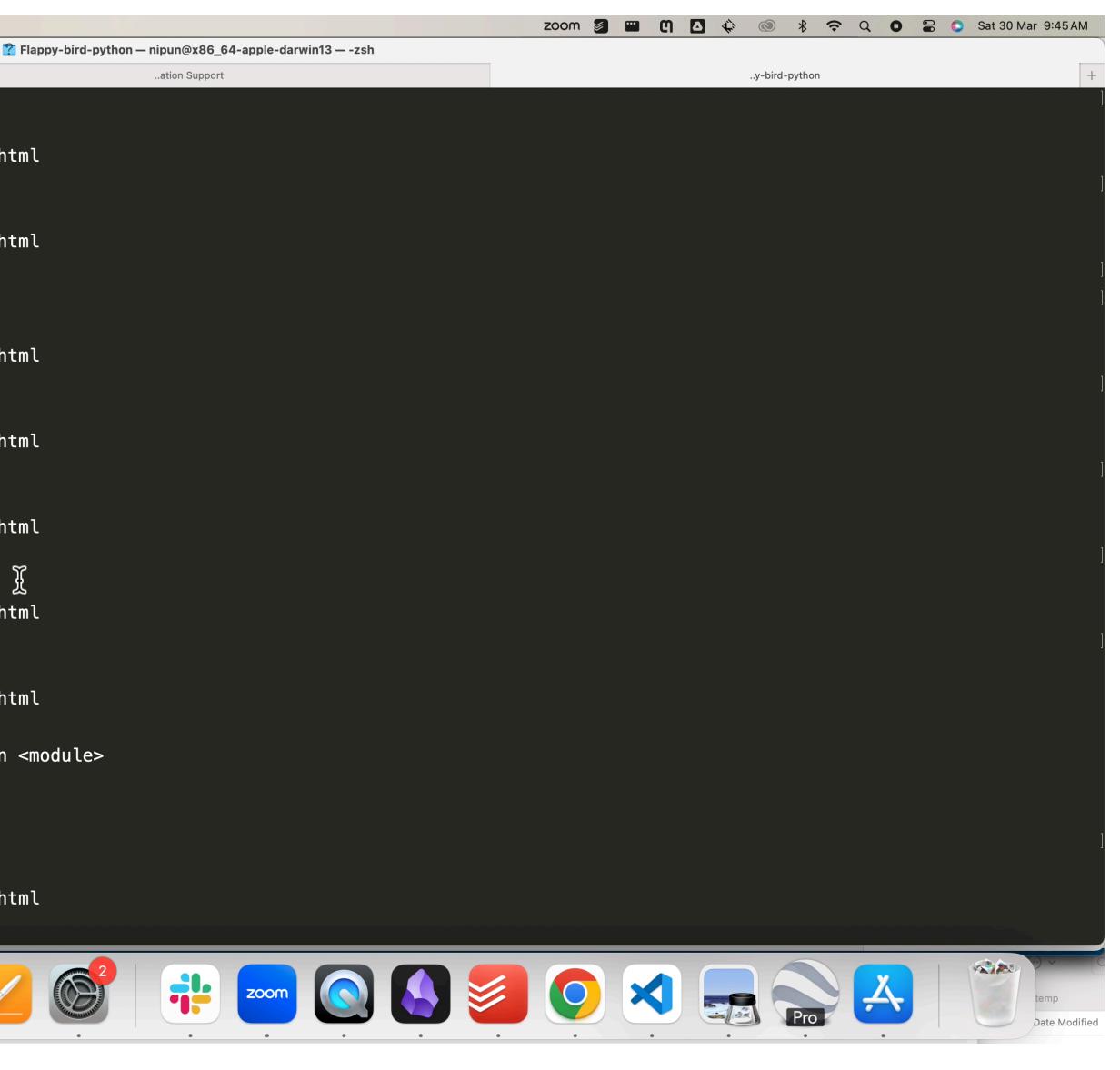
Reinforcement Learning

Nipun Batra, 1 April 2024

Flappy Bird

(base) → Flappy-bird-python git:(master) × python <u>flappy.py</u> pygame 2.5.2 (SDL 2.28.3, Python 3.9.15) Hello from the pygame community. https://www.pygame.org/contribute.html (base) → Flappy-bird-python git:(master) × python <u>flappy.py</u> pygame 2.5.2 (SDL 2.28.3, Python 3.9.15) Hello from the pygame community. https://www.pygame.org/contribute.html (base) → Flappy-bird-python git:(master) × (base) → Flappy-bird-python git:(master) × python flappy.py pygame 2.5.2 (SDL 2.28.3, Python 3.9.15) Hello from the pygame community. https://www.pygame.org/contribute.html (base) → Flappy-bird-python git:(master) × python <u>flappy.py</u> pygame 2.5.2 (SDL 2.28.3, Python 3.9.15) Hello from the pygame community. https://www.pygame.org/contribute.html (base) → Flappy-bird-python git:(master) × python flappy.py pygame 2.5.2 (SDL 2.28.3, Python 3.9.15) Hello from the pygame community. https://www.pygame.org/contribute.html (base) → Flappy-bird-python git:(master) × python flappy.py Ĩ pygame 2.5.2 (SDL 2.28.3, Python 3.9.15) Hello from the pygame community. https://www.pygame.org/contribute.html (base) → Flappy-bird-python git:(master) × python <u>flappy.py</u> pygame 2.5.2 (SDL 2.28.3, Python 3.9.15) Hello from the pygame community. https://www.pygame.org/contribute.html Traceback (most recent call last): File "/Users/nipun/git/Flappy-bird-python/flappy.py", line 166, in <module> screen.blit(BACKGROUND, (0, 0)) pygame.error: display Surface quit (base) → Flappy-bird-python git:(master) × python flappy.py pygame 2.5.2 (SDL 2.28.3, Python 3.9.15) Hello from the pygame community. https://www.pygame.org/contribute.html (base) → Flappy-bird-python git:(master) ×

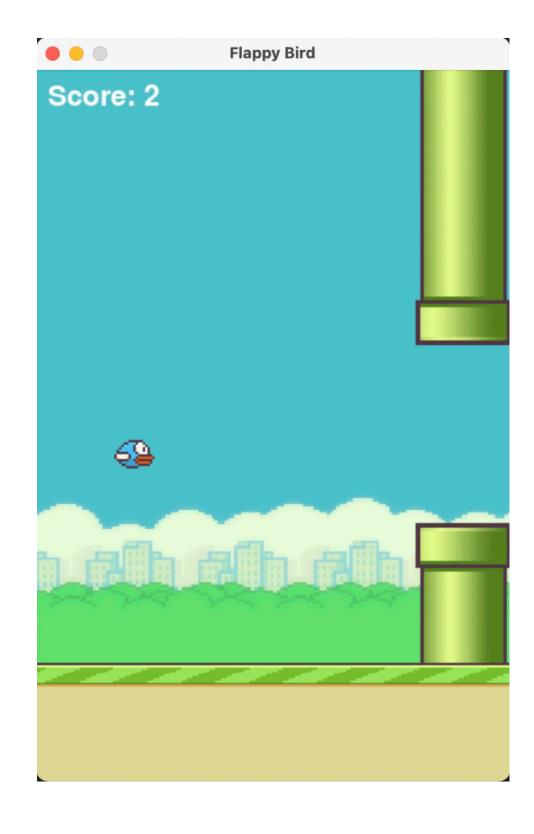


Flappy Bird

<u>bird-python</u>)

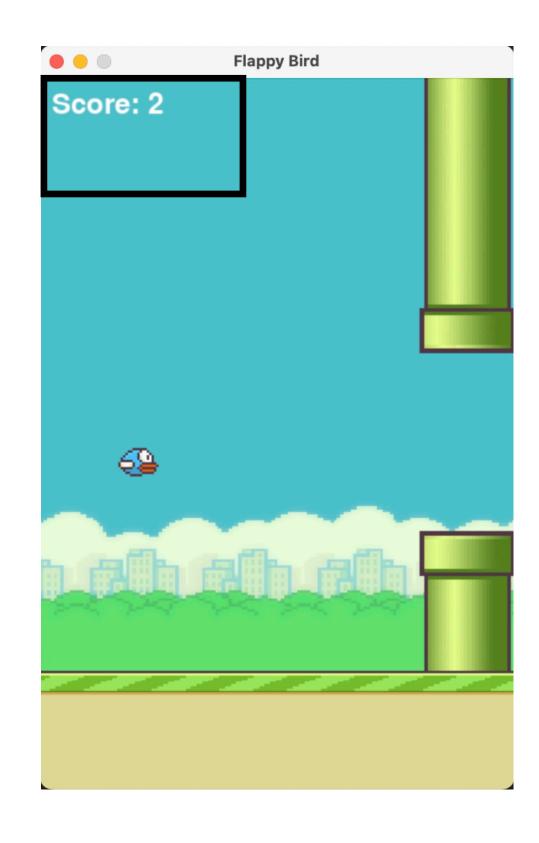
Game demo (Code modified from: <u>https://github.com/LeonMarqs/Flappy-</u>

Flappy Bird What is the goal/objective?

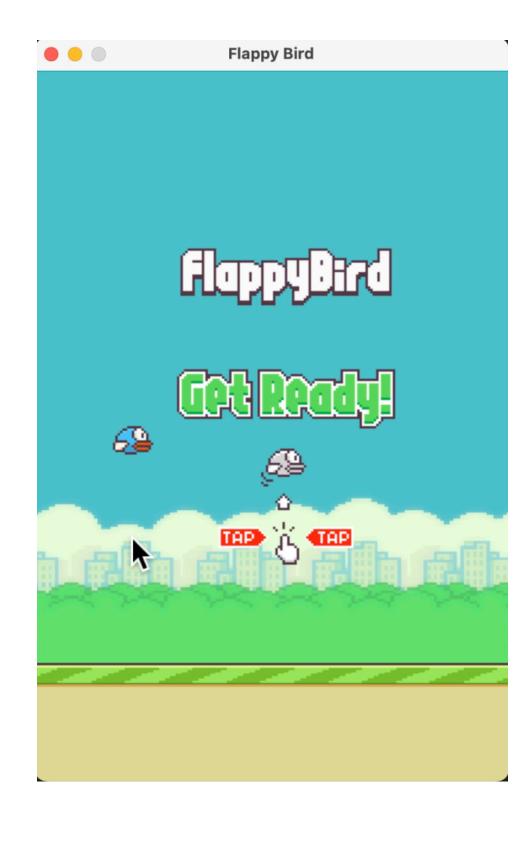


Flappy Bird What is the goal/objective?

• Maximise score

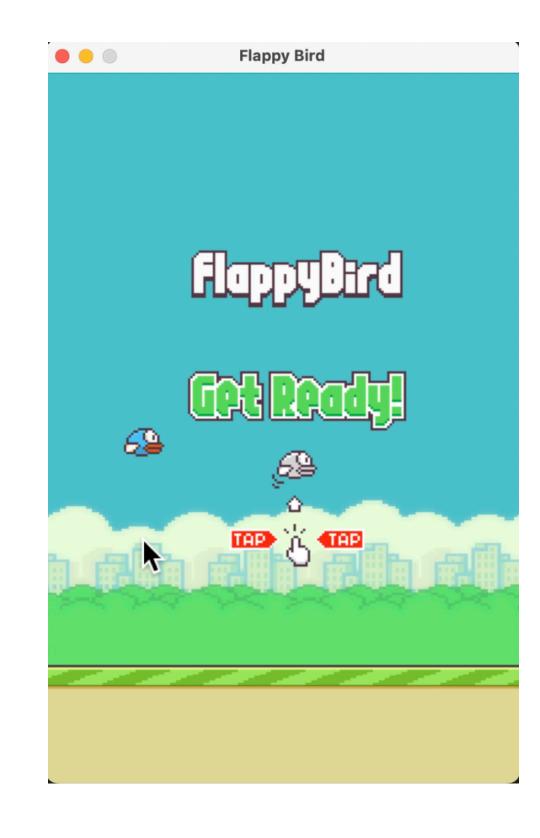


Flappy Bird What are the actions we can take?

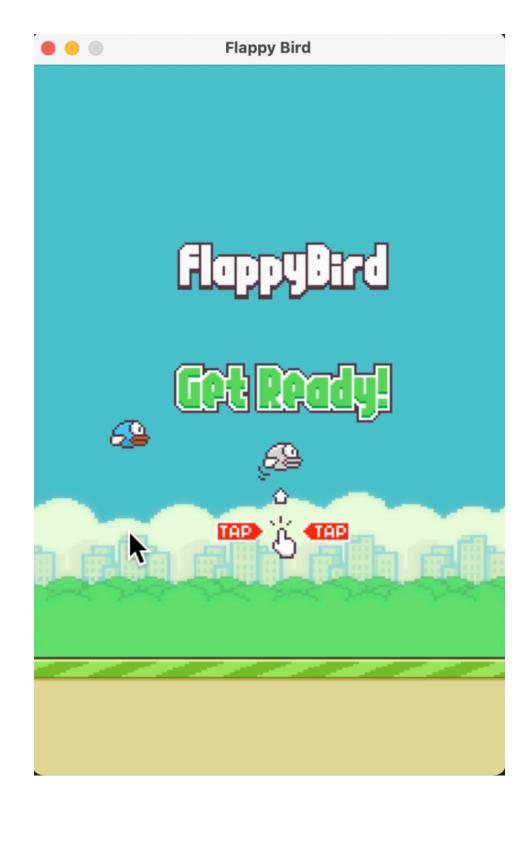


Flappy Bird What are the actions we can take?

- Two actions
 - Tap (Space)
 - No tap

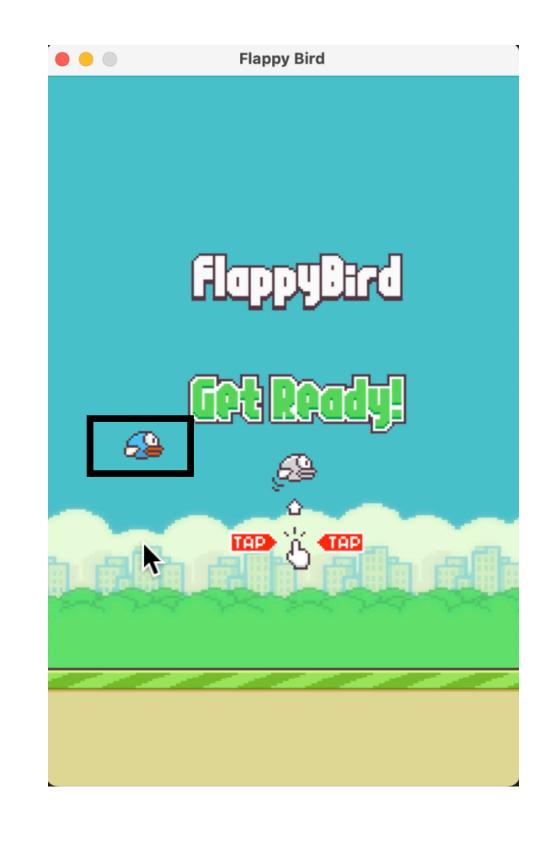


Flappy BirdWho is playing?

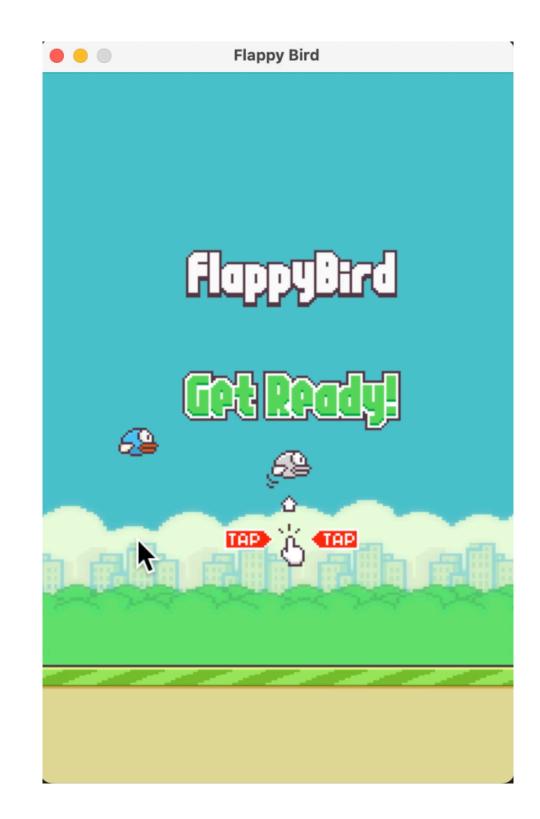


Flappy BirdWho is playing?

- Agent
 - You
 - Or some algorithm



Flappy Bird Where are we playing?

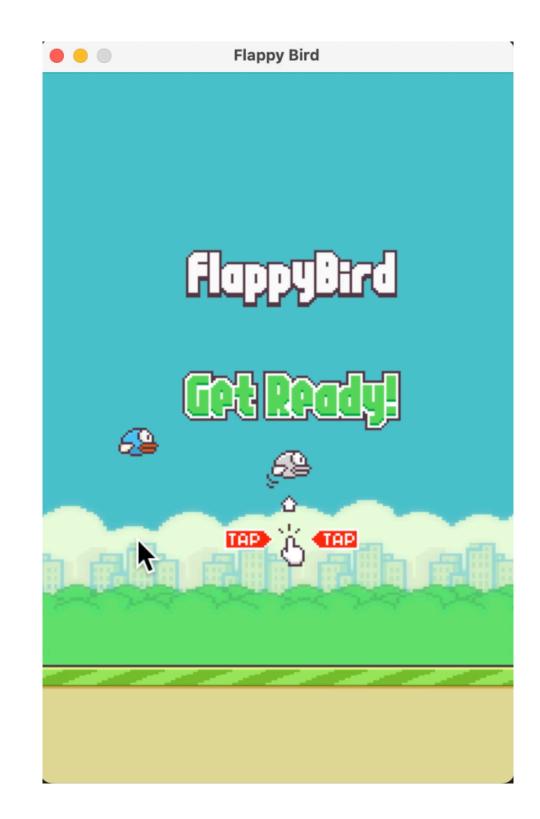


```
while begin:
```

```
clock.tick(15)
for event in pygame.event.get():
    if event.type == QUIT:
        pygame.quit()
    if event.type == KEYDOWN:
        if event.key == K_SPACE or event.key == K_UP:
           bird.bump()
           pygame.mixer.music.load(wing)
            pygame.mixer.music.play()
            begin = False
screen.blit(BACKGROUND, (0, 0))
screen.blit(BEGIN_IMAGE, (120, 150))
if is_off_screen(ground_group.sprites()[0]):
   ground_group.remove(ground_group.sprites()[0])
    new_ground = Ground(GROUND_WIDHT - 20)
    ground_group.add(new_ground)
bird.begin()
ground_group.update()
bird_group.draw(screen)
ground_group.draw(screen)
```

Flappy Bird Where are we playing?

- Environment
 - Code
 - generating the graphics
 - Physics rules
 - What happens when you tap
 - What happens when you hit pipe



```
while begin:
```

```
clock.tick(15)
for event in pygame.event.get():
   if event.type == QUIT:
       pygame.quit()
   if event.type == KEYDOWN:
       if event.key == K_SPACE or event.key == K_UP:
           bird.bump()
           pygame.mixer.music.load(wing)
           pygame.mixer.music.play()
           begin = False
screen.blit(BACKGROUND, (0, 0))
screen.blit(BEGIN_IMAGE, (120, 150))
```

```
if is_off_screen(ground_group.sprites()[0]):
   ground_group.remove(ground_group.sprites()[0])
```

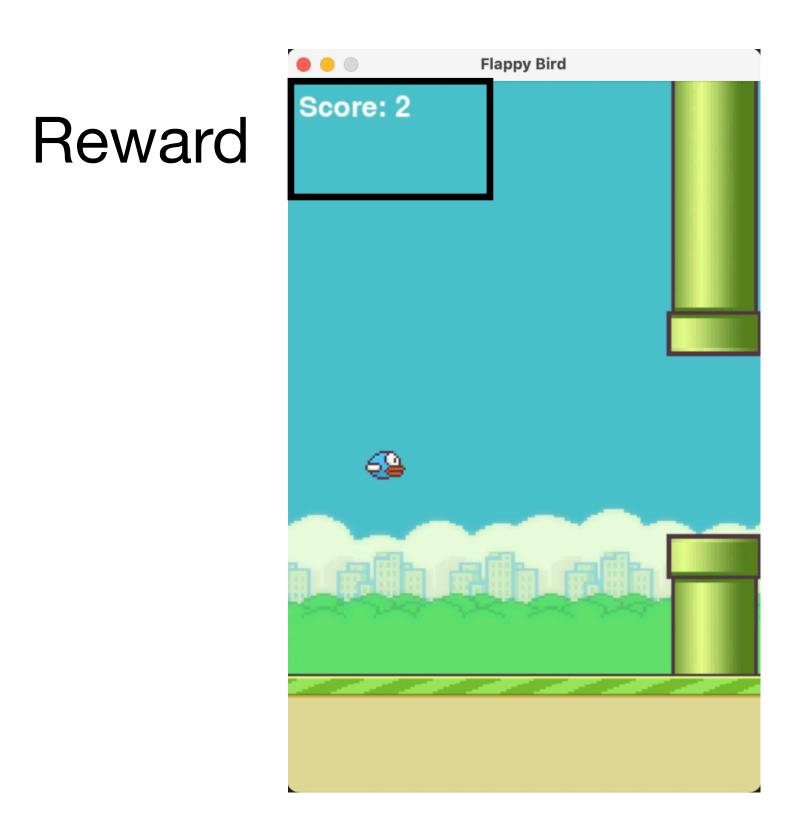
```
new_ground = Ground(GROUND_WIDHT - 20)
ground_group.add(new_ground)
```

bird.begin() ground_group.update()

bird_group.draw(screen) ground_group.draw(screen)

Flappy Bird What does the environment provide to an agent?

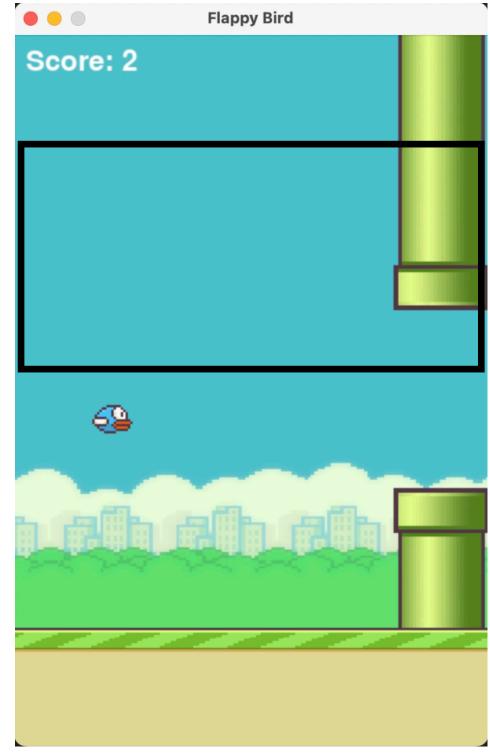
Flappy Bird What does the environment provide to an agent?



Flappy Bird What does the environment provide to an agent?

Observations

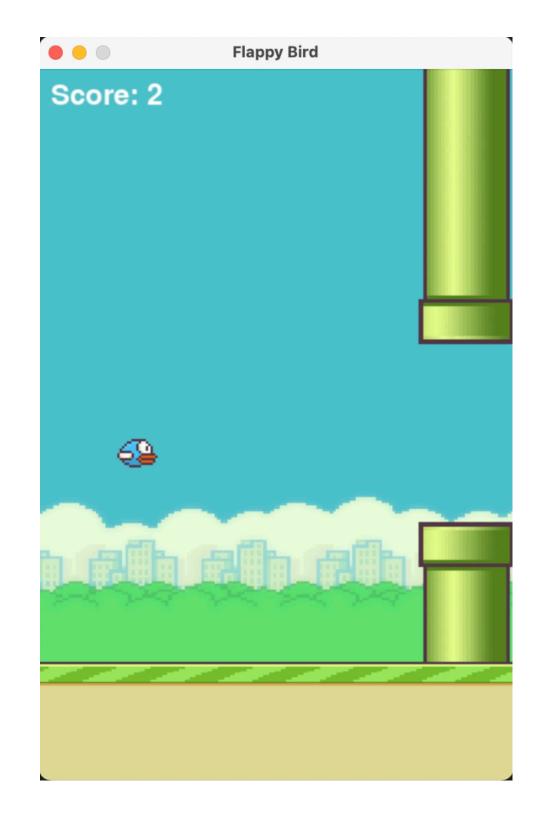
Pixel level information



Flappy Bird How does an agent decide what action to take?

Should the agent

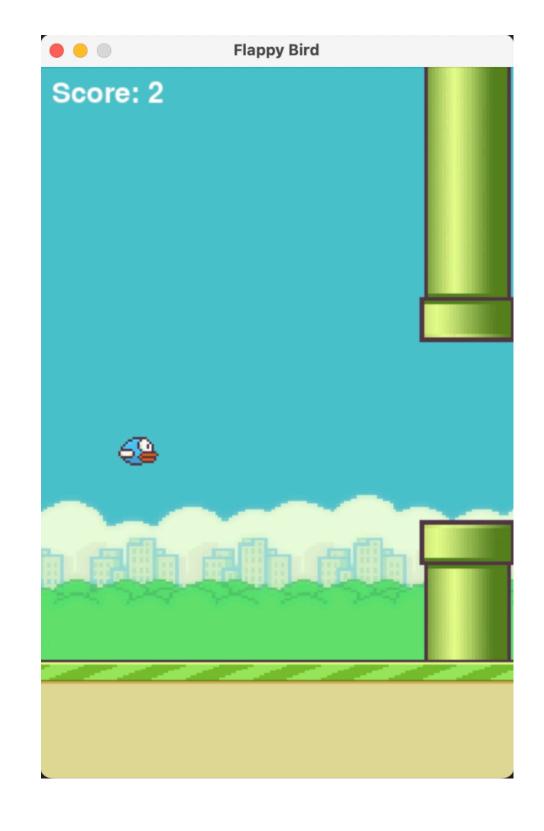
tap or not?



Flappy Bird How does an agent decide what action to take?

State

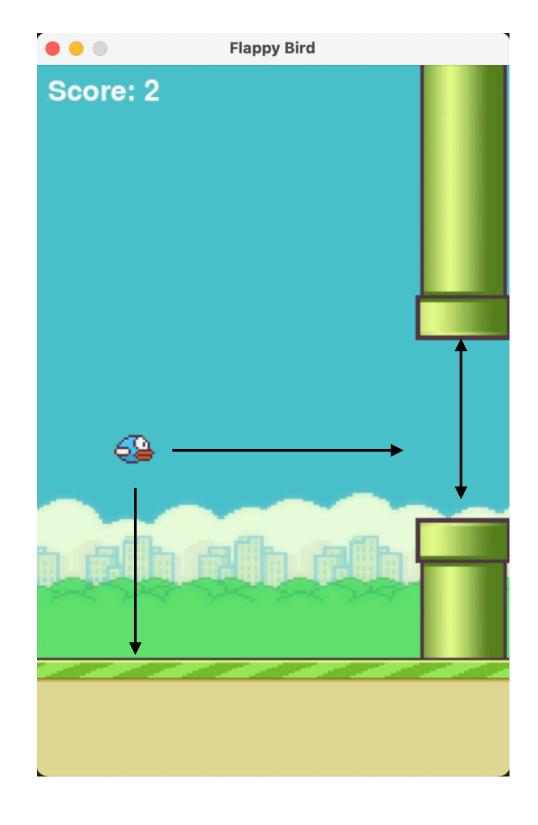
Process observation into a "state"



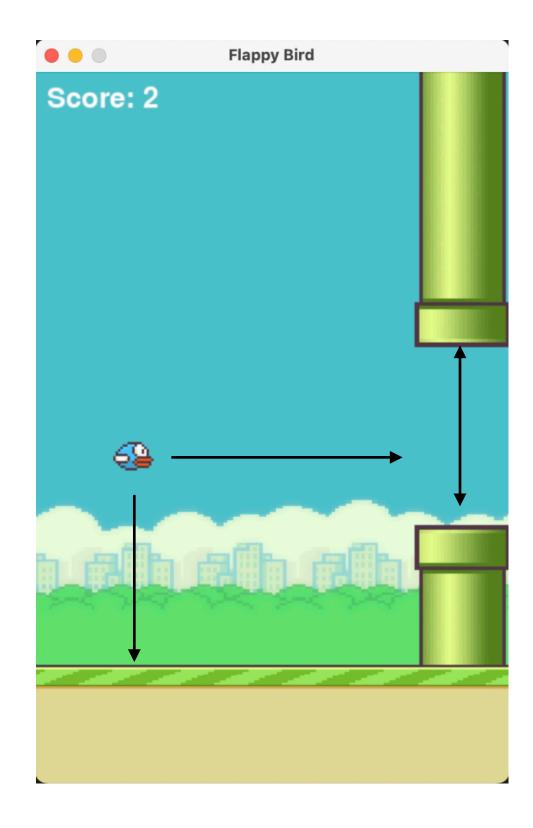
Flappy Bird How does an agent decide what action to take?

State

Process observation into a "state"



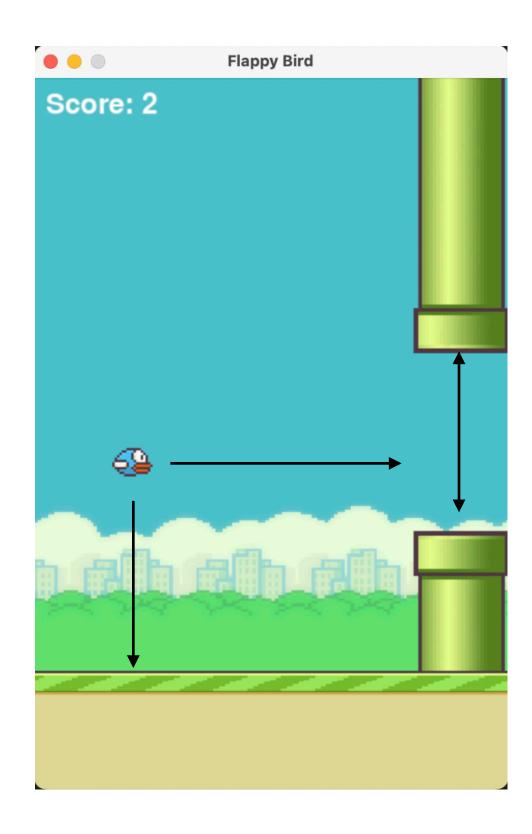
Flappy Bird Is time important?



Flappy Bird Is time important?

Yes

Agent's current state depends on previous state and action



Environment

Agent

Actions (a_t)

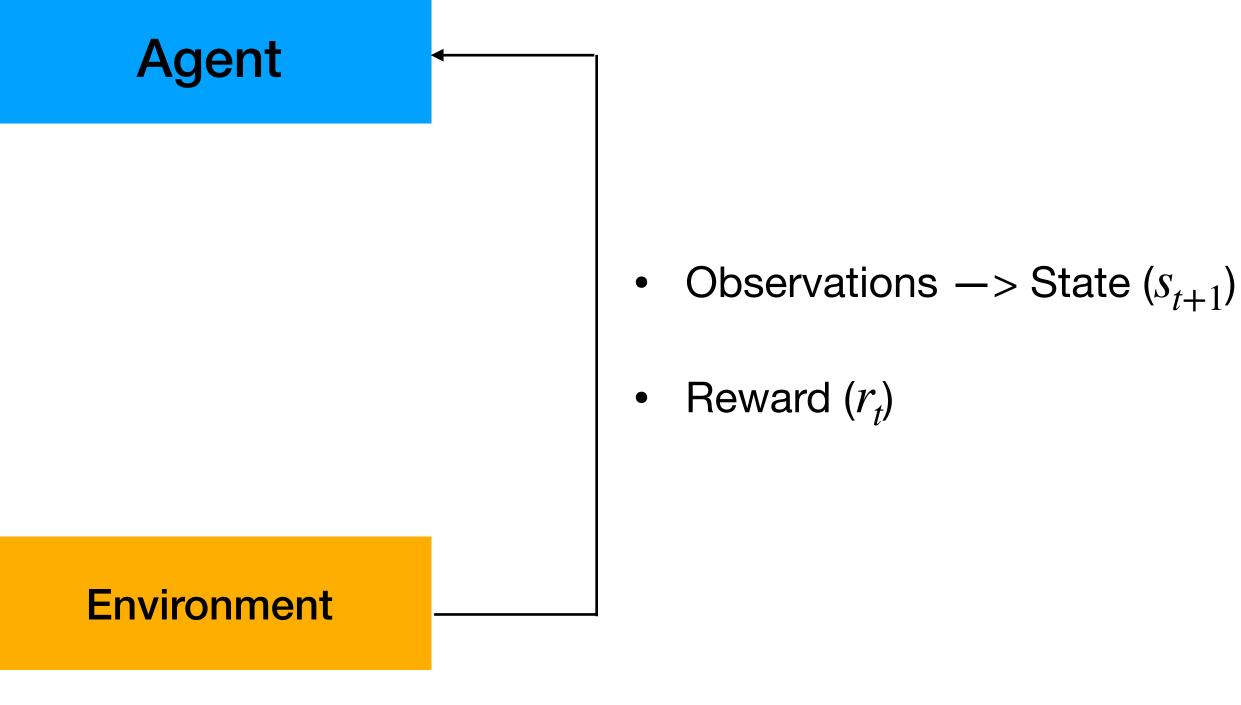
(e.g. Tap or No Tap)

Agent

Environment

Actions (a_t)

(e.g. Tap or No Tap)

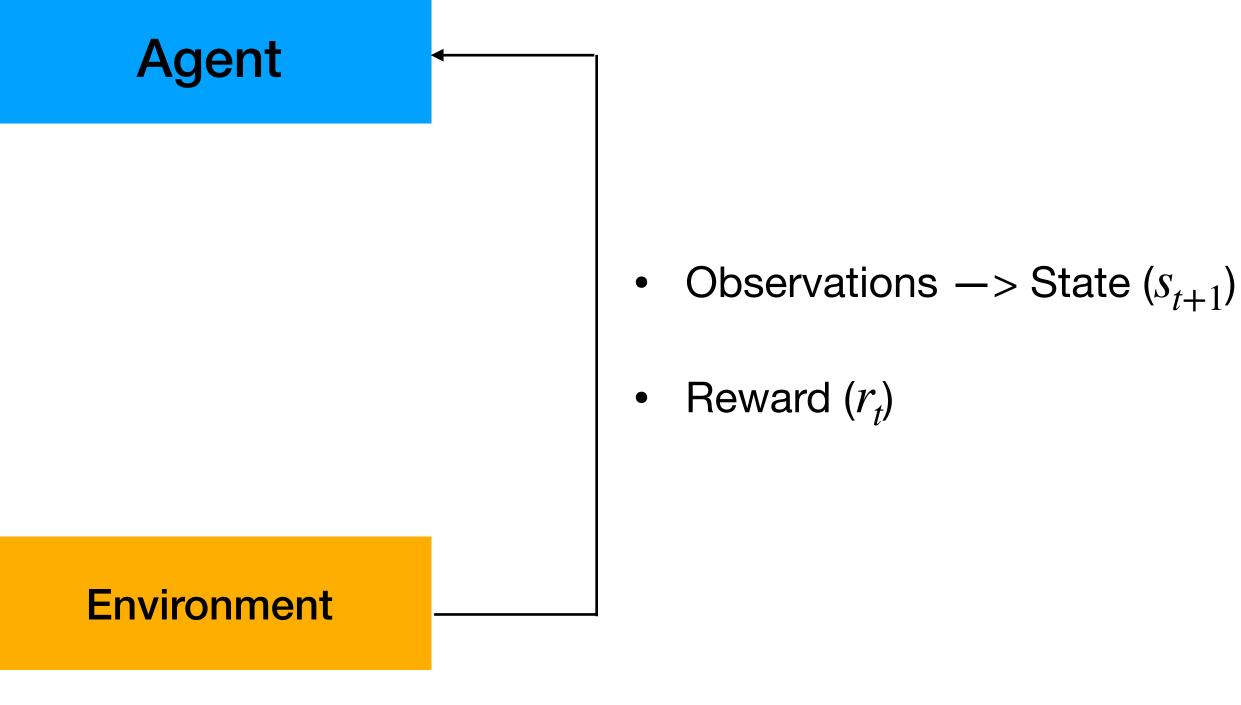


OpenAl Gym Environment

- Mountain Car
 - Actions?
 - State?

Actions (a_t)

(e.g. Tap or No Tap)



Goal: Maximise total (discounted) reward

• Total Reward (Return)
$$R_t = \sum_{i=t}^{\infty} r_i$$

- Total Reward (Discounted Return) $R_t = \sum \gamma^i r_i = \gamma^t r_t + \gamma^{t+1} r_{t+1} \dots + \gamma^{t+n} r_{t+n} + \dots$ i=t
- γ : discount factor; $0 < \gamma < 1$

 $= r_t + r_{t+1} + r_{t+n} + \cdots$

Q function

- What we want?
 - lacksquare
- Total Reward (Discounted Return) $R_t = \sum \gamma^i r_i = \gamma^t r_t + \gamma^{t+1} r_{t+1} \dots +$ i=t

•
$$Q(s_t, a_t) = \mathbb{E}[R_t \mid s_t, a_t]$$

taking an action.

Given a state choose an "action" that maximises total discounted reward

$$\gamma^{t+n}r_{t+n} + \cdots$$

Q-function captures the expected total future reward an agent can achieve by

State	Action 1	Action 2	Action 3
S1	10	20	15
S2	20	30	5
SN	-5	10	20

State	Action 1	Action 2
S1	10	20
S2	20	30
SN	-5	10

What action will you choose if you are in state S2?

θ

State	Action 1	Action 2
S1	10	20
S2	20	30
•••		
SN	-5	10

What action will you choose if you are in state S2?

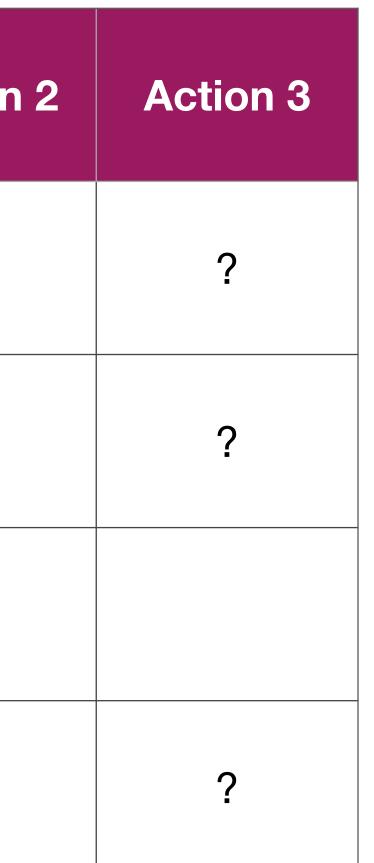
Action 2 (as it gives us highest return)

State <position, Velocity></position, 	Action 1	Action 2
<-5, -2>	?	?
	?	?
•••		
•••	?	?



How do we define states for problems like Mountain car where these numbers are not discrete?

State <position, Velocity></position, 	Action 1	Actior
<[-5, -4], [-2, -1]>	?	?
<[-5, -4], [—1, 0]>	?	?
•••		
•••	?	?



How do we define states for problems like Mountain car where these numbers are not discrete?

Discretisation (notebook)

Q function (revision)

- What we want?
 - lacksquare
- Total Reward (Discounted Return) $R_t = \sum \gamma^i r_i = \gamma^t r_t + \gamma^{t+1} r_{t+1} \dots +$ i=t
- $Q(s_t, a_t) = \mathbb{E}[R_t \mid s_t, a_t]$
- taking an action.

Given a state choose an "action" that maximises total discounted reward

$$\gamma^{t+n}r_{t+n} + \cdots$$

Q-function captures the expected total future reward an agent can achieve by

Bellman Equation

The Bellman equation for Q-values is given by:

 $Q(s,a) = R(s,a) + \gamma \cdot \max_{a'} Q(s',a')$

where:

- Q(s, a) is the Q-value of taking action
- R(s, a) is the immediate reward of taking action a in state s.
- γ is the discount factor that determines the importance of future rewards.
- s' is the next state after taking action a.

• $\max_{a'} Q(s', a')$ is the maximum Q-value over all possible actions in state s'.

Q-learning Update Bellman Equation

$$Q(s,a) = R(s,a) + \gamma \cdot \max_{a'} Q(s',a')$$

manner:

$$Q(s,a) \leftarrow Q(s,a) + \alpha \cdot \left(R(s,a) + \gamma \cdot \max_{a'} Q(s',a') - Q(s,a) \right)$$

- α is the learning rate that controls the extent to which new information overrides old information.

reward.

Q-learning update rule is derived by using the Bellman equation in an iterative

- $R(s, a) + \gamma \cdot \max_{a'} Q(s', a') Q(s, a)$ is the temporal difference (TD) error, representing the discrepancy between the expected Q-value and the observed