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Linear Regression

e O/P is continuous in nature.
e Examples of linear systems:
e F=ma
e v=u-+at



Task at hand

e TASK: Predict Weight = f(height)

Height | Weight
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The first part of the dataset are the training points. The latter
ones are testing points.



Scatter Plot
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Matrix representation of the expression

e weight; ~ 6p+01*height;
o weight, ~ Oy+01*height,
o weighty ~ Oy+01*heighty



Matrix representation of the expression

e weight; ~ 6p+01*height;
o weight, ~ Oy+01*height,
o weighty ~ Oy+01*heighty

[ weight; =~ 0g-+01* height; ]
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Matrix representation of the expression

weight; 1 height;

weighty | | 1 heighty | |00
U N 01

weightp 1 heighty

Wix1 = Xnx202x1

e 0o - Bias Term/Intercept Term

e (1 - Slope
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Extension to multiple dimensions

In the previous example y = f(x), where x is one-dimensional.
Examples in multiple dimensions.
One example is to predict the water demand of the IITGN campus

Demand = f(# occupants, Temperature)

Demand = Base Demand + Kj * # occupants + K, * Temperature




We hope to:

e Learn f: Demand = f(#occupants, Temperature)
e From training dataset

e To predict the condition for the testing set



Linear Relationship
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Linear Relationship

We have

Temperature;
Xj =

# Occupants;
Estimated demand for it" sample is
demand; = 0o + 01 Temperature; + 0, Occupants;

demand; = X{TG
to

where 0 = |0
0>
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Linear Relationship

We have

Temperature;
® X =

# Occupants;

e Estimated demand for it" sample is
demand; = 0o + 01 Temperature; + 0, Occupants;
e demand; = X{TG
to
e where 0 = |0y

0>

1
, 1
e and x; = | Temperature; | =
# Occupants;
e Notice the transpose in the equation! This is because x; is a

column vector
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We can expect the following

e Demand increases, if # occupants increases, then 6, is likely
to be positive

e Demand increases, if temperature increases, then 6 is likely
to be positive

e Base demand is independent of the temperature and the #
occupants, but, likely positive, thus g is likely positive.



Normal Equation
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e Assuming N samples for training
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Generalized Linear Regression Format

e Assuming N samples for training
e # Features = M

%1 1 xi1 X12 ... Xim 6o
V2 I x1 X2 ... Xom 61
IN] jr L1 Xwa w2 XNM] sy LM (mi1yxa

| |
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Relationships between feature and target variables

e There could be different g, 0; ...0y. Each of them can
represents a relationship.

e Given multiples values of 6y, 61 ...60p how to choose which is
the best?

e Let us consider an example in 2d

11



Relationships between feature and target variables

Out of the three fits, which one do we choose?

— y=0+1x

y=241x

Yy =-2+2x

5 e Train data

12



Relationships between feature and target variables

We have y = 2 + 1x as one relationship.

y=2+1x
e Train Data
6,
4,
>
[}
2 °
[ ]
0 °
T T T
0 2 4
X
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Relationships between feature and target variables

How far is our estimated y from ground truth y?

| y=2+1x]

i qJ It | “

0 2 4
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Error terms

o yi = Vi + ¢ where ¢; ~ N(0,0?)

e y; denotes the ground truth for i*" sample

e y: denotes the prediction for it" sample, where y; = XI{TG
e ¢; denotes the error/residual for i sample

e (g, 01: The parameters of the linear regression

e ci=Yyi— Vi

o ¢i=y;— (0o + x; x 61)

ii5)



, ... should be small.

o |e1], |ea], |e3
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, ... should be small.

o |e1], |ea], |e3
e minimize e% +e§ —|—---—|—e%\, - L> Norm

e minimize |e1| + |e2| + - - - + |€n| - L1 Norm
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Normal Equation
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Normal Equation
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Normal Equation

Y = X0+ ¢ ]

To Learn: 6
Objective: minimize €5 + €3 + - - - + €3,
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Normal Equation

€1

€1

EN
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Normal Equation

Objective: Minimize e

18



Derivation of Normal Equation

e=y— X0
T — (y — XQ)T —yT _9gTXT
efe=(yT—0"XT)(y — X0)
=yTy—0"XTy —yTX0+0"X"X0
=yTy—2yTX0+0"X"X0

This is what we wish to minimize

19



Minimizing the objective function

el e

50 — (1)
0 =1
89y y
i 2yTX0) = (=2y"X)T = —2XTy

o)
. %(HTXTXH) =2XTX0

Substitute the values in the top equation

20



Normal Equation derivation

0=—2XTy+2X"X0

XTy=XTX60

fors = (XTX)1XTy

21



Worked out example

w NN = O
w N = O <

Given the data above, find 0y and 6.
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Scatter Plot
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Worked out example

10
w11

1 2

1 3

- 2
xT_ |t 1t 2)

0123
XTx_ |4 ©

6 14

Given the data above, find 0y and 6.
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Worked out example

1|14 —
(XTX)_I—f 6
20 |-6 4
0 (3)
XT:1111 1l _ |6
01 2 3|12 14
3
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Worked out example

0= (XTX)"H(XTy)

R e

26



Scatter Plot

5 7Fit()7:X)
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Effect of outlier

X

AW N R
o w N R«

Compute the 0y and 6;.
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Scatter Plot
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Worked out example

XT =

XTX =

N B, N wWw N

- (5)
3 4

4 10

10 30

Given the data above, find 0y and 6.
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Worked out example
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Worked out example

0= (XTX)"H(XTy)

o)-

(=1/5)
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Scatter Plot

3 ° 7Fit(f/:2fx/5)
2 - °
>
1 °
0 Outlier ®

33



Basis Expansion




Variable Transformation

Transform the data, by including the higher power terms in the

feature space.

t S
0 O
1 6
3 24
4 36

The above table represents the data before transformation
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Variable Transformation

Add the higher degree features to the previous table

v 2 &
0 O 0
1 1 6
3 9 24
| 4 16 36
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Variable Transformation

Add the higher degree features to the previous table

v 2 &

0 O 0

1 1 6

3 9 24

4 16 36 |

The above table represents the data after transformation
Now, we can write § = f(t, t?)

Other transformations: log(x), x1 X x2

85



A big caveat: Linear in what?!!

1. §=40y+ 01 = tis linear

'https://stats.stackexchange.com/questions/8689/

what-does-linear-stand-for-in-linear-regression
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A big caveat: Linear in what?!!

1. §=40y+ 01 = tis linear

2. Is § =0+ 01 * t + 60 % t2 linear?
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what-does-linear-stand-for-in-linear-regression
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A big caveat: Linear in what?!!

1.
2.
8
4.

§ =209+ 01 % t is linear
Is § = 6y + 01 * t + O % t2 linear?
Is § = 0g + 01 * t + 0y x t2 + 03 x cos(t3) linear?

Is § =6y + 01 % t + % x t linear?
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A big caveat: Linear in what?!!

1.
2.
3.
4,
5.

§ =209+ 01 % t is linear

Is § = 6y + 01 * t + O % t2 linear?

Is § = 0g + 01 * t + 0y x t2 + 03 x cos(t3) linear?
Is § =6y + 01 % t + % x t linear?

All except #4 are linear models!
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A big caveat: Linear in what?!!

1.
2.
3.
4,
5.
6.

§ =209+ 01 % t is linear

Is § = 6y + 01 * t + O % t2 linear?

Is § = 0g + 01 * t + 0y x t2 + 03 x cos(t3) linear?
Is § =6y + 01 % t + % x t linear?

All except #4 are linear models!

Linear refers to the relationship between the parameters that
you are estimating (¢) and the outcome

'https://stats.stackexchange.com/questions/8689/

what-does-linear-stand-for-in-linear-regression
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Basis Functions

e Linear regression only refers to linear in the parameters

e We can perform an arbitrary nonlinear transformation ¢(x) of
the inputs x and then linearly combine the components of this

transformation.

e ¢:RP — RK is called the basis function

37



Basis Functions

Some examples of basis functions:

e Polynomial basis: ¢(x) = {1,x,x% x3,...}

e Fourier basis: ¢(x) = {1,sin(x), cos(x), sin(2x), cos(2x), ... }
e Gaussian basis: ¢(x) = {l,exp(—%)@xp(—%), .
e Sigmoid basis: ¢(x) = {1,0(x — p1),0(x — p2), ...} where

o(X) = o=

38



Geometric Interpretation




Linear Combination of Vectors

Let vi,vo,v3,...,V; be vectors in IRP, where D denotes the
dimensions.
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Linear Combination of Vectors

Let vi,vo,v3,...,V; be vectors in IRP, where D denotes the
dimensions.
A linear combination of vy, v», v3, ..., v; is of the following form

Qivy + aaVvo + Q3vy + - - + Qv

where a1, a2, a3,...,a; € IR

39
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Span of vectors

Let vy, va, ..., v; be vectors in IR, with D dimensions.
The span of v, va,...,v; is denoted by SPAN{vy, vo, ..., v;}

{oavi +aovo + -+ ajv; | a1,00,...,0; € R}

It is the set of all vectors that can be generated by linear

combinations of vi, v, ..., V.
If we stack the vectors vy, v, ..., v; as columns of a matrix V,
then the span of vy, vo, ..., v; is given as Va where o € IR/

40



1 2
Find th f
ind the span o ([3] , [1])
4_
[ | (%1}
317 -,
2_
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—1 -
72 T T 1
-2 0 2 4
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4
-
37 - o,
5 [
Vg
1_
O_
71—
*2 T T 1
9 0 2 4

We have v3 = v + v
We have v4 = vi — »»
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Simulating the above example in python using different values of

a1 and (6%)

-2 0 2

Span((vi, »)) € R? 43



Find the span of ( [;] , [Z])
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Find the span of ( [;] , [Z])

Can we obtain a point (x, y) s.t. x = 3y?
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Find the span of ( [;] , [Z])

Can we obtain a point (x, y) s.t. x = 3y?
No
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Find the span of ( [;] , [Z])

Can we obtain a point (x, y) s.t. x = 3y?
No
Span of the above set is along the line y = 2x

44
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Find the span of (1|, |-2])
1 2
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Find the span of (

1
1
1

)

-21)
2

®  Origin
— X, =[L11]
— Xo=[2,-2,2]
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1
Find the span of (1|, |-2])
1 2

e Origin
— X, =[L11]
— Xy=[2,-2,2

—0.5 0

s -10
2.0 90 71

The span is the plane z = x or x3 = x1
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Geometric Interpretation

Consider X and y as follows.

1 2 8.8957
X=|1 -2 |, y=1 06130
1 2 1.7761

e We are trying to learn 0 for y = X6 such that ||y — || is
minimised
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Geometric Interpretation

Consider X and y as follows.

1 2 8.8957
X=|1 -2 |, y=1 06130
1 2 1.7761

e We are trying to learn 0 for y = X6 such that ||y — || is
minimised

e Consider the two columns of X. Can we write X@ as the span

1 2
of ([1],]-2])?
1 2

e We wish to find y such that

arg min lly = 91l2
YESPAN{XL,%,....5 }
46



Geometric Interpretation

1
Spanof (|1],|-2])
1 2

® Origin
— X =[L11]
— X;=[2,-22

y = [8.8957,0.613, 1.7761]

10
8
6
z
4
\% )
0
0
2
1 1
6 o 2
T 8 vy
10 —4 y
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Geometric Interpretation

® Origin
— X =[L,1,1]]
—_— Xy =[2,-22
— y = [8.8957,0.613, 1.7761]
= [5.3359,0.613,5.3359]
10
8
6
4
2
0

e We seek a y in the span of the columns of X such that it is
closest to y
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Geometric Interpretation

e Origin
— X, =[L1,1]
— Xy=[2,-2,2
— = [8.8957,0.613, 1.7761]
j = [5.3359,0.613,5.3359]
— y—§ = [3.5598,0.0, ~3.5598]

e This happens when y — y | x;Vj or XJ-T(y —y)=0
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Geometric Interpretation

®  Origin
— X, =[L1,1]
— Xy =[2.-22
— = [8.8957,0.613, 1.7761]
j = [5.3359,0.613,5.3359]
10
8
6
z
4
2
0

e This happens when y — y L x;¥j or x/ (y — §) =0
e XT(y—X0)=0
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Geometric Interpretation

®  Origin
— X, =[L1,1]
— Xy=[2,-2,2
57,0.613,1.7761]
j = [5.3359,0.613,5.3359]
3.5598, 0.0, —3.5598]

This happens when y — § 1 xVj or x"(y — ) =0

[ ]
e XT(y—X0)=0
e XTy=XTX0orf=(XTX)"1XTy

49



Dummy Variables and
Multicollinearity




Multi-collinearity

There can be situations where inverse of X7 X is not computable.
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Multi-collinearity

There can be situations where inverse of X7 X is not computable.
This condition arises when the | X X| = 0.

w N =

S AN
—~~
[00)
N—r

The matrix X is not full rank.

50



Multi-collinearity

It arises when one or more predictor varibale/feature in X can be
expressed as a linear combinations of others

How to tackle it?

e Regularize
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Multi-collinearity

It arises when one or more predictor varibale/feature in X can be
expressed as a linear combinations of others

How to tackle it?

e Regularize
e Drop variables

e Avoid dummy variable trap

Bl



Dummy variables

Say Pollution in Delhi = P
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Dummy variables

Say Pollution in Delhi = P

P = 0y + 01*#Vehicles + 01* Wind speed + 63 * Wind Direction
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Dummy variables

Say Pollution in Delhi = P
P = 6o + 01*# Vehicles + 61* Wind speed + 63 * Wind Direction

But, wind direction is a categorical variable.
It is denoted as follows {N:0, E:1, W:2, S:3 }

Can we use the direct encoding?
Then this implies that S>W>E>N

52



Dummy Variables

N-1 Variable encoding

\ ‘IsitN?‘IsitE?‘lsitW?
1 0

o = O O

w=mzz

0 1
0 0
0 0
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Dummy Variables

N Variable encoding

\ ‘IsitN?‘IsitE?‘IsitW?‘IsitS?‘
1 0 0

o = O O

w=mzz

0 1 0
0 0 0
0 0 1

54



Dummy Variables

Which is better N variable encoding or N-1 variable encoding?
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Dummy Variables

Which is better N variable encoding or N-1 variable encoding?
The N-1 variable encoding is better because the N variable
encoding can cause multi-collinearity.

55



Dummy Variables

Which is better N variable encoding or N-1 variable encoding?
The N-1 variable encoding is better because the N variable
encoding can cause multi-collinearity.
IsitS=1-(Isit N+ Isit W + Is it E)
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Binary Encoding

00
01
10
11

w=mzz
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Binary Encoding

00
01
10
11

w=mzz

W and S are related by one bit.
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Binary Encoding

N | 00
E |01
W | 10
S |11

W and S are related by one bit.

This introduces dependencies between them, and this can
confusion in classifiers.
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Interpreting Dummy variables

Gender ‘ height
F

2 mm
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Interpreting Dummy variables

Gender ‘ height
F

2 mm

Encoding
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Interpreting Dummy variables

Gender ‘ height
F

2 mm

Encoding

Is Female | height

O O = =
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Interpreting Dummy Variables
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Interpreting Dummy Variables

Is Female ‘ height

1

1
1
0
0

5
5.2
5.4
5.8

6
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Interpreting Dummy Variables

Is Female ‘ height

1 5
1 5.2
1 5.4
0 5.8
0 6

height; = 0y + 61 * (Is Female) + ¢;

58



Interpreting Dummy Variables

Is Female ‘ height

1 5
1 5.2
1 5.4
0 5.8
0 6

height; = 0y + 61 * (Is Female) + ¢;

We get g = 5.8 and g = 6
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Interpreting Dummy Variables

Is Female ‘ height

1 5
1 5.2
1 5.4
0 5.8
0 6

height; = 0y + 61 * (Is Female) + ¢;

We get g = 5.8 and g = 6
0o = Avg height of Male = 5.9
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Interpreting Dummy Variables

Is Female ‘ height

1 5
1 5.2
1 5.4
0 5.8
0 6

height; = 0y + 61 * (Is Female) + ¢;

We get g = 5.8 and g = 6
0o = Avg height of Male = 5.9
o + 01 is chosen based (equal to) on 5, 5.2, 5.4 (for three records).
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Interpreting Dummy Variables

Is Female ‘ height

1 5
1 5.2
1 5.4
0 5.8
0 6

height; = 0y + 61 * (Is Female) + ¢;

We get g = 5.8 and y = 6

0o = Avg height of Male = 5.9

o + 01 is chosen based (equal to) on 5, 5.2, 5.4 (for three records).
01 is chosen based on 5-5.9, 5.2-5.9, 5.4-5.9
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Interpreting Dummy Variables

Is Female ‘ height

1 5
1 5.2
1 5.4
0 5.8
0 6

height; = 0y + 61 * (Is Female) + ¢;

We get g = 5.8 and g = 6

0o = Avg height of Male = 5.9

o + 01 is chosen based (equal to) on 5, 5.2, 5.4 (for three records).
01 is chosen based on 5-5.9, 5.2-5.9, 5.4-5.9 #; = Avg. female
height (5+5.2+5.4)/3 - Avg. male height(5.9)
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Interpreting Dummy Variables

Alternatively, instead of a 0/1 coding scheme, we could create a
dummy variable
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Interpreting Dummy Variables

Alternatively, instead of a 0/1 coding scheme, we could create a
dummy variable

1 if / th person is female
X =
' —1 if /i th person is male
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Interpreting Dummy Variables

Alternatively, instead of a 0/1 coding scheme, we could create a

dummy variable

1 if / th person is female
X =
' —1 if /i th person is male

0o + 61 +¢; if i th person is female

Yi 0 1X; i { 0o — 61 +¢; if i th person is male.
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Interpreting Dummy Variables

Alternatively, instead of a 0/1 coding scheme, we could create a
dummy variable

1 if / th person is female
X =
' —1 if /i th person is male

0o + 601 +¢; if i th person is female
yi="00+01x;i + € = . .
0o — 61 +¢; if i th person is male.

Now, 0y can be interpreted as average person height. #; as the
amount that female height is above average and male height is
below average.
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