Logistic Regression

Nipun Batra
February 27, 2024
IIT Gandhinagar

Problem Setup

Classification Technique

Oranges
\square Tomatoes

Classification Technique

Classification Technique

Aim: Probability(Tomatoes | Radius) ? or

Classification Technique

Aim: Probability(Tomatoes | Radius) ? or
More generally, $\mathrm{P}(y=1 \mid X=x)$?

Idea: Use Linear Regression

Idea: Use Linear Regression

Generally,

$$
P(y=1 \mid x)=X \theta
$$

Idea: Use Linear Regression

Prediction:
If $\theta_{0}+\theta_{1} \times$ Radius $>0.5 \rightarrow$ Orange Else \rightarrow Tomato
Problem:
Range of $X \theta$ is $(-\infty, \infty)$
But $P(y=1 \mid \ldots) \in[0,1]$

Idea: Use Linear Regression

Idea: Use Linear Regression

Linear regression for classification gives a poor prediction!

Ideal boundary

- Have a decision function similar to the above (but not so sharp and discontinuous)

Ideal boundary

- Have a decision function similar to the above (but not so sharp and discontinuous)
- Aim: use linear regression still!

Idea: Use Linear Regression

Question. Can we still use Linear Regression?
Answer. Yes! Transform $\hat{y} \rightarrow[0,1]$

Logistic/Sigmoid function

Logistic / Sigmoid Function

$$
\begin{aligned}
& \hat{y} \in(-\infty, \infty) \\
& \phi=\text { Sigmoid / Logistic Function }(\sigma) \\
& \phi(\hat{y}) \in[0,1]
\end{aligned}
$$

$$
\sigma(z)=\frac{1}{1+e^{-z}}
$$

$$
z \rightarrow \infty
$$

$$
\begin{aligned}
& z \rightarrow \infty \\
& \sigma(z) \rightarrow 1
\end{aligned}
$$

Logistic / Sigmoid Function

$$
\begin{aligned}
& z \rightarrow \infty \\
& \sigma(z) \rightarrow 1 \\
& z \rightarrow-\infty
\end{aligned}
$$

Logistic / Sigmoid Function

$$
\begin{aligned}
& z \rightarrow \infty \\
& \sigma(z) \rightarrow 1 \\
& z \rightarrow-\infty \\
& \sigma(z) \rightarrow 0
\end{aligned}
$$

Logistic / Sigmoid Function

$$
\begin{aligned}
& z \rightarrow \infty \\
& \sigma(z) \rightarrow 1 \\
& z \rightarrow-\infty \\
& \sigma(z) \rightarrow 0 \\
& z=0
\end{aligned}
$$

Logistic / Sigmoid Function

$$
\begin{aligned}
& z \rightarrow \infty \\
& \sigma(z) \rightarrow 1 \\
& z \rightarrow-\infty \\
& \sigma(z) \rightarrow 0 \\
& z=0 \\
& \sigma(z)=0.5
\end{aligned}
$$

Logistic / Sigmoid Function

Question. Could you use some other transformation (ϕ) of \hat{y} s.t.

$$
\phi(\hat{y}) \in[0,1]
$$

Yes! But Logistic Regression works.

Logistic / Sigmoid Function

$$
P(y=1 \mid X)=\sigma(X \theta)=\frac{1}{1+e^{-X \theta}}
$$

Q. Write $X \theta$ in a more convenient form (as $P(y=1 \mid X)$, $P(y=0 \mid X))$

Logistic / Sigmoid Function

$$
P(y=1 \mid X)=\sigma(X \theta)=\frac{1}{1+e^{-X \theta}}
$$

Q. Write $X \theta$ in a more convenient form (as $P(y=1 \mid X)$, $P(y=0 \mid X))$

Logistic / Sigmoid Function

$$
P(y=1 \mid X)=\sigma(X \theta)=\frac{1}{1+e^{-X \theta}}
$$

Q. Write $X \theta$ in a more convenient form (as $P(y=1 \mid X)$, $P(y=0 \mid X))$

$$
P(y=0 \mid X)=1-P(y=1 \mid X)=1-\frac{1}{1+e^{-X \theta}}=\frac{e^{-X \theta}}{1+e^{-X \theta}}
$$

Logistic / Sigmoid Function

$$
P(y=1 \mid X)=\sigma(X \theta)=\frac{1}{1+e^{-X \theta}}
$$

Q. Write $X \theta$ in a more convenient form (as $P(y=1 \mid X)$, $P(y=0 \mid X))$

$$
\begin{aligned}
& P(y=0 \mid X)=1-P(y=1 \mid X)=1-\frac{1}{1+e^{-X \theta}}=\frac{e^{-X \theta}}{1+e^{-X \theta}} \\
& \therefore \frac{P(y=1 \mid X)}{1-P(y=1 \mid X)}=e^{X \theta} \Longrightarrow X \theta=\log \frac{P(y=1 \mid X)}{1-P(y=1 \mid X)}
\end{aligned}
$$

Odds (Used in betting)

$$
\frac{P(\text { win })}{P(\text { loss })}
$$

Here,

$$
O d d s=\frac{P(y=1)}{P(y=0)}
$$

$$
\log \text {-odds }=\log \frac{P(y=1)}{P(y=0)}=X \theta
$$

Logistic Regression

Q. What is decision boundary for Logistic Regression?

Logistic Regression

Q. What is decision boundary for Logistic Regression?

Decision Boundary: $P(y=1 \mid X)=P(y=0 \mid X)$

$$
\begin{aligned}
& \text { or } \frac{1}{1+e^{-X \theta}}=\frac{e^{-X \theta}}{1+e^{-X \theta}} \\
& \text { or } e^{X \theta}=1
\end{aligned}
$$

$$
\text { or } X \theta=0
$$

Learning Parameters

Could we use cost function as:

$$
\begin{gathered}
J(\theta)=\sum\left(y_{i}-\hat{y}_{i}\right)^{2} \\
\hat{y}_{i}=\sigma(X \theta)
\end{gathered}
$$

Answer: No (Non-Convex)
(See Jupyter Notebook)

Deriving Cost Function via
Maximum Likelihood Estimation

Cost function convexity

RMSE surface plot

Learning Parameters

Likelihood $=P(D \mid \theta)$
$P(y \mid X, \theta)=\prod_{i=1}^{n} P\left(y_{i} \mid x_{i}, \theta\right)$
where $\mathrm{y}=0$ or 1

Learning Parameters

Likelihood $=P(D \mid \theta)$

$$
\begin{aligned}
P(y \mid X, \theta) & =\prod_{i=1}^{n} P\left(y_{i} \mid x_{i}, \theta\right) \\
& =\prod_{i=1}^{n}\left\{\frac{1}{1+e^{-x_{i}^{T} \theta}}\right\}^{y_{i}}\left\{1-\frac{1}{1+e^{-x_{i}^{T} \theta}}\right\}^{1-y_{i}}
\end{aligned}
$$

[Above: Similar to $P(D \mid \theta)$ for Linear Regression; Difference Bernoulli instead of Gaussian]

$$
\begin{aligned}
-\log P(y \mid X, \theta) & =\text { Negative Log Likelihood } \\
& =\text { Cost function will be minimising } \\
& =J(\theta)
\end{aligned}
$$

Aside on Bernoulli Likelihood

- Assume you have a coin and flip it ten times and get $(\mathrm{H}, \mathrm{H}$, T, T, T, H, H, T, T, T).

Aside on Bernoulli Likelihood

- Assume you have a coin and flip it ten times and get $(\mathrm{H}, \mathrm{H}$, T, T, T, H, H, T, T, T).
- What is $p(H)$?

Aside on Bernoulli Likelihood

- Assume you have a coin and flip it ten times and get $(\mathrm{H}, \mathrm{H}$, T, T, T, H, H, T, T, T).
- What is $p(H)$?
- We might think it to be: $4 / 10=0.4$. But why?

Aside on Bernoulli Likelihood

- Assume you have a coin and flip it ten times and get $(\mathrm{H}, \mathrm{H}$, T, T, T, H, H, T, T, T).
- What is $\mathrm{p}(\mathrm{H})$?
- We might think it to be: $4 / 10=0.4$. But why?
- Answer 1: Probability defined as a measure of long running frequencies

Aside on Bernoulli Likelihood

- Assume you have a coin and flip it ten times and get $(\mathrm{H}, \mathrm{H}$, T, T, T, H, H, T, T, T).
- What is $\mathrm{p}(\mathrm{H})$?
- We might think it to be: $4 / 10=0.4$. But why?
- Answer 1: Probability defined as a measure of long running frequencies
- Answer 2: What is likelihood of seeing the above sequence when the $\mathrm{p}($ Head $)=\theta$?

Aside on Bernoulli Likelihood

- Assume you have a coin and flip it ten times and get $(\mathrm{H}, \mathrm{H}$, T, T, T, H, H, T, T, T).
- What is $p(H)$?
- We might think it to be: $4 / 10=0.4$. But why?
- Answer 1: Probability defined as a measure of long running frequencies
- Answer 2: What is likelihood of seeing the above sequence when the $\mathrm{p}($ Head $)=\theta$?
- Idea find MLE estimate for θ

Aside on Bernoulli Likelihood

- $p(H)=\theta$ and $p(T)=1-\theta$

Aside on Bernoulli Likelihood

- $p(H)=\theta$ and $p(T)=1-\theta$
- What is the PMF for first observation $P\left(D_{1}=x \mid \theta\right)$, where x $=0$ for Tails and $x=1$ for Heads?

Aside on Bernoulli Likelihood

- $p(H)=\theta$ and $p(T)=1-\theta$
- What is the PMF for first observation $P\left(D_{1}=x \mid \theta\right)$, where x $=0$ for Tails and $x=1$ for Heads?
- $P\left(D_{1}=x \mid \theta\right)=\theta^{x}(1-\theta)^{(1-x)}$

Aside on Bernoulli Likelihood

- $p(H)=\theta$ and $p(T)=1-\theta$
- What is the PMF for first observation $P\left(D_{1}=x \mid \theta\right)$, where x $=0$ for Tails and $x=1$ for Heads?
- $P\left(D_{1}=x \mid \theta\right)=\theta^{x}(1-\theta)^{(1-x)}$
- Verify the above: if $x=0$ (Tails), $P\left(D_{1}=x \mid \theta\right)=1-\theta$ and if $x=1$ (Heads), $P\left(D_{1}=x \mid \theta\right)=\theta$

Aside on Bernoulli Likelihood

- $p(H)=\theta$ and $p(T)=1-\theta$
- What is the PMF for first observation $P\left(D_{1}=x \mid \theta\right)$, where x $=0$ for Tails and $x=1$ for Heads?
- $P\left(D_{1}=x \mid \theta\right)=\theta^{x}(1-\theta)^{(1-x)}$
- Verify the above: if $x=0$ (Tails), $P\left(D_{1}=x \mid \theta\right)=1-\theta$ and if $x=1$ (Heads), $P\left(D_{1}=x \mid \theta\right)=\theta$
- What is $P\left(D_{1}, D_{2}, \ldots, D_{n} \mid \theta\right)$?

Aside on Bernoulli Likelihood

- $p(H)=\theta$ and $p(T)=1-\theta$
- What is the PMF for first observation $P\left(D_{1}=x \mid \theta\right)$, where x $=0$ for Tails and $x=1$ for Heads?
- $P\left(D_{1}=x \mid \theta\right)=\theta^{x}(1-\theta)^{(1-x)}$
- Verify the above: if $x=0$ (Tails), $P\left(D_{1}=x \mid \theta\right)=1-\theta$ and if $x=1$ (Heads), $P\left(D_{1}=x \mid \theta\right)=\theta$
- What is $P\left(D_{1}, D_{2}, \ldots, D_{n} \mid \theta\right)$?
- $P\left(D_{1}, D_{2}, \ldots, D_{n} \mid \theta\right)=P\left(D_{1} \theta\right) P\left(D_{2} \mid \theta\right) \ldots P\left(D_{n} \mid \theta\right)$

Aside on Bernoulli Likelihood

- $p(H)=\theta$ and $p(T)=1-\theta$
- What is the PMF for first observation $P\left(D_{1}=x \mid \theta\right)$, where x
$=0$ for Tails and $x=1$ for Heads?
- $P\left(D_{1}=x \mid \theta\right)=\theta^{x}(1-\theta)^{(1-x)}$
- Verify the above: if $x=0$ (Tails), $P\left(D_{1}=x \mid \theta\right)=1-\theta$ and if $\mathrm{x}=1$ (Heads), $P\left(D_{1}=x \mid \theta\right)=\theta$
- What is $P\left(D_{1}, D_{2}, \ldots, D_{n} \mid \theta\right)$?
- $P\left(D_{1}, D_{2}, \ldots, D_{n} \mid \theta\right)=P\left(D_{1} \theta\right) P\left(D_{2} \mid \theta\right) \ldots P\left(D_{n} \mid \theta\right)$
- $P\left(D_{1}, D_{2}, \ldots, D_{n} \mid \theta\right)=\theta^{n_{h}}(1-\theta)^{n_{t}}$

Aside on Bernoulli Likelihood

- $p(H)=\theta$ and $p(T)=1-\theta$
- What is the PMF for first observation $P\left(D_{1}=x \mid \theta\right)$, where x
$=0$ for Tails and $x=1$ for Heads?
- $P\left(D_{1}=x \mid \theta\right)=\theta^{x}(1-\theta)^{(1-x)}$
- Verify the above: if $x=0$ (Tails), $P\left(D_{1}=x \mid \theta\right)=1-\theta$ and if $x=1$ (Heads), $P\left(D_{1}=x \mid \theta\right)=\theta$
- What is $P\left(D_{1}, D_{2}, \ldots, D_{n} \mid \theta\right)$?
- $P\left(D_{1}, D_{2}, \ldots, D_{n} \mid \theta\right)=P\left(D_{1} \theta\right) P\left(D_{2} \mid \theta\right) \ldots P\left(D_{n} \mid \theta\right)$
- $P\left(D_{1}, D_{2}, \ldots, D_{n} \mid \theta\right)=\theta^{n_{h}}(1-\theta)^{n_{t}}$
- Log-likelihood $=\mathcal{L L}(\theta)=n_{h} \log (\theta)+n_{t} \log (1-\theta)$

Aside on Bernoulli Likelihood

- $p(H)=\theta$ and $p(T)=1-\theta$
- What is the PMF for first observation $P\left(D_{1}=x \mid \theta\right)$, where x $=0$ for Tails and $x=1$ for Heads?
- $P\left(D_{1}=x \mid \theta\right)=\theta^{x}(1-\theta)^{(1-x)}$
- Verify the above: if $x=0$ (Tails), $P\left(D_{1}=x \mid \theta\right)=1-\theta$ and if $x=1$ (Heads), $P\left(D_{1}=x \mid \theta\right)=\theta$
- What is $P\left(D_{1}, D_{2}, \ldots, D_{n} \mid \theta\right)$?
- $P\left(D_{1}, D_{2}, \ldots, D_{n} \mid \theta\right)=P\left(D_{1} \theta\right) P\left(D_{2} \mid \theta\right) \ldots P\left(D_{n} \mid \theta\right)$
- $P\left(D_{1}, D_{2}, \ldots, D_{n} \mid \theta\right)=\theta^{n_{h}}(1-\theta)^{n_{t}}$
- Log-likelihood $=\mathcal{L L}(\theta)=n_{h} \log (\theta)+n_{t} \log (1-\theta)$
- $\frac{\partial \mathcal{L L}(\theta)}{\partial \theta}=0 \Longrightarrow \frac{n_{h}}{\theta}+\frac{n_{t}}{1-\theta}=0 \Longrightarrow \theta_{M L E}=\frac{n_{h}}{n_{h}+n_{t}}$

Cross Entropy Cost Function

Learning Parameters

$$
\begin{aligned}
& J(\theta)=-\log \left\{\prod_{i=1}^{n}\left\{\frac{1}{1+e^{-x_{i}^{T}}}\right\}^{y_{i}}\left\{1-\frac{1}{1+e^{-x_{i}^{\top} \theta}}\right\}^{1-y_{i}}\right\} \\
& J(\theta)=-\left\{\sum_{i=1}^{n} y_{i} \log \left(\sigma_{\theta}\left(x_{i}\right)\right)+\left(1-y_{i}\right) \log \left(1-\sigma_{\theta}\left(x_{i}\right)\right)\right\}
\end{aligned}
$$

Learning Parameters

$$
\begin{aligned}
& J(\theta)=-\log \left\{\prod_{i=1}^{n}\left\{\frac{1}{1+e^{-x_{i}^{T}}}\right\}^{y_{i}}\left\{1-\frac{1}{1+e^{-x_{i}^{T} \theta}}\right\}^{1-y_{i}}\right\} \\
& J(\theta)=-\left\{\sum_{i=1}^{n} y_{i} \log \left(\sigma_{\theta}\left(x_{i}\right)\right)+\left(1-y_{i}\right) \log \left(1-\sigma_{\theta}\left(x_{i}\right)\right)\right\}
\end{aligned}
$$

This cost function is called cross-entropy.

Learning Parameters

$$
\begin{aligned}
& J(\theta)=-\log \left\{\prod_{i=1}^{n}\left\{\frac{1}{1+e^{-x_{i}^{\top}}}\right\}^{y_{i}}\left\{1-\frac{1}{1+e^{-x_{i}^{\top} \theta}}\right\}^{1-y_{i}}\right\} \\
& J(\theta)=-\left\{\sum_{i=1}^{n} y_{i} \log \left(\sigma_{\theta}\left(x_{i}\right)\right)+\left(1-y_{i}\right) \log \left(1-\sigma_{\theta}\left(x_{i}\right)\right)\right\}
\end{aligned}
$$

This cost function is called cross-entropy.
Why?

Interpretation of Cross-Entropy Cost Function

What is the interpretation of the cost function?

Interpretation of Cross-Entropy Cost Function

What is the interpretation of the cost function?
Let us try to write the cost function for a single example:

Interpretation of Cross-Entropy Cost Function

What is the interpretation of the cost function?
Let us try to write the cost function for a single example:

$$
J(\theta)=-y_{i} \log \hat{y}_{i}-\left(1-y_{i}\right) \log \left(1-\hat{y}_{i}\right)
$$

Interpretation of Cross-Entropy Cost Function

What is the interpretation of the cost function?
Let us try to write the cost function for a single example:

$$
J(\theta)=-y_{i} \log \hat{y}_{i}-\left(1-y_{i}\right) \log \left(1-\hat{y}_{i}\right)
$$

First, assume y_{i} is 0 , then if \hat{y}_{i} is 0 , the loss is 0 ; but, if \hat{y}_{i} is 1 , the loss tends towards infinity!

Notebook: logits-usage

Interpretation of Cross-Entropy Cost Function

What is the interpretation of the cost function?

$$
J(\theta)=-y_{i} \log \hat{y}_{i}-\left(1-y_{i}\right) \log \left(1-\hat{y}_{i}\right)
$$

Interpretation of Cross-Entropy Cost Function

What is the interpretation of the cost function?

$$
J(\theta)=-y_{i} \log \hat{y}_{i}-\left(1-y_{i}\right) \log \left(1-\hat{y}_{i}\right)
$$

Now, assume y_{i} is 1 , then if \hat{y}_{i} is 0 , the loss is huge; but, if \hat{y}_{i} is 1 , the loss is zero!

Cost function convexity

Cross-entropy surface plot

Learning Parameters

$$
\begin{aligned}
\frac{\partial J(\theta)}{\partial \theta_{j}} & =-\frac{\partial}{\partial \theta_{j}}\left\{\sum_{i=1}^{n} y_{i} \log \left(\sigma_{\theta}\left(x_{i}\right)\right)+\left(1-y_{i}\right) \log \left(1-\sigma_{\theta}\left(x_{i}\right)\right)\right\} \\
& =-\sum_{i=1}^{n}\left[y_{i} \frac{\partial}{\partial \theta_{j}} \log \left(\sigma_{\theta}\left(x_{i}\right)\right)+\left(1-y_{i}\right) \frac{\partial}{\partial \theta_{j}} \log \left(1-\sigma_{\theta}\left(x_{i}\right)\right)\right]
\end{aligned}
$$

Learning Parameters

$$
\begin{gather*}
\frac{\partial J(\theta)}{\partial \theta_{j}}=-\sum_{i=1}^{n}\left[y_{i} \frac{\partial}{\partial \theta_{j}} \log \left(\sigma_{\theta}\left(x_{i}\right)\right)+\left(1-y_{i}\right) \frac{\partial}{\partial \theta_{j}} \log \left(1-\sigma_{\theta}\left(x_{i}\right)\right)\right] \\
\quad=-\sum_{i=1}^{n}\left[\frac{y_{i}}{\sigma_{\theta}\left(x_{i}\right)} \frac{\partial}{\partial \theta_{j}} \sigma_{\theta}\left(x_{i}\right)+\frac{1-y_{i}}{1-\sigma_{\theta}\left(x_{i}\right)} \frac{\partial}{\partial \theta_{j}}\left(1-\sigma_{\theta}\left(x_{i}\right)\right)\right] \tag{1}
\end{gather*}
$$

Aside:

$$
\begin{aligned}
\frac{\partial}{\partial z} \sigma(z) & =\frac{\partial}{\partial z} \frac{1}{1+e^{-z}}=-\left(1+e^{-z}\right)^{-2} \frac{\partial}{\partial z}\left(1+e^{-z}\right) \\
=\frac{e^{-z}}{\left(1+e^{-z}\right)^{2}}=\left(\frac{1}{1+e^{-z}}\right)\left(\frac{e^{-z}}{1+e^{-z}}\right) & =\sigma(z)\left\{\frac{1+e^{-z}}{1+e^{-z}}-\frac{1}{1+e^{-z}}\right\} \\
& =\sigma(z)(1-\sigma(z))
\end{aligned}
$$

Learning Parameters

Resuming from (1)

$$
\begin{gathered}
\frac{\partial J(\theta)}{\partial \theta_{j}}=-\sum_{i=1}^{n}\left[\frac{y_{i}}{\sigma_{\theta}\left(x_{i}\right)} \frac{\partial}{\partial \theta_{j}} \sigma_{\theta}\left(x_{i}\right)+\frac{1-y_{i}}{1-\sigma_{\theta}\left(x_{i}\right)} \frac{\partial}{\partial \theta_{j}}\left(1-\sigma_{\theta}\left(x_{i}\right)\right)\right] \\
=-\sum_{i=1}^{n}\left[\frac{y_{i} \sigma_{\theta}\left(x_{i}\right)}{\sigma_{\theta}\left(x_{i}\right)}\left(1-\sigma_{\theta}\left(x_{i}\right)\right) \frac{\partial}{\partial \theta_{j}}\left(x_{i} \theta\right)+\frac{1-y_{i}}{1-\sigma_{\theta}\left(x_{i}\right)}\left(1-\sigma_{\theta}\left(x_{i}\right)\right) \frac{\partial}{\partial \theta_{j}}\left(1-\sigma_{\theta}\left(x_{i}\right)\right)\right] \\
=-\sum_{i=1}^{n}\left[y_{i}\left(1-\sigma_{\theta}\left(x_{i}\right)\right) x_{i}^{j}-\left(1-y_{i}\right) \sigma_{\theta}\left(x_{i}\right) x_{i}^{j}\right] \\
=-\sum_{i=1}^{n}\left[\left(y_{i}-y_{i} \sigma_{\theta}\left(x_{i}\right)-\sigma_{\theta}\left(x_{i}\right)+y_{i} \sigma_{\theta}\left(x_{i}\right)\right) x_{i}^{j}\right] \\
=\sum_{i=1}^{n}\left[\sigma_{\theta}\left(x_{i}\right)-y_{i}\right] x_{i}^{j}
\end{gathered}
$$

Learning Parameters

$$
\frac{\partial J(\theta)}{\theta_{j}}=\sum_{i=1}^{N}\left[\sigma_{\theta}\left(x_{i}\right)-y_{i}\right] x_{i}^{j}
$$

Now, just use Gradient Descent!

$$
\frac{\partial J(\theta)}{\partial \theta_{j}}=\sum_{i=1}^{N}\left(\hat{y}_{i}-y_{i}\right) x_{i}^{j}
$$

$$
\frac{\partial J(\theta)}{\partial \theta_{j}}=\sum_{i=1}^{N}\left(\hat{y}_{i}-y_{i}\right) x_{i}^{j}
$$

MATRIX X

$$
\frac{\partial J(\theta)}{\partial \theta_{j}}=\sum_{i=1}^{N}\left(\hat{y}_{i}-y_{i}\right) x_{i}^{j}
$$

column of x

$$
=x^{j}
$$

$$
\frac{\partial J(\theta)}{\partial \theta_{j}}=\sum_{i=1}^{N}\left(\hat{y}_{i}-y_{i}\right) x_{i}^{j}
$$

$j^{\text {n }}$ column of x

$$
=x^{j}
$$

$$
\frac{\partial J(\theta)}{\partial \theta_{j}}=\sum_{i=1}^{N}\left(\hat{y}_{i}-y_{i}\right) x_{i}^{j}
$$

$\int^{\text {h }}$ column of x

$$
=x^{j}
$$

$$
\frac{\partial J(\theta)}{\partial \theta_{j}}=\sum_{i=1}^{N}\left(\hat{y}_{i}-y_{i}\right) x_{i}^{j}
$$

$j^{\text {h }}$ column of x

$$
=x^{j}
$$

$$
\frac{\partial J(\theta)}{\partial \theta_{j}}=\sum_{i=1}^{N}\left(\hat{y}_{i}-y_{i}\right) x_{i}^{j}=x_{1 \times N}^{\top}(\hat{y}-y)
$$

Matelx x gh column of x

$$
=x^{j}
$$

$$
\begin{aligned}
& \frac{\partial J(\theta)}{\partial \theta j}=\sum_{i=1}^{N}\left(\hat{y}_{i}-y_{i}\right) x_{i}^{j}=x_{1 \times N}^{j^{\top}}(\hat{y}-y) \\
& {\left[\begin{array}{c}
\frac{\partial J(\theta)}{\partial \theta_{1}} \\
\frac{\partial J(\theta)}{\partial \theta_{2}} \\
\vdots \\
\frac{\partial J(\theta)}{\partial \theta_{D}}
\end{array}\right]=\left(\begin{array}{c}
x^{\top}\left(y^{\top}-y\right) \\
x^{2^{\top}}(\hat{y}-y) \\
\vdots \\
\vdots \\
x^{\top}\left(y^{n}-y\right)
\end{array}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial J(\theta)}{\partial \theta_{j}}=\sum_{i=1}^{N}\left(\hat{y}_{i}-y_{i}\right) x_{i}^{j}=x_{1 \times N}^{\top}(\hat{y}-y) \\
& {\left[\begin{array}{c}
\frac{\partial J(\theta)}{\partial \theta_{1}} \\
\frac{\partial J(\theta)}{\partial \theta_{2}} \\
\vdots \\
\frac{\partial J(0)}{\partial \theta_{D}}
\end{array}\right]=\left(\begin{array}{c}
x^{\top}\left(y^{2}-y\right) \\
x^{2^{\top}}(\hat{y}-y) \\
\vdots \\
\vdots \\
x^{\top}\left(y^{n}-y\right)
\end{array}\right)=x^{\top}(\hat{y}-y)}
\end{aligned}
$$

Logistic Regression with feature transformation

What happens if you apply logistic regression on the above data?

Logistic Regression with feature transformation

Linear boundary will not be accurate here. What is the technical name of the problem?

Logistic Regression with feature transformation

Linear boundary will not be accurate here. What is the technical name of the problem? Bias!

Logistic Regression with feature transformation

$$
\phi(x)=\left[\begin{array}{c}
\phi_{0}(x) \\
\phi_{1}(x) \\
\vdots \\
\phi_{K-1}(x)
\end{array}\right]=\left[\begin{array}{c}
1 \\
x \\
x^{2} \\
x^{3} \\
\vdots \\
x^{K-1}
\end{array}\right] \in \mathbb{R}^{K}
$$

Logistic Regression with feature transformation

Using x_{1}^{2}, x_{2}^{2} as additional features, we are able to learn a more accurate classifier.

Logistic Regression with feature transformation

How would you expect the probability contours look like?

Logistic Regression with feature transformation

How would you expect the probability contours look like?

Multi-Class Prediction

Multi-Class Prediction

How would you learn a classifier? Or, how would you expect the classifier to learn decision boundaries?

Multi-Class Prediction

Multi-Class Prediction

1. Use one-vs.-all on Binary Logistic Regression
2. Use one-vs.-one on Binary Logistic Regression
3. Extend Binary Logistic Regression to Multi-Class Logistic Regression

Multi-Class Prediction

Multi-Class Prediction

1. Learn $\mathrm{P}($ setosa $($ class 1$))=\mathcal{F}\left(X \theta_{1}\right)$
2. $\mathrm{P}($ versicolor $($ class 2$))=\mathcal{F}\left(X \theta_{2}\right)$
3. $\mathrm{P}($ virginica $($ class 3$))=\mathcal{F}\left(X \theta_{3}\right)$
4. Goal: Learn $\theta_{i} \forall i \in\{1,2,3\}$
5. Question: What could be an \mathcal{F} ?

Multi-Class Prediction

Multi-Class Prediction

1. Question: What could be an \mathcal{F} ?
2. Property: $\sum_{i=1}^{3} \mathcal{F}\left(X \theta_{i}\right)=1$
3. Also $\mathcal{F}(z) \in[0,1]$
4. Also, $\mathcal{F}(z)$ has squashing proprties: $R \mapsto[0,1]$

Softmax

$$
\begin{gathered}
Z \in \mathbb{R}^{d} \\
\mathcal{F}\left(z_{i}\right)=\frac{e^{z_{i}}}{\sum_{i=1}^{d} e^{z_{i}}} \\
\therefore \sum \mathcal{F}\left(z_{i}\right)=1
\end{gathered}
$$

$\mathcal{F}\left(z_{i}\right)$ refers to probability of class \underline{i}

Softmax for Multi-Class Logistic Regression

$$
\begin{gathered}
k=\{1, \ldots, k\} \text { classes } \\
\theta=\left[\begin{array}{cccc}
\vdots & \vdots & \vdots & \vdots \\
\theta_{1} & \theta_{2} & \cdots & \theta_{k} \\
\vdots & \vdots & \vdots & \vdots
\end{array}\right] \\
P(y=k \mid X, \theta)=\frac{e^{X \theta_{k}}}{\sum_{k=1}^{K} e^{X \theta_{k}}}
\end{gathered}
$$

Softmax for Multi-Class Logistic Regression

For $\mathrm{K}=2$ classes,

$$
\begin{gathered}
P(y=k \mid X, \theta)=\frac{e^{X \theta_{k}}}{\sum_{k=1}^{K} e^{X \theta_{k}}} \\
P(y=0 \mid X, \theta)=\frac{e^{X \theta_{0}}}{e^{X \theta_{0}}+e^{X \theta_{1}}} \\
P(y=1 \mid X, \theta)=\frac{e^{X \theta_{1}}}{e^{X \theta_{0}}+e^{X \theta_{1}}}=\frac{e^{X \theta_{1}}}{e^{X \theta_{1}}\left\{1+e^{X\left(\theta_{0}-\theta_{1}\right)}\right\}} \\
=\frac{1}{1+e^{-X \theta^{\prime}}} \\
=\text { Sigmoid! }
\end{gathered}
$$

Multi-Class Logistic Regression Cost

Assume our prediction and ground truth for the three classes for $i^{\text {th }}$ point is:

$$
\begin{gathered}
\hat{y}_{i}=\left[\begin{array}{l}
0.1 \\
0.8 \\
0.1
\end{array}\right]=\left[\begin{array}{l}
\hat{y}_{i}^{1} \\
\hat{y}_{i}^{2} \\
\hat{y}_{i}^{3}
\end{array}\right] \\
y_{i}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
y_{i}^{1} \\
y_{i}^{2} \\
y_{i}^{3}
\end{array}\right]
\end{gathered}
$$

meaning the true class is Class \#2

Multi-Class Logistic Regression Cost

Assume our prediction and ground truth for the three classes for $i^{\text {th }}$ point is:

$$
\begin{gathered}
\hat{y}_{i}=\left[\begin{array}{l}
0.1 \\
0.8 \\
0.1
\end{array}\right]=\left[\begin{array}{l}
\hat{y}_{i}^{1} \\
\hat{y}_{i}^{2} \\
\hat{y}_{i}^{3}
\end{array}\right] \\
y_{i}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
y_{i}^{1} \\
y_{i}^{2} \\
y_{i}^{3}
\end{array}\right]
\end{gathered}
$$

meaning the true class is Class \#2
Let us calculate $-\sum_{k=1}^{3} y_{i}^{k} \log \hat{y}_{i}^{k}$

Multi-Class Logistic Regression Cost

Assume our prediction and ground truth for the three classes for $i^{\text {th }}$ point is:

$$
\begin{gathered}
\hat{y}_{i}=\left[\begin{array}{l}
0.1 \\
0.8 \\
0.1
\end{array}\right]=\left[\begin{array}{l}
\hat{y}_{i}^{1} \\
\hat{y}_{i}^{2} \\
\hat{y}_{i}^{3}
\end{array}\right] \\
y_{i}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
y_{i}^{1} \\
y_{i}^{2} \\
y_{i}^{3}
\end{array}\right]
\end{gathered}
$$

meaning the true class is Class \#2
Let us calculate $-\sum_{k=1}^{3} y_{i}^{k} \log \hat{y}_{i}^{k}$
$=-(0 \times \log (0.1)+1 \times \log (0.8)+0 \times \log (0.1))$

Multi-Class Logistic Regression Cost

Assume our prediction and ground truth for the three classes for $i^{\text {th }}$ point is:

$$
\begin{gathered}
\hat{y}_{i}=\left[\begin{array}{l}
0.1 \\
0.8 \\
0.1
\end{array}\right]=\left[\begin{array}{l}
\hat{y}_{i}^{1} \\
\hat{y}_{i}^{2} \\
\hat{y}_{i}^{3}
\end{array}\right] \\
y_{i}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
y_{i}^{1} \\
y_{i}^{2} \\
y_{i}^{3}
\end{array}\right]
\end{gathered}
$$

meaning the true class is Class \#2
Let us calculate $-\sum_{k=1}^{3} y_{i}^{k} \log \hat{y}_{i}^{k}$
$=-(0 \times \log (0.1)+1 \times \log (0.8)+0 \times \log (0.1))$
Tends to zero

Multi-Class Logistic Regression Cost

Assume our prediction and ground truth for the three classes for $i^{\text {th }}$ point is:

$$
\begin{gathered}
\hat{y}_{i}=\left[\begin{array}{l}
0.3 \\
0.4 \\
0.3
\end{array}\right]=\left[\begin{array}{l}
\hat{y}_{i}^{1} \\
\hat{y}_{i}^{2} \\
\hat{y}_{i}^{3}
\end{array}\right] \\
y_{i}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
y_{i}^{1} \\
y_{i}^{2} \\
y_{i}^{3}
\end{array}\right]
\end{gathered}
$$

meaning the true class is Class \#2

Multi-Class Logistic Regression Cost

Assume our prediction and ground truth for the three classes for $i^{\text {th }}$ point is:

$$
\begin{gathered}
\hat{y}_{i}=\left[\begin{array}{l}
0.3 \\
0.4 \\
0.3
\end{array}\right]=\left[\begin{array}{l}
\hat{y}_{i}^{1} \\
\hat{y}_{i}^{2} \\
\hat{y}_{i}^{3}
\end{array}\right] \\
y_{i}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
y_{i}^{1} \\
y_{i}^{2} \\
y_{i}^{3}
\end{array}\right]
\end{gathered}
$$

meaning the true class is Class \#2
Let us calculate $-\sum_{k=1}^{3} y_{i}^{k} \log \hat{y}_{i}^{k}$

Multi-Class Logistic Regression Cost

Assume our prediction and ground truth for the three classes for $i^{\text {th }}$ point is:

$$
\begin{gathered}
\hat{y}_{i}=\left[\begin{array}{l}
0.3 \\
0.4 \\
0.3
\end{array}\right]=\left[\begin{array}{l}
\hat{y}_{i}^{1} \\
\hat{y}_{i}^{2} \\
\hat{y}_{i}^{3}
\end{array}\right] \\
y_{i}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
y_{i}^{1} \\
y_{i}^{2} \\
y_{i}^{3}
\end{array}\right]
\end{gathered}
$$

meaning the true class is Class \#2
Let us calculate $-\sum_{k=1}^{3} y_{i}^{k} \log \hat{y}_{i}^{k}$
$=-(0 \times \log (0.1)+1 \times \log (0.4)+0 \times \log (0.1))$

Multi-Class Logistic Regression Cost

Assume our prediction and ground truth for the three classes for $i^{\text {th }}$ point is:

$$
\begin{gathered}
\hat{y}_{i}=\left[\begin{array}{l}
0.3 \\
0.4 \\
0.3
\end{array}\right]=\left[\begin{array}{l}
\hat{y}_{i}^{1} \\
\hat{y}_{i}^{2} \\
\hat{y}_{i}^{3}
\end{array}\right] \\
y_{i}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
y_{i}^{1} \\
y_{i}^{2} \\
y_{i}^{3}
\end{array}\right]
\end{gathered}
$$

meaning the true class is Class \#2
Let us calculate $-\sum_{k=1}^{3} y_{i}^{k} \log \hat{y}_{i}^{k}$
$=-(0 \times \log (0.1)+1 \times \log (0.4)+0 \times \log (0.1))$
High number! Huge penalty for misclassification!

Multi-Class Logistic Regression Cost

For 2 class we had:

$$
J(\theta)=-\left\{\sum_{i=1}^{n} y_{i} \log \left(\sigma_{\theta}\left(x_{i}\right)\right)+\left(1-y_{i}\right) \log \left(1-\sigma_{\theta}\left(x_{i}\right)\right)\right\}
$$

Multi-Class Logistic Regression Cost

For 2 class we had:

$$
J(\theta)=-\left\{\sum_{i=1}^{n} y_{i} \log \left(\sigma_{\theta}\left(x_{i}\right)\right)+\left(1-y_{i}\right) \log \left(1-\sigma_{\theta}\left(x_{i}\right)\right)\right\}
$$

More generally,

Multi-Class Logistic Regression Cost

For 2 class we had:

$$
J(\theta)=-\left\{\sum_{i=1}^{n} y_{i} \log \left(\sigma_{\theta}\left(x_{i}\right)\right)+\left(1-y_{i}\right) \log \left(1-\sigma_{\theta}\left(x_{i}\right)\right)\right\}
$$

More generally,

$$
J(\theta)=-\left\{\sum_{i=1}^{n} y_{i} \log \left(\hat{y}_{i}\right)+\left(1-y_{i}\right) \log \left(1-\hat{y}_{i}\right)\right\}
$$

Multi-Class Logistic Regression Cost

For 2 class we had:

$$
J(\theta)=-\left\{\sum_{i=1}^{n} y_{i} \log \left(\sigma_{\theta}\left(x_{i}\right)\right)+\left(1-y_{i}\right) \log \left(1-\sigma_{\theta}\left(x_{i}\right)\right)\right\}
$$

More generally,

$$
\begin{aligned}
& J(\theta)=-\left\{\sum_{i=1}^{n} y_{i} \log \left(\hat{y}_{i}\right)+\left(1-y_{i}\right) \log \left(1-\hat{y}_{i}\right)\right\} \\
& J(\theta)=-\left\{\sum_{i=1}^{n} y_{i} \log \left(\hat{y}_{i}\right)+\left(1-y_{i}\right) \log \left(1-\hat{y}_{i}\right)\right\}
\end{aligned}
$$

Extend to K-class:

$$
J(\theta)=-\left\{\sum_{i=1}^{n} \sum_{k=1}^{k} y_{i}^{k} \log \left(\hat{y}_{i}^{k}\right)\right\}
$$

Multi-Class Logistic Regression Cost

Now:

$$
\frac{\partial J(\theta)}{\partial \theta_{k}}=\sum_{i=1}^{n}\left[x_{i}\left\{I\left(y_{i}=k\right)-P\left(y_{i}=k \mid x_{i}, \theta\right)\right\}\right]
$$

Hessian Matrix

The Hessian matrix of $f\left(\right.$.) with respect to θ, written $\nabla_{\theta}^{2} f(\theta)$ or simply as \mathbb{H}, is the $d \times d$ matrix of partial derivatives,

$$
\nabla_{\theta}^{2} f(\theta)=\left[\begin{array}{cccc}
\frac{\partial^{2} f(\theta)}{\frac{\partial \theta}{2}} & \frac{\partial^{2} f(\theta)}{\partial \theta^{2} \partial \theta^{2}} & \ldots & \frac{\partial^{2} f(\theta)}{\partial \theta^{2} \partial \theta_{n}} \\
\frac{\partial^{2} f(\theta)}{\partial \theta_{2} \partial \theta_{1}} & \frac{\partial^{2} f(\theta)}{\partial \theta_{2}^{2}} & \ldots & \frac{\partial^{2} f(\theta)}{\partial \theta_{2} \partial \theta_{n}} \\
\ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots \\
\frac{\partial^{2} f(\theta)}{\partial \theta_{n} \partial \theta_{1}} & \frac{\partial^{2} f(\theta)}{\partial \theta_{n} \partial \theta_{2}} & \ldots & \frac{\partial^{2} f(\theta)}{\partial \theta_{n}^{2}}
\end{array}\right]
$$

Newton's Algorithm

The most basic second-order optimization algorithm is Newton's algorithm, which consists of updates of the form,

$$
\theta_{k+1}=\theta_{k}-\mathbb{H}_{k}^{1} g_{k}
$$

where g_{k} is the gradient at step k. This algorithm is derived by making a second-order Taylor series approximation of $f(\theta)$ around θ_{k} :

$$
f_{\text {quad }}(\theta)=f\left(\theta_{k}\right)+g_{k}^{T}\left(\theta-\theta_{k}\right)+\frac{1}{2}\left(\theta-\theta_{k}\right)^{T} \mathbb{H}_{k}\left(\theta-\theta_{k}\right)
$$

differentiating and equating to zero to solve for θ_{k+1}.

Learning Parameters

Now assume:

$$
\begin{gathered}
g(\theta)=\sum_{i=1}^{n}\left[\sigma_{\theta}\left(x_{i}\right)-y_{i}\right] x_{i}^{j}=\mathbf{X}^{\top}\left(\sigma_{\theta}(\mathbf{X})-\mathbf{y}\right) \\
\pi_{i}=\sigma_{\theta}\left(x_{i}\right)
\end{gathered}
$$

Let \mathbb{H} represent the Hessian of $J(\theta)$

$$
\begin{aligned}
\mathbb{H}=\frac{\partial}{\partial \theta} g(\theta) & =\frac{\partial}{\partial \theta} \sum_{i=1}^{n}\left[\sigma_{\theta}\left(x_{i}\right)-y_{i}\right] x_{i}^{j} \\
& =\sum_{i=1}^{n}\left[\frac{\partial}{\partial \theta} \sigma_{\theta}\left(x_{i}\right) x_{i}^{j}-\frac{\partial}{\partial \theta} y_{i} x_{i}^{j}\right] \\
& =\sum_{i=1}^{n} \sigma_{\theta}\left(x_{i}\right)\left(1-\sigma_{\theta}\left(x_{i}\right)\right) x_{i} x_{i}^{T} \\
& =\mathbf{X}^{\top} \operatorname{diag}\left(\sigma_{\theta}\left(x_{i}\right)\left(1-\sigma_{\theta}\left(x_{i}\right)\right)\right) \mathbf{X}
\end{aligned}
$$

Iteratively reweighted least squares (IRLS)

For binary logistic regression, recall that the gradient and Hessian of the negative log-likelihood are given by:

$$
\begin{aligned}
g(\theta)_{k} & =\mathbf{X}^{\boldsymbol{\top}}\left(\pi_{\mathbf{k}}-\mathbf{y}\right) \\
\mathbf{H}_{k} & =\mathbf{X}^{T} S_{k} \mathbf{X} \\
\mathbf{S}_{k} & =\operatorname{diag}\left(\pi_{1 k}\left(1-\pi_{1 k}\right), \ldots, \pi_{n k}\left(1-\pi_{n k}\right)\right) \\
\pi_{i k} & =\operatorname{sigm}\left(\mathbf{x}_{\mathbf{i}} \theta_{\mathbf{k}}\right)
\end{aligned}
$$

The Newton update at iteraion $k+1$ for this model is as follows:

$$
\begin{aligned}
\theta_{k+1} & =\theta_{k}-\mathbb{H}^{-1} g_{k} \\
& =\theta_{k}+\left(X^{T} S_{k} X\right)^{-1} X^{T}\left(y-\pi_{k}\right) \\
& =\left(X^{T} S_{k} X\right)^{-1}\left[\left(X^{T} S_{k} X\right) \theta_{k}+X^{T}\left(y-\pi_{k}\right)\right] \\
& =\left(X^{T} S_{k} X\right)^{-1} X^{T}\left[S_{k} X \theta_{k}+y-\pi_{k}\right]
\end{aligned}
$$

Regularized Logistic Regression

Unregularised:

$$
J_{1}(\theta)=-\left\{\sum_{i=1}^{n} y_{i} \log \left(\sigma_{\theta}\left(x_{i}\right)\right)+\left(1-y_{i}\right) \log \left(1-\sigma_{\theta}\left(x_{i}\right)\right)\right\}
$$

L2 Regularization:

$$
J(\theta)=J_{1}(\theta)+\lambda \theta^{T} \theta
$$

L1 Regularization:

$$
J(\theta)=J_{1}(\theta)+\lambda|\theta|
$$

