E	0	1	0	0
W	0	0	1	0
S	0	0	0	1

Dummy Variables

Which is better N variable encoding or $\mathrm{N}-1$ variable encoding?

Dummy Variables

Which is better N variable encoding or $\mathrm{N}-1$ variable encoding? The N-1 variable encoding is better because the N variable encoding can cause multi-collinearity.

Dummy Variables

Which is better N variable encoding or $\mathrm{N}-1$ variable encoding?
The N-1 variable encoding is better because the N variable encoding can cause multi-collinearity.
Is it $S=1$ - (Is it $N+$ Is it $W+$ Is it $E)$

Binary Encoding

N	00
E	01
W	10
S	11

Binary Encoding

N	00
E	01
W	10
S	11

W and S are related by one bit.

Binary Encoding

N	00
E	01
W	10
S	11

W and S are related by one bit.
This introduces dependencies between them, and this can confusion in classifiers.

Interpreting Dummy variables

Gender	height
F	\ldots
F	\cdots
F	\cdots
M	\cdots
M	\cdots

Interpreting Dummy variables

Gender	height
F	\ldots
F	\cdots
F	\cdots
M	\cdots
M	\cdots

Encoding

Interpreting Dummy variables

Gender	height
F	\ldots
F	\cdots
F	\cdots
M	\cdots
M	\cdots

Encoding

Is Female	height
1	\ldots
1	\ldots
1	\ldots
0	\ldots
0	\ldots

Interpreting Dummy Variables

Is Female	height
1	5
1	5.2
1	5.4
0	5.8
0	6

Interpreting Dummy Variables

Is Female	height
1	5
1	5.2
1	5.4
0	5.8
0	6

$$
\text { height }_{i}=\theta_{0}+\theta_{1} *(\text { Is Female })+\epsilon_{i}
$$

Interpreting Dummy Variables

Is Female	height
1	5
1	5.2
1	5.4
0	5.8
0	6

height $_{i}=\theta_{0}+\theta_{1} *($ Is Female $)+\epsilon_{i}$
We get $\theta_{0}=5.8$ and $\theta_{0}=6$

Interpreting Dummy Variables

Is Female	height
1	5
1	5.2
1	5.4
0	5.8
0	6

height $_{i}=\theta_{0}+\theta_{1} *($ Is Female $)+\epsilon_{i}$
We get $\theta_{0}=5.8$ and $\theta_{0}=6$
$\theta_{0}=$ Avg height of Male $=5.9$

Interpreting Dummy Variables

Is Female	height
1	5
1	5.2
1	5.4
0	5.8
0	6

height $_{i}=\theta_{0}+\theta_{1} *($ Is Female $)+\epsilon_{i}$
We get $\theta_{0}=5.8$ and $\theta_{0}=6$
$\theta_{0}=$ Avg height of Male $=5.9$
$\theta_{0}+\theta_{1}$ is chosen based (equal to) on 5,5.2, 5.4 (for three records).

Interpreting Dummy Variables

Is Female	height
1	5
1	5.2
1	5.4
0	5.8
0	6

height $_{i}=\theta_{0}+\theta_{1} *($ Is Female $)+\epsilon_{i}$
We get $\theta_{0}=5.8$ and $\theta_{0}=6$
$\theta_{0}=$ Avg height of Male $=5.9$
$\theta_{0}+\theta_{1}$ is chosen based (equal to) on 5,5.2, 5.4 (for three records).
θ_{1} is chosen based on 5-5.9, 5.2-5.9, 5.4-5.9

Interpreting Dummy Variables

Is Female	height
1	5
1	5.2
1	5.4
0	5.8
0	6

height $_{i}=\theta_{0}+\theta_{1} *($ Is Female $)+\epsilon_{i}$
We get $\theta_{0}=5.8$ and $\theta_{0}=6$
$\theta_{0}=$ Avg height of Male $=5.9$
$\theta_{0}+\theta_{1}$ is chosen based (equal to) on $5,5.2,5.4$ (for three records).
θ_{1} is chosen based on 5-5.9, 5.2-5.9, 5.4-5.9 $\theta_{1}=$ Avg. female height $(5+5.2+5.4) / 3-$ Avg. male height(5.9)

Interpreting Dummy Variables

Alternatively, instead of a $0 / 1$ coding scheme, we could create a dummy variable

Interpreting Dummy Variables

Alternatively, instead of a $0 / 1$ coding scheme, we could create a dummy variable
$x_{i}= \begin{cases}1 & \text { if } i \text { th person is female } \\ -1 & \text { if } i \text { th person is male }\end{cases}$

Interpreting Dummy Variables

Alternatively, instead of a $0 / 1$ coding scheme, we could create a dummy variable
$x_{i}= \begin{cases}1 & \text { if } i \text { th person is female } \\ -1 & \text { if } i \text { th person is male }\end{cases}$
$y_{i}=\theta_{0}+\theta_{1} x_{i}+\epsilon_{i}= \begin{cases}\theta_{0}+\theta_{1}+\epsilon_{i} & \text { if } i \text { th person is female } \\ \theta_{0}-\theta_{1}+\epsilon_{i} & \text { if } i \text { th person is male. }\end{cases}$

Interpreting Dummy Variables

Alternatively, instead of a $0 / 1$ coding scheme, we could create a dummy variable
$x_{i}= \begin{cases}1 & \text { if } i \text { th person is female } \\ -1 & \text { if } i \text { th person is male }\end{cases}$
$y_{i}=\theta_{0}+\theta_{1} x_{i}+\epsilon_{i}= \begin{cases}\theta_{0}+\theta_{1}+\epsilon_{i} & \text { if } i \text { th person is female } \\ \theta_{0}-\theta_{1}+\epsilon_{i} & \text { if } i \text { th person is male. }\end{cases}$
Now, θ_{0} can be interpreted as average person height. θ_{1} as the amount that female height is above average and male height is below average.

[^0]: ${ }^{1}$ https://stats.stackexchange.com/questions/8689/ what-does-linear-stand-for-in-linear-regression

[^1]: ${ }^{1}$ https://stats.stackexchange.com/questions/8689/ what-does-linear-stand-for-in-linear-regression

[^2]: ${ }^{1}$ https://stats.stackexchange.com/questions/8689/ what-does-linear-stand-for-in-linear-regression

[^3]: ${ }^{1}$ https://stats.stackexchange.com/questions/8689/ what-does-linear-stand-for-in-linear-regression

[^4]: ${ }^{1}$ https://stats.stackexchange.com/questions/8689/ what-does-linear-stand-for-in-linear-regression

[^5]: ${ }^{1}$ https://stats.stackexchange.com/questions/8689/ what-does-linear-stand-for-in-linear-regression

