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Classification Technique

1.0 Oranges

Hl Tomatoes
0.5

0.0
0.0 0.5
Radius

Aim: Probability(Tomatoes | Radius) ? or
More generally, P(y = 1|X = x)?‘
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Idea: Use Linear Regression

Oranges
Hl Tomatoes

0.0 0.5 1.0
Radius

P(X = Orange|Radius) = 6y + 61 x Radius

Generally,
P(y = 1|x) = X6



Idea: Use Linear Regression

Prediction:

If 0o + 01 x Radius > 0.5 — Orange
Else — Tomato

Problem:

Range of X6 is (—o0, 00)

But P(y =1]...) € [0,1]
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Idea: Use Linear Regression

Oranges
1.0 Hl Tomatoes

0.5
0.0 JF : :
0 1 2
Radius

Linear regression for classification gives a poor prediction!
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Ideal boundary

Hl Dccision Boundary
Oranges
Hl Tomatoes

0.0 0.5
Radius

e Have a decision function similar to the above (but not so
sharp and discontinuous)

e Aim: use linear regression still!



Idea: Use Linear Regression

Logistic Regression

Hll Deccision Boundary

Oranges
= wm ow= o B Tomatoes
B Sigmoid
0.0 0.5 1.0
Radius

Question. Can we still use Linear Regression?
Answer. Yes! Transform y — [0, 1]



Logistic/Sigmoid function



Logistic / Sigmoid Function

_)7 € (—OO, OO)
¢ = Sigmoid / Logistic Function (o)
¢(9) € [0,1]

1.0




Logistic / Sigmoid Function
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Logistic / Sigmoid Function

zZ— 0
o(z) =1
zZ— —00
o(z) =0
z=

o(z) =05
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Logistic / Sigmoid Function

Question. Could you use some other transformation (¢) of y s.t.

¢(9) € [0,1]

Yes! But Logistic Regression works.
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Logistic / Sigmoid Function

1
Q. Write X6 in a more convenient form (as P(y = 1|X),

P(y = 0|X))
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Logistic / Sigmoid Function

1
Ply =1X)=0(X0) = ——;
Q. Write X6 in a more convenient form (as P(y = 1|X),

P(y = 0|X))
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Logistic / Sigmoid Function

1
Py = 1|X) = o(X0) = 15 e X0
Q. Write X6 in a more convenient form (as P(y = 1|X),
P(y = 01X))
1 e XY

Ply=0X)=1-P(y=1X)=1-

1+e X0 14e X0

13



Logistic / Sigmoid Function

1
Py = 1|X) = o(X0) = 15 e X0
Q. Write X6 in a more convenient form (as P(y = 1|X),
P(y = 01X))
1 e XY

P(y=0X)=1—P(y =1|X)=1— =

P(y = 1|X) X0 P(y =1|X)
TPy =tx) ¢ T KTl X

13



Odds (Used in betting)

P(win)
P(loss)

Here,

_ Ply=1)
Odds = m

log-odds = log ggié; = X0
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Logistic Regression

Q. What is decision boundary for Logistic Regression?

ii5)



Logistic Regression

Q. What is decision boundary for Logistic Regression?
Decision Boundary: P(y = 1|X) = P(y = 0|X)

1 o efXO
OF THe=X0 = T4e- X0
oreX? =1
or X0 =0

16



Learning Parameters

Could we use cost function as:

Answer: No (Non-Convex)
(See Jupyter Notebook)
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Deriving Cost Function via
Maximum Likelihood Estimation




Cost function convexity

RMSE contour plot RMSE surface plot

10
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Learning Parameters

Likelihood = P(D)|0)

P(y|X,0) = ITi, P(vilxi, 0)
wherey = 0 or 1

19



Learning Parameters

Likelihood = P(D)|6)

P(y|X,0) HPy,!x,,

i 1 1 1-y;
_H{1+eXIT } { _1_'_eX[T9}

[Above: Similar to P(D|#) for Linear Regression;

Difference Bernoulli instead of Gaussian]

—log P(y| X, 0) = Negative Log Likelihood
= Cost function will be minimising

= J(0) 20



Aside on Bernoulli Likelihood

e Assume you have a coin and flip it ten times and get (H, H,
T, T, T,HHTTT).
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Aside on Bernoulli Likelihood

e Assume you have a coin and flip it ten times and get (H, H,
T, T, T,HHTTT).

e What is p(H)?
e We might think it to be: 4/10 = 0.4. But why?

e Answer 1: Probability defined as a measure of long running
frequencies

e Answer 2: What is likelihood of seeing the above sequence
when the p(Head)=67

e |dea find MLE estimate for 6

21



Aside on Bernoulli Likelihood

e p(H)=60and p(T)=1-6
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Aside on Bernoulli Likelihood

e p(H)=60and p(T)=1-6
e What is the PMF for first observation P(D; = x|6), where x
= 0 for Tails and x = 1 for Heads?
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Aside on Bernoulli Likelihood

e p(H)=60and p(T)=1-6

What is the PMF for first observation P(D; = x|6), where x
= 0 for Tails and x = 1 for Heads?

P(D; = x|0) = (1 — 6)(1=x)

Verify the above: if x = 0 (Tails), P(D; = x|f#) =1 — 6 and if
x = 1 (Heads), P(D; = x|0) =6

What is P(Dy, Ds, ..., Dp|6)?
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Aside on Bernoulli Likelihood

e p(H)=60and p(T)=1-6

What is the PMF for first observation P(D; = x|6), where x
= 0 for Tails and x = 1 for Heads?

P(D; = x|0) = (1 — 6)(1=x)

Verify the above: if x = 0 (Tails), P(D; = x|f#) =1 — 6 and if
x = 1 (Heads), P(D; = x|0) =6

What is P(Dy, Ds, ..., Dp|6)?

P(D1, Ds, ..., Dy|0) = P(D16)P(D2|0)...P(D,|6)
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Aside on Bernoulli Likelihood

e p(H)=60and p(T)=1-6

What is the PMF for first observation P(D; = x|6), where x
= 0 for Tails and x = 1 for Heads?

P(D; = x|0) = (1 — 6)(1=x)

Verify the above: if x = 0 (Tails), P(D; = x|f#) =1 — 6 and if
x = 1 (Heads), P(D; = x|0) =6

What is P(Dy, Ds, ..., Dp|6)?

P(D1, Dy, ..., D,|0) = P(D160)P(D20)...P(D,|6)

P(D1, Dy, ..., D,|0) = 6™ (1 — 0)"
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Aside on Bernoulli Likelihood

e p(H)=60and p(T)=1-6
e What is the PMF for first observation P(D; = x|6), where x
= 0 for Tails and x = 1 for Heads?

e P(Dy = x|f) = 6*(1 — )1

o Verify the above: if x = 0 (Tails), P(D; = x|f) =1 — 6 and if
x = 1 (Heads), P(D; = x|0) =6

e What is P(D1, D», ..., D,]0)?

e P(D1, Dy, ...,Dp|0) = P(D10)P(D2|0)...P(Dy|0)

e P(D1,Dy,...,Dpl0) = 6™ (1 — 6)™

o Log-likelihood = LL(#) = nplog(#) + n¢log(1 — 6)
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Aside on Bernoulli Likelihood

e p(H)=60and p(T)=1-6

e What is the PMF for first observation P(D; = x|6), where x
= 0 for Tails and x = 1 for Heads?

o P(D; = x|0) = 0*(1 — )=

o Verify the above: if x = 0 (Tails), P(D; = x|f) =1 — 6 and if
x = 1 (Heads), P(D; = x|0) =6

e What is P(D1, Dy, ..., D,]0)?

e P(D1,Ds,...,D,|0) = P(D10)P(D3|0)...P(D,|0)

e P(D1,Dy,...,Dpl0) = 6™ (1 — 6)™

o Log-likelihood = LL(#) = nplog(#) + n¢log(1 — 6)

dLL(6)

— np ne  __ — nNp
0 =0 = F+15=0—= HMLE_nh+nt

22



Cross Entropy Cost Function




Learning Parameters

J(0) = —|og{ﬁ {HelxiTg}yi{l _ HeIXiTe}ly:}

i=1

J(9) = —{ Zy,- log(og(x;i)) + (1 — y;) log(1 — O'@(X,‘))}
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Learning Parameters

n

J(0) = —|og{H {HelxiTg}yi{l _ HeIXiTe}ly:}

i=1

J(9) = —{ Zy,- log(og(x;i)) + (1 — y;) log(1 — O'@(X,‘))}

This cost function is called cross-entropy.
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Learning Parameters

J(0) = —|og{ﬁ {HelxiTg}yi{l _ HeIXiTe}ly:}

i=1

J(9) = —{ Zy,- log(og(x;i)) + (1 — y;) log(1 — O'@(X,‘))}

This cost function is called cross-entropy.

Why?

23



Interpretation of Cross-Entropy Cost Function
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Interpretation of Cross-Entropy Cost Function

What is the interpretation of the cost function?
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Interpretation of Cross-Entropy Cost Function

What is the interpretation of the cost function?

Let us try to write the cost function for a single example:

J(0) = —yilog ¥i — (1 — y;)log(1 — %)

First, assume y; is 0, then if §; is 0, the loss is 0; but, if y; is 1, the
loss tends towards infinity!

wt

Cost when y = 0

o

S
o

0.5 1.0

24



Notebook: logits-usage
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Interpretation of Cross-Entropy Cost Function
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Interpretation of Cross-Entropy Cost Function

What is the interpretation of the cost function?

J(0) = —yilog yi — (1 — y;) log(1 — i)

26



Interpretation of Cross-Entropy Cost Function

What is the interpretation of the cost function?

J(0) = —yilog yi — (1 — y;) log(1 — i)

Now, assume y; is 1, then if y; is 0, the loss is huge; but, if y; is 1,
the loss is zero!

ot

Cost when y = 1

[}

SJ
o

0.5 1.0
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Cost function convexity

Cross-entropy contour plot . "
10 900 Cross-entropy surface plot

01
o
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Learning Parameters

0J©0)

00; B

S

{ZW%@& (1 )og(1 = oo(x))

n

=30 [ st + 1 = ) g loga = o)
1

=

28



Learning Parameters

8J©) K[ 9 0
L == [y ots0) + 1) g ios ()

I o S 7R N o) A
_ ;[UG(X;) 5109 + Ty = ool
Aside
9 _ 9 1 _ -z —2& =2

- (1:ez—z)2 - (1 +1e—z> <1Jerez—z> - ”(2){112—;1 +1e—z}
= o(2)(1 - 0(2))

29



Learning Parameters

Resuming from (1)

0J(0) [ v o -y 0
00; o Z[ : ] .

i=1

== 3 22 1)) g )+ s (10 )) g (=)

i=1

=> [U@(Xi) - y/}xf

i=1

30



Learning Parameters

9, = Z/,'V:I [o0(xi) — y,-]xf

Now, just use Gradient Descent!

31



N A [
A = = (4§ -3
= (= \
B@J



ATt - = (s -3
t=\

—

26

matax X




z-




z-

N A _‘;‘
3I(8) - g\ (i - )%
20]

matax X

<>




z-

N A _‘;‘
3I(8) - g\ (i - )%
20]

matax X

<>

oC y
\




z-

N A _‘;‘
3I(8) - g\ (i - )%
20]

matax X

<>

|55
\




[

26]
matax X
_




N A [ LR
3o = = (fi -3)% = A (G-
N (=
B@J

_ T Ly)
2T10) X
69| 2T LAF
3399 : < Ly-¥)
2be

a3l R

2Bp X (éfn’&)



N A [ LR
3o = = (fi -3)% = A (G-
N (=
B@J

_ T emy)
3706) X4
ab, T LA
X Ly-9) T .
o3fe) - -
o) ) = = Xl
23(v) o7

2Bp X (éfn’&)



Logistic Regression with feature transformation

Oranges
°
- Il Tomatoes
¥ c eg0
W *
e ®

=2

—2.5 0.0 2.5
Z1

What happens if you apply logistic regression on the above data?

32



Logistic Regression with feature transformation

Oranges Predict oranges
Hl Tomatoes Predict tomatoes
% ag ¢
™ e o
& 0+ '*Q.:o.
Pogs O
—9

T T
—-25 00 2.5
x1

Linear boundary will not be accurate here. What is the technical
name of the problem?
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Logistic Regression with feature transformation

Oranges Predict oranges
Hl Tomatoes Predict tomatoes
% ag ¢
™ e o
& 0+ '*Q.:o.
Pogs O
—9

T T
—-25 00 2.5
x1

Linear boundary will not be accurate here. What is the technical
name of the problem? Bias!

33



Logistic Regression with feature transformation

1
oo(x) X
X X2
P(x) = ¢1:( ) =| 3 |¢€ RK
Pr-1(x) :
LK1

34



tic Regression with feature transformation

Oranges Predict oranges
Hl Tomatoes Predict tomatoes
% og °®
é\‘ (I ° .‘.o:
o®
Pees O
_9

Using xf,xz2 as additional features, we are able to learn a more

accurate classifier.

85



Logistic Regression with feature transformation

How would you expect the probability contours look like?
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Logistic Regression with feature transformation

How would you expect the probability contours look like?

1.100
21 0.978 —
0.856 &
0:611 3
E 0.489 £
0.367 2
0.244 &
_9 0.122 A~
. . 0.000
-25 0.0
il

36



Multi-Class Prediction

/g °

C 4 o . setosa

% o¢ o I versicolor

o

'z 3 0t S virginica

7 |.ePgT

g 2 E . |
6 8

sepal length (cm)
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Multi-Class Prediction

/g °

C 4 o . setosa

% o¢ o I versicolor

o

'z 3 0t S virginica

7 |.ePgT

g 2 E . |
6 8

sepal length (cm)

How would you learn a classifier? Or, how would you expect the
classifier to learn decision boundaries?
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Multi-Class Prediction

e

L 44 ° 1. setosa

= o I versicolor

g LW

'§ 37 e I virginica

= %

g 94 e M o

n T I
4 6 8

sepal length (cm)
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Multi-Class Prediction

e

& ad ° 1. setosa

= o I versicolor

g Bow

£ 37 e I virginica

I L P T

£ 9 - e . o

n T I
4 6 8

sepal length (cm)

1. Use one-vs.-all on Binary Logistic Regression

2. Use one-vs.-one on Binary Logistic Regression

3. Extend Binary Logistic Regression to Multi-Class Logistic

Regression
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Multi-Class Prediction

=

& 1 o L setosa

s e I versicolor

g3 o [ virginica

§ 5 ° t T o

73] [ T T
4 6 8

sepal length (cm)
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Multi-Class Prediction

L. setosa

'S

°
e I versicolor
(]

w

I. virginica
oW I &~
o

sepal width (cm)

[\

6 8
sepal length (cm)

"~

Learn P(setosa (class 1)) = F(X61)
P(versicolor (class 2)) = F(X6.)
P(virginica (class 3)) = F(X63)
Goal: Learn 6,Vi € {1,2,3}
Question: What could be an F7?

I R
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Multi-Class Prediction

El

S g e L setosa

= o L versicolor

3 o L virginica

g > ° t Ly 4

w T T T
4 6 8

sepal length (cm)
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Multi-Class Prediction

El

S g e L setosa

= o L versicolor

3 o I virginica

g > ° t o7

w T T T
4 6 8

sepal length (cm)

1. Question: What could be an F?

2. Property: 32 | F(X6;) =1

3. Also F(z) € [0,1]

4. Also, F(z) has squashing proprties: R — [0, 1]

40



ZeR?
e?i
F(zi)
Z:'j:l e’

F(z;) refers to probability of class i

41



Softmax for Multi-Class Logistic Regression

k ={1,..., k}classes

0=1|6, 6, - 0,

P(y = k|X,0) = &%

K
> k1 X%

42



Softmax for Multi-Class Logistic Regression

For K = 2 classes,

eXQk
Py = k|X,0) =
(-y | ) ;((:1 eXGk
eXGO
Py =0X.9) = g —oxo
e e
P(_y = 1’X,9) = X0 + eXo1 = eX91{1 + eX(90791)}
B 1
14 X0
= Sigmoid!
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Multi-Class Logistic Regression Cost

Assume our prediction and ground truth for the three classes for

it" point is:
0.1 gt
vi=108] = |§?
0.1 v?
0 y,-1
yi=|1| = y/'2
of 7

meaning the true class is Class #2
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it" point is:
0.1 gt
vi=108] = |§?
0.1 v?
0 y,-1
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meaning the true class is Class #2

Let us calculate — Zi:l yKlog gk
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Multi-Class Logistic Regression Cost

Assume our prediction and ground truth for the three classes for

it" point is:
0.1 gt
vi=108] = |§?
0.1 v?
0 y,-1
yi=|1| = y/'2
of 7

meaning the true class is Class #2
Let us calculate — Zi:l yik log f/ik

= —(0 x log(0.1) + 1 x log(0.8) + 0 x log(0.1))
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Multi-Class Logistic Regression Cost

Assume our prediction and ground truth for the three classes for

it" point is:
0.1 gt
vi=108] = |§?
0.1 v?
0 y,-1
yi=|1| = y/'2
of 7

meaning the true class is Class #2
Let us calculate — Zi:l yik log f/ik
= —(0 x log(0.1) + 1 x log(0.8) 4+ 0 x log(0.1))

Tends to zero
44



Multi-Class Logistic Regression Cost

Assume our prediction and ground truth for the three classes for

it" point is:
03] [
vi= (04| = |§?
03| |y
0 y,-1
yi=|1| = y/'2
of 7

meaning the true class is Class #2
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Multi-Class Logistic Regression Cost

Assume our prediction and ground truth for the three classes for

it" point is:
03] [
vi= (04| = |§?
03| |y
0 y,-1
yi=|1| = y/'2
of 7

meaning the true class is Class #2

Let us calculate — Zi:l yKlog gk
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Multi-Class Logistic Regression Cost

Assume our prediction and ground truth for the three classes for

it" point is:
03] [
vi= (04| = |§?
03| |y
0 y,-1
yi=|1| = y/'2
of 7

meaning the true class is Class #2
Let us calculate — Zi:l yik log f/ik

= —(0 x log(0.1) + 1 x log(0.4) 4+ 0 x log(0.1))
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Multi-Class Logistic Regression Cost

Assume our prediction and ground truth for the three classes for

it" point is:
03] [
vi= (04| = |§?
03| |g?
0 y,-1
yvi=|1| = y/'2
of 7

meaning the true class is Class #2
Let us calculate — Zi:l yik log f/ik
= —(0 x log(0.1) + 1 x log(0.4) 4+ 0 x log(0.1))

High number! Huge penalty for misclassification!
45



Multi-Class Logistic Regression Cost

For 2 class we had:

J(9) = —{ Zy,- log(og(x;:)) + (1 — y;) log(1 — O'g(X,'))}
i=1

46



Multi-Class Logistic Regression Cost

For 2 class we had:

J(9) = —{ Zy,- log(og(x;:)) + (1 — y;) log(1 — O'g(X,'))}
i=1

More generally,
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Multi-Class Logistic Regression Cost

For 2 class we had:
—{ > yilog(op(xi)) + (1 — ;) log(1 — Jg(x,'))}
i=1

More generally,

{ Zy, log($i) + (1 — yi) log(1 — y,)}
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Multi-Class Logistic Regression Cost

For 2 class we had:
—{ > yilog(op(xi)) + (1 — ;) log(1 — Jg(x,'))}
i=1

More generally,

{ Zy, log($i) + (1 — yi) log(1 — y,)}
{3 o5 + (1 - v g1~ 5}
i=1

Extend to K-class:

n K
{ > v log(9f }
=il =il
46



Multi-Class Logistic Regression Cost

47



The Hessian matrix of f(.) with respect to 6, written V3£ () or
simply as HI, is the d x d matrix of partial derivatives,

CO%f(0)  9%f(0) 92f(0) T
002 00100, 90100,
°f(0)  0°f(0) 92f(0)
00,00, 86% 060,00,
Vof(6) =
0°f(0)  9%f(0) 92f(0)
L 90,001 90,00, - 002 |

48



Newton’s Algorithm

The most basic second-order optimization algorithm is Newton's
algorithm, which consists of updates of the form,

Orr1 = Ok — Higk

where gy is the gradient at step k. This algorithm is derived by
making a second-order Taylor series approximation of f(#) around
O

fouad(0) = £(0k) + g (6 — k) + %(9 — 60) TH (6 — 6))

differentiating and equating to zero to solve for 0y 1.
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Learning Parameters

Now assume:
n

£(0) =3 |o0) ~ i = XT(00(%)

i=1
T = O'@(X,‘)
Let H represent the Hessian of J(0)

o 0 < j
- Lo []

M

0 .
L o) — < yxd
{ oo = |

_ Z oo(xi)(1 — a9(x;))xix;"
i=1

= XTdiag(og(xi)(1 — a9(x;)))X
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Iteratively reweighted least squares (IRLS)

For binary logistic regression, recall that the gradient and Hessian
of the negative log-likelihood are given by:

g(0)k = X" (mc —y)

Hy = XTS5 X

Sy = diag(m1k(1 — m1k)s -« -y k(1 — 7))

Tik = sigm(xifx)

The Newton update at iteraion k + 1 for this model is as follows:
Ors1 =0k —H g

=0k + (XTS X)X T (y — i)
= (XTSIX) HXTSkX)0k + X (y — m)]
= (XTS X)X T[Sk X0k + y — ]
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Regularized Logistic Regression

Unregularised:
J1(0) = —{ Zy,- log(oa(x;)) + (1 — yi) log(1 — O'@(X,‘))}
i=1

L2 Regularization:
J(B) = J1(8) + 2076

L1 Regularization:
J(0) = () + \|9]
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