(
MOCK OULZ:2

Q1. Prove that sigmoid is a special case of seftmax -
i). take a 2 class classification problem:


$$
\begin{aligned}
& \operatorname{Prob}\left(\text { lass 1) }=\frac{e^{a_{1}}}{e^{a_{1}}+e^{a_{2}}}=\frac{1}{1+e^{a_{2}-a_{1}}}\right. \\
& \operatorname{Prob}\left(\text { class 2) }=\frac{e^{a_{2}}}{e^{a_{1}}+e^{a_{2}}}=\frac{e^{a_{2}-a_{1}}}{1+e^{a_{2}}-a_{1}}\right.
\end{aligned}
$$

let $a_{1}-a_{2}=x$

$$
\begin{aligned}
& \Rightarrow \operatorname{Prob}(\text { lars })=\frac{1}{1+e^{-x}} \quad \begin{array}{r}
\text { sigmoid } \\
\text { function }
\end{array} \\
& \operatorname{Prob}(\text { cars })=\frac{e^{-x}}{1+e^{-x}}
\end{aligned}
$$

Q2. A Deep NN without non-lineal activations is still equivalent to Lenear regression

Consider the following neural network with 2 layers:

at the th newon in the first layer:

$$
\begin{aligned}
& x_{1} \omega_{i 1}^{1}+x_{2} \omega_{i 2}^{1}+\cdots+x_{n} \omega_{i n}^{1}=a_{1} \\
& \Rightarrow a_{i}=\sum_{j=1}^{n} x_{j} \omega_{i j}^{1} \longrightarrow 1 . \\
& \hat{y}=\sum_{i=1}^{k} w_{i}^{2} a_{i} \longrightarrow 2 . \\
& \text { using I in } 2 \text {. } \\
& \hat{y}=\sum_{i=1}^{k} \omega_{i}^{2} \sum_{j=1}^{n} \omega_{i j}^{\prime} x_{j} \\
& \frac{b_{i}=\omega_{i}^{4} a_{i}+b}{k} \\
& \hat{y}=\sum_{i=1}^{k} w_{i}^{2} b_{i} \\
& y=\sum_{i=1}^{k} \omega_{i}^{2}\left(\omega_{i}^{4} a_{i}+b\right) \\
& =\sum w_{i}^{2} w_{i}^{4} a_{i}+w_{i}^{2} b
\end{aligned}
$$

$$
\begin{aligned}
\hat{y} & =\sum_{j=1}^{n} \sum_{i=1}^{k} \omega_{i}^{2} \omega_{i j} x_{j} \\
& =\sum_{j=1}^{n} x_{j} \frac{\sum_{i=1}^{k} \omega_{i}^{2} \omega_{i j}}{L_{\rightarrow \text { can be written }}^{2} \omega_{i} w_{i}^{4}\left(\sum_{j=1}^{n} x_{j} w_{i j}^{\prime}\right)} \begin{array}{r}
\text { in terms of } \omega^{3}
\end{array} \\
& =\sum_{j=1}^{n} x_{j} \omega_{j}^{3} \quad \because \text { Where } \omega_{j}^{2} b
\end{aligned}
$$

This is equivalent to a linear reg, problem.
we can say that by induction, it will work for multiple layers.

Q3. Domain of segmoid, tanh. Write tanh in terms of segmoid.
tanh in terms of sigmoid:

$$
\begin{aligned}
\tanh (x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} & =\frac{e^{x}}{e^{x}+e^{-x}}-\frac{e^{-x}}{e^{x}+e^{-x}} \\
& =\frac{1}{1+e^{-2 x}}-\frac{1}{e^{2 x}+1} \\
& =\operatorname{sigmoid}(2 x)-\operatorname{sigmoid}(-2 x)
\end{aligned}
$$

$\because$ division by $e^{x}, e^{-x}$ respectively
4. Input size $(32 \times 32 \times 6)\{i m a g e\}$, train for 100 class classification
i) layer $1 \rightarrow 200$ newons, Relu
ii) Cayud $\rightarrow 120$ newons,
iii) 100 class classification.
steps in the forward pass:
$\because$ Number of prams (layer)

$$
=\left(N_{i-1}+1\right) N_{i}
$$

Bias.
i). flatten the image, each image has $32 \times 32 \times 6=6144$ data points
ii). byes: 200 neman:
each new on will have 6144 parameters along with a bail tern.

Thus each newton has: 6145 parameters
$\Rightarrow$ Cayert has $200 \times 6145=1,229,000$ parameters .
iii). Relle does not have any parametell.
iii. Clyde 2: 120 neums
$\rightarrow$ input to this eager will have a size of 200
$\rightarrow$ Thus. each neuron will have 201 params (with buis)
$\rightarrow$ layer a has $120 \times 201=24120$ params.
iv). Output layer: 100 neurons ( 100 class classification).
$\rightarrow$ input will be of size 120 , each newon will have 121 paras.
$\rightarrow$ Cayel 3 has $100 \times 121=12100$ prams.
$\Rightarrow$ total number of params $=12100+24120+1229000$

$$
\text { total params }=24,94,220
$$

Q5. Derive the vectorized form of gradient descent for Cogestic reg.

$$
\hat{y}=\frac{1}{\left.1+e^{-\left(x^{2}\right.} \theta+b\right)} \quad \because \text { sigmoid. }
$$

Binary
coss function:

$$
\sigma\left(x^{\top} \theta+b\right)
$$

Cave

$$
L(\hat{y}, y)=-y \log \hat{y}-(1-y) \log (1-\hat{y})
$$

Now $\frac{d L}{d \theta}=\frac{d L}{d \hat{y}} \times \frac{d \hat{y}}{d \theta}-1$.
i).

$$
\begin{aligned}
\frac{d l}{d \hat{y}} & =\frac{-y}{\hat{y}}-\frac{(1-y)(-1)}{1-\hat{y}} \\
& =\frac{(1-y)}{(1-\hat{y})}-\frac{y}{g} \\
\frac{d L}{d \hat{y}} & =\frac{(1-y)}{(1-\hat{y})}-\frac{y}{\hat{y}}-2 .
\end{aligned}
$$

$\because \hat{y}$ is not a vector in this case
iii.

$$
\begin{aligned}
\frac{d \hat{y}}{d \theta}=\frac{d\left(\sigma\left(x^{\top} \theta+b\right)\right.}{d \theta} & =\hat{g}(1-\hat{y}) \cdot \frac{d\left(x^{\top} \theta+b\right)}{d \theta} \\
& =\hat{y}(1-\hat{y}) \frac{d\left(\theta^{\top} x+b\right)}{d \theta} \quad \frac{d\left(\theta^{\top} x\right)}{d \theta} \\
& =\hat{y}(1-\hat{y}) x-3 \cdot \\
& =x
\end{aligned}
$$

Sub 3, 2 in 1:

$$
\begin{aligned}
\frac{d L}{d \theta} & =\hat{y}(1-\hat{y}) x \times\left\{\frac{(-y)}{1-\hat{y}}-\frac{y}{y}\right\} \\
& =\hat{y}(x-\hat{y}) x \cdot\left(\frac{\hat{y}-y \hat{y}-y+y \hat{y}}{\hat{y}(1-\hat{y})}\right\} \\
\frac{d L}{d \theta} & =x(\hat{y}-y)
\end{aligned}
$$

With the en tire data Set
$x \rightarrow$ complete detaste

$$
\begin{aligned}
& \underset{\text { vector }}{\hat{y}}=\sigma(x \theta) \\
& \text { coss function }=J(\theta)=\frac{1}{m} \sum_{i=1}^{m}-y_{i} \log \hat{y}_{i}-\left(1-y_{j}\right) \log \left(1-\hat{y}_{i}\right) \\
& \Rightarrow \frac{d L}{d \theta}=\frac{1}{m} \sum_{i=1}^{m}\left(y_{i}-y_{i}\right)(x[i, i])^{\top} \\
& J(\theta)=\frac{1}{m} \sum_{i=1}^{m} L(\theta) \\
& \frac{d s(\theta)}{d \sigma}=\frac{1}{m} \sum_{i=1}^{m} \sum L_{i}(\theta)
\end{aligned}
$$

$$
\hat{y}=\frac{1}{\left.1+e^{-\left(x^{2}\right.} \theta+b\right)} \quad \text { : siqniod }
$$

cosfonction: $\quad \sigma\left(x^{\top} \theta+b\right)$

$$
\begin{aligned}
& L(\hat{g}, y)=\frac{-y \log \hat{y}-(1-y) \log (1-\hat{y})}{\text { Now } \frac{d l}{d \theta}}=\frac{d L^{\hat{l}} \times \frac{d \hat{y}}{d \hat{y}}-1}{d \hat{\theta}} \\
& \frac{d L}{d b}=\frac{d L}{d \hat{y}} \times \frac{d \hat{y}}{d b} \\
& \frac{d \hat{y}}{d b}=\frac{d\left(6\left(x^{\top} \theta+b\right)\right)}{d b} \\
&=\hat{y}(1-\hat{y}) \times \frac{d\left(x^{\top} \theta+b\right)}{d b} \\
&=\hat{y}(1-\hat{y}) \\
& \frac{d L}{d b}=\hat{y}(1-\hat{y}) \times \frac{d L}{d \hat{y}}=\hat{y}(1-\hat{y})=\hat{y}(x) \times \frac{\hat{y}-y}{\hat{y}(1-\hat{y})} \\
&=\hat{y}-y
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d L}{d b}=\hat{y}-y \\
& \frac{d L}{d b}=\sum \frac{d L_{i}}{d b} \\
&=\sum_{i=1}^{m} \hat{y}_{i}-y_{i}
\end{aligned} \quad \text {, for the } \begin{aligned}
\text { cote detaset }
\end{aligned}
$$

$\left.Q \cdot \sigma^{\circ}\right]$

$$
\begin{aligned}
& \left.\begin{array}{r}
\begin{array}{r}
\text { Entropy }=-\sum_{i=1}^{k} p_{i} \log \left(p_{i}\right) \\
\text { no cross } \\
\text { terms }
\end{array} \\
\left.\begin{array}{r}
\text { Entropy } \\
\text { (for } 2 \text { cares })
\end{array}\right\}-p_{1} \log p_{1}-p_{2} \log p_{2}
\end{array}\right\} \begin{array}{l}
\text { Decision } \\
\text { Trees }
\end{array} \\
& \left.\begin{array}{l}
\text { Crass-Eatropy }=-\sum_{i=1}^{K} y_{i} \log \left(\hat{y}_{v}\right) \\
(\text { frogs terms } 2 \text { classes })= \\
-y \log \hat{y}-(1-y) \log (1-\hat{y})
\end{array}\right\} \begin{array}{l}
\text { Logistic } \\
\text { Regresilion }
\end{array}
\end{aligned}
$$

Q.7.] (1) Extremely sparse embeddings for large vocabularies (wasteful)

$$
a=\left[\begin{array}{l}
{[10000 \ldots \ldots .}
\end{array}\right]
$$

(2). 1 -hat encoding make each embedding orthogonal Cindependant and unrelated)

- We ideally want embeddings which capture the semantics / usage pattens too.


How do we solve this ???

QB.]

$$
\begin{aligned}
& J(\theta)=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2} \\
& \hat{y}_{c}=\sigma\left(\theta^{\top} x\right)
\end{aligned}
$$

Why don't we use Squared Error?
(1) Squared Error is not convex

C Difficult for GD to reach global optima. May get stuck in local optima.)


We generally want to optimize comer functions

Using Gradient Descent.
$\rightarrow$ For a function of 1 variable, it the and derivative is non-negative in the domain, the function is convex in the domain
$\rightarrow$ Quick test for Convexity - A line joining any two points on the curve must lie above the curve.
(2) MSE doesn't penalize much even for a perfect mismatch. Eg. $y_{i}=1 \quad \hat{y}_{i}=0$

$$
\begin{aligned}
\text { MSS } & =\left(y_{i}-\hat{y}_{i}\right)^{2}=(1-0)^{2}=1 \\
\text { Log Loss } & =-1 \log 0-0 \log 1 \\
& =-\log 0 \quad \text { (tends to infinity) }
\end{aligned}
$$

Q.9.] For $N$ datapoints and K dasfees,

$$
\begin{array}{r}
\text { Multi-dasy } \\
\text { cross-entopy }
\end{array}=-\sum_{i=1}^{N} \sum_{k=1}^{K} y_{i}^{k} \log \hat{y}_{i}^{k}
$$

$$
\begin{aligned}
& \operatorname{Los}=(-1 \log (0.8)-0 \log (0.1)-0 \log (0.1)) \\
&+(-0 \log (0.3)-1 \log (0.3)-0 \log (0.4) \\
&=-(\log (0.8)+\log (0.3))=-\log 0.24 \\
&=\log (25.6)
\end{aligned}
$$

Q. 10 ]

$$
\begin{aligned}
& C E(p, y)=\left\{\begin{array}{ll}
-\log (p) & \text { i ty }=1 \\
-\log (1-p) & \text { it } y=0 \\
P_{t}= \begin{cases}p & \text { if } y=1 \\
(1-p) & i+y=0\end{cases}
\end{array} \$=\right.\text {, }
\end{aligned}
$$

Note: $y=1$ is the majanty class (we have a lot of it's samples)

$$
C E(p, y)=C E(p t)=-\log (p t)
$$

Consider $F L\left(p_{t}\right)=-\left(1-p_{t}\right)^{\gamma} \log \left(p_{t}\right) ; \gamma \geqslant 0$
$\rightarrow$ Why is CE ( $\rho t)$ not well-suited for imbalanced datasets (Eg. Cancer detection)?

- Biased towards majority class
$\rightarrow$ Can Focal Loss (FL(pt)) help here?? How??
$\rightarrow$ In practice, $\alpha_{t}\left[\begin{array}{ll}\alpha & \text { if } y=1 \\ 1-\alpha & \text { if } y=0\end{array}\right.$ ' $\alpha$ ' is a hyperpavameter.
' $\gamma$ ' is a hyp perpanameter. $\begin{aligned} & \text { can } \\ & \text { be }\end{aligned}$ be
tuned

$$
\rightarrow F L^{\prime}(p t)=-\alpha_{t}\left(1-\rho_{t}\right)^{\gamma} \log \left(\rho_{t}\right)
$$

(used in practice.)

Answer. When $\rho_{t}$ is high (easily classified samples from the majority class), the $\left(1-p_{t}\right)^{\gamma}$ downscales the loss contributed by such majority clays samples, but when Pt is low, there is lesser downscaling $\Rightarrow$ morn e ion $\begin{gathered}\text { mon } \\ \text { fond }\end{gathered}$

Q2: m case ob linear activation - continuation

$$
\begin{aligned}
& =\sum \omega_{i}^{2} \omega_{i}^{4}\left(\sum_{j=1}^{n} x_{j} \omega_{i j}^{\prime}\right) \\
& +\quad \omega_{1}^{2} b \\
& =\sum_{j=1}^{m} \omega_{i}^{2} \omega_{i}^{4} \sum_{j=1}^{n} x_{j} \omega_{i j}^{1}+\omega_{i}^{2} b \\
& =\sum_{j=1}^{m} \sum_{l=1}^{m} w_{i}^{2} w_{i}^{4} x_{j} \omega_{i j}^{\prime}+\sum_{j=1}^{m} w_{i}^{2} b \\
& =\sum_{j=1}^{m} x_{j} \frac{\left(\sum_{i=1}^{m} w_{i}^{2} w_{i} \omega_{i j}\right)}{\omega_{j}}
\end{aligned}
$$

