Time Complexity

Nipun Batra
February 12, 2024

IIT Gandhinagar

Time Complexity: Normal Equation for Linear Regression

Normal Equation

- Consider $X \in \mathcal{R}^{N \times D}$

Normal Equation

- Consider $X \in \mathcal{R}^{N \times D}$
- N examples and D dimensions

Normal Equation

- Consider $X \in \mathcal{R}^{N \times D}$
- N examples and D dimensions
- What is the time complexity of solving the normal equation $\hat{\theta}=\left(X^{T} X\right)^{-1} X^{T} y ?$

Normal Equation

- X has dimensions $N \times D, X^{T}$ has dimensions $D \times N$

Normal Equation

- X has dimensions $N \times D, X^{T}$ has dimensions $D \times N$
- $X^{T} X$ is a matrix product of matrices of size: $D \times N$ and $N \times D$, which is $\mathcal{O}\left(D^{2} N\right)$

Normal Equation

- X has dimensions $N \times D, X^{T}$ has dimensions $D \times N$
- $X^{T} X$ is a matrix product of matrices of size: $D \times N$ and $N \times D$, which is $\mathcal{O}\left(D^{2} N\right)$
- Inversion of $X^{\top} X$ is an inversion of a $D \times D$ matrix, which is $\mathcal{O}\left(D^{3}\right)$

Normal Equation

- X has dimensions $N \times D, X^{T}$ has dimensions $D \times N$
- $X^{T} X$ is a matrix product of matrices of size: $D \times N$ and $N \times D$, which is $\mathcal{O}\left(D^{2} N\right)$
- Inversion of $X^{\top} X$ is an inversion of a $D \times D$ matrix, which is $\mathcal{O}\left(D^{3}\right)$
- $X^{T} y$ is a matrix vector product of size $D \times N$ and $N \times 1$, which is $\mathcal{O}(D N)$

Normal Equation

- X has dimensions $N \times D, X^{T}$ has dimensions $D \times N$
- $X^{T} X$ is a matrix product of matrices of size: $D \times N$ and $N \times D$, which is $\mathcal{O}\left(D^{2} N\right)$
- Inversion of $X^{T} X$ is an inversion of a $D \times D$ matrix, which is $\mathcal{O}\left(D^{3}\right)$
- $X^{T} y$ is a matrix vector product of size $D \times N$ and $N \times 1$, which is $\mathcal{O}(D N)$
- $\left(X^{T} X\right)^{-1} X^{\top} y$ is a matrix product of a $D \times D$ matrix and $D \times 1$ matrix, which is $\mathcal{O}\left(D^{2}\right)$

Normal Equation

- X has dimensions $N \times D, X^{T}$ has dimensions $D \times N$
- $X^{T} X$ is a matrix product of matrices of size: $D \times N$ and $N \times D$, which is $\mathcal{O}\left(D^{2} N\right)$
- Inversion of $X^{T} X$ is an inversion of a $D \times D$ matrix, which is $\mathcal{O}\left(D^{3}\right)$
- $X^{T} y$ is a matrix vector product of size $D \times N$ and $N \times 1$, which is $\mathcal{O}(D N)$
- $\left(X^{\top} X\right)^{-1} X^{\top} y$ is a matrix product of a $D \times D$ matrix and $D \times 1$ matrix, which is $\mathcal{O}\left(D^{2}\right)$
- Overall complexity: $\mathcal{O}\left(D^{2} N\right)+\mathcal{O}\left(D^{3}\right)+\mathcal{O}(D N)+\mathcal{O}\left(D^{2}\right)$ $=\mathcal{O}\left(D^{2} N\right)+\mathcal{O}\left(D^{3}\right)$

Normal Equation

- X has dimensions $N \times D, X^{T}$ has dimensions $D \times N$
- $X^{T} X$ is a matrix product of matrices of size: $D \times N$ and $N \times D$, which is $\mathcal{O}\left(D^{2} N\right)$
- Inversion of $X^{T} X$ is an inversion of a $D \times D$ matrix, which is $\mathcal{O}\left(D^{3}\right)$
- $X^{T} y$ is a matrix vector product of size $D \times N$ and $N \times 1$, which is $\mathcal{O}(D N)$
- $\left(X^{\top} X\right)^{-1} X^{\top} y$ is a matrix product of a $D \times D$ matrix and $D \times 1$ matrix, which is $\mathcal{O}\left(D^{2}\right)$
- Overall complexity: $\mathcal{O}\left(D^{2} N\right)+\mathcal{O}\left(D^{3}\right)+\mathcal{O}(D N)+\mathcal{O}\left(D^{2}\right)$ $=\mathcal{O}\left(D^{2} N\right)+\mathcal{O}\left(D^{3}\right)$
- Scales cubic in the number of columns/features of X

Time Complexity: Gradient Descent for Liner Regression

Gradient Descent

Start with random values of θ_{0} and θ_{1}
Till convergence

- $\theta_{0}=\theta_{0}-\alpha \frac{\partial}{\partial \theta_{0}}\left(\sum \epsilon_{i}^{2}\right)$

Gradient Descent

Start with random values of θ_{0} and θ_{1}
Till convergence

- $\theta_{0}=\theta_{0}-\alpha \frac{\partial}{\partial \theta_{0}}\left(\sum \epsilon_{i}^{2}\right)$
- $\theta_{1}=\theta_{1}-\alpha \frac{\partial}{\partial \theta_{1}}\left(\sum \epsilon_{i}^{2}\right)$

Gradient Descent

Start with random values of θ_{0} and θ_{1}
Till convergence

- $\theta_{0}=\theta_{0}-\alpha \frac{\partial}{\partial \theta_{0}}\left(\sum \epsilon_{i}^{2}\right)$
- $\theta_{1}=\theta_{1}-\alpha \frac{\partial}{\partial \theta_{1}}\left(\sum \epsilon_{i}^{2}\right)$
- Question: Can you write the above for D dimensional data in vectorised form?

Gradient Descent

Start with random values of θ_{0} and θ_{1}
Till convergence

- $\theta_{0}=\theta_{0}-\alpha \frac{\partial}{\partial \theta_{0}}\left(\sum \epsilon_{i}^{2}\right)$
- $\theta_{1}=\theta_{1}-\alpha \frac{\partial}{\partial \theta_{1}}\left(\sum \epsilon_{i}^{2}\right)$
- Question: Can you write the above for D dimensional data in vectorised form?
- $\theta_{0}=\theta_{0}-\alpha \frac{\partial}{\partial \theta_{0}}(y-X \theta)^{\top}(y-X \theta)$
$\theta_{1}=\theta_{1}-\alpha \frac{\partial}{\partial \theta_{1}}(y-X \theta)^{\top}(y-X \theta)$
引

$$
\theta_{D}=\theta_{D}-\alpha \frac{\partial}{\partial \theta_{D}}(y-X \theta)^{\top}(y-X \theta)
$$

Gradient Descent

Start with random values of θ_{0} and θ_{1}
Till convergence

- $\theta_{0}=\theta_{0}-\alpha \frac{\partial}{\partial \theta_{0}}\left(\sum \epsilon_{i}^{2}\right)$
- $\theta_{1}=\theta_{1}-\alpha \frac{\partial}{\partial \theta_{1}}\left(\sum \epsilon_{i}^{2}\right)$
- Question: Can you write the above for D dimensional data in vectorised form?
- $\theta_{0}=\theta_{0}-\alpha \frac{\partial}{\partial \theta_{0}}(y-X \theta)^{\top}(y-X \theta)$
$\theta_{1}=\theta_{1}-\alpha \frac{\partial}{\partial \theta_{1}}(y-X \theta)^{\top}(y-X \theta)$
:
$\theta_{D}=\theta_{D}-\alpha \frac{\partial}{\partial \theta_{D}}(y-X \theta)^{\top}(y-X \theta)$
- $\theta=\theta-\alpha \frac{\partial}{\partial \theta}(y-X \theta)^{\top}(y-X \theta)$

Gradient Descent

- $\frac{\partial A \theta}{\partial \theta}=A^{\top}$
- $\frac{\partial \theta^{\top} A}{\partial \theta}=A$
- $\frac{\partial \theta^{\top} A^{\top} A \theta}{\partial \theta}=2 A^{\top} A \theta$

Gradient Descent

$$
\begin{aligned}
& \frac{\partial}{\partial \theta}(y-X \theta)^{\top}(y-X \theta) \\
& =\frac{\partial}{\partial \theta}\left(y^{\top}-\theta^{\top} X^{\top}\right)(y-X \theta) \\
& =\frac{\partial}{\partial \theta}\left(y^{\top} y-\theta^{\top} X^{\top} y-y^{\top} X \theta+\theta^{\top} X^{\top} X \theta\right) \\
& =-2 X^{\top} y+2 X^{\top} X \theta \\
& =2 X^{\top}(X \theta-y)
\end{aligned}
$$

Gradient Descent

We can write the vectorised update equation as follows, for each iteration

$$
\theta=\theta-\alpha X^{\top}(X \theta-y)
$$

Gradient Descent

We can write the vectorised update equation as follows, for each iteration

$$
\theta=\theta-\alpha X^{\top}(X \theta-y)
$$

For t iterations, what is the computational complexity of our gradient descent solution?

Gradient Descent

We can write the vectorised update equation as follows, for each iteration
$\theta=\theta-\alpha X^{\top}(X \theta-y)$
For t iterations, what is the computational complexity of our gradient descent solution?
Hint, rewrite the above as: $\theta=\theta-\alpha X^{\top} X \theta+\alpha X^{\top} y$

Gradient Descent

We can write the vectorised update equation as follows, for each iteration
$\theta=\theta-\alpha X^{\top}(X \theta-y)$
For t iterations, what is the computational complexity of our gradient descent solution?
Hint, rewrite the above as: $\theta=\theta-\alpha X^{\top} X \theta+\alpha X^{\top} y$
Complexity of computing $X^{\top} y$ is $\mathcal{O}(D N)$

Gradient Descent

We can write the vectorised update equation as follows, for each iteration
$\theta=\theta-\alpha X^{\top}(X \theta-y)$
For t iterations, what is the computational complexity of our gradient descent solution?

Hint, rewrite the above as: $\theta=\theta-\alpha X^{\top} X \theta+\alpha X^{\top} y$
Complexity of computing $X^{\top} y$ is $\mathcal{O}(D N)$
Complexity of computing $\alpha X^{\top} y$ once we have $X^{\top} y$ is $\mathcal{O}(D)$ since $X^{\top} y$ has D entries

Gradient Descent

We can write the vectorised update equation as follows, for each iteration
$\theta=\theta-\alpha X^{\top}(X \theta-y)$
For t iterations, what is the computational complexity of our gradient descent solution?
Hint, rewrite the above as: $\theta=\theta-\alpha X^{\top} X \theta+\alpha X^{\top} y$
Complexity of computing $X^{\top} y$ is $\mathcal{O}(D N)$
Complexity of computing $\alpha X^{\top} y$ once we have $X^{\top} y$ is $\mathcal{O}(D)$ since $X^{\top} y$ has D entries

Complexity of computing $X^{\top} X$ is $\mathcal{O}\left(D^{2} N\right)$ and then multiplying with α is $\mathcal{O}\left(D^{2}\right)$

Gradient Descent

We can write the vectorised update equation as follows, for each iteration
$\theta=\theta-\alpha X^{\top}(X \theta-y)$
For t iterations, what is the computational complexity of our gradient descent solution?

Hint, rewrite the above as: $\theta=\theta-\alpha X^{\top} X \theta+\alpha X^{\top} y$
Complexity of computing $X^{\top} y$ is $\mathcal{O}(D N)$
Complexity of computing $\alpha X^{\top} y$ once we have $X^{\top} y$ is $\mathcal{O}(D)$ since $X^{\top} y$ has D entries

Complexity of computing $X^{\top} X$ is $\mathcal{O}\left(D^{2} N\right)$ and then multiplying with α is $\mathcal{O}\left(D^{2}\right)$

All of the above need only be calculated once!

Gradient Descent

For each of the t iterations, we now need to first multiply $\alpha X^{\top} X$ with θ which is matrix multiplication of a $D \times D$ matrix with a $D \times 1$, which is $\mathcal{O}\left(D^{2}\right)$

Gradient Descent

For each of the t iterations, we now need to first multiply $\alpha X^{\top} X$ with θ which is matrix multiplication of a $D \times D$ matrix with a $D \times 1$, which is $\mathcal{O}\left(D^{2}\right)$

The remaining subtraction/addition can be done in $\mathcal{O}(D)$ for each iteration.

Gradient Descent

For each of the t iterations, we now need to first multiply $\alpha X^{\top} X$ with θ which is matrix multiplication of a $D \times D$ matrix with a $D \times 1$, which is $\mathcal{O}\left(D^{2}\right)$

The remaining subtraction/addition can be done in $\mathcal{O}(D)$ for each iteration.

What is overall computational complexity?

Gradient Descent

For each of the t iterations, we now need to first multiply $\alpha X^{\top} X$ with θ which is matrix multiplication of a $D \times D$ matrix with a $D \times 1$, which is $\mathcal{O}\left(D^{2}\right)$

The remaining subtraction/addition can be done in $\mathcal{O}(D)$ for each iteration.

What is overall computational complexity?
$\mathcal{O}\left(t D^{2}\right)+\mathcal{O}\left(D^{2} N\right)=\mathcal{O}\left((t+N) D^{2}\right)$

Gradient Descent (Alternative)

Gradient Descent (Alternative)

If we do not rewrite the expression $\theta=\theta-\alpha X^{\top}(X \theta-y)$
For each iteration, we have:

- Computing $X \theta$ is $\mathcal{O}(N D)$

Gradient Descent (Alternative)

If we do not rewrite the expression $\theta=\theta-\alpha X^{\top}(X \theta-y)$
For each iteration, we have:

- Computing $X \theta$ is $\mathcal{O}(N D)$
- Computing $X \theta-y$ is $\mathcal{O}(N)$

Gradient Descent (Alternative)

If we do not rewrite the expression $\theta=\theta-\alpha X^{\top}(X \theta-y)$
For each iteration, we have:

- Computing $X \theta$ is $\mathcal{O}(N D)$
- Computing $X \theta-y$ is $\mathcal{O}(N)$
- Computing αX^{\top} is $\mathcal{O}(N D)$

Gradient Descent (Alternative)

If we do not rewrite the expression $\theta=\theta-\alpha X^{\top}(X \theta-y)$
For each iteration, we have:

- Computing $X \theta$ is $\mathcal{O}(N D)$
- Computing $X \theta-y$ is $\mathcal{O}(N)$
- Computing αX^{\top} is $\mathcal{O}(N D)$
- Computing $\alpha X^{\top}(X \theta-y)$ is $\mathcal{O}(N D)$

Gradient Descent (Alternative)

If we do not rewrite the expression $\theta=\theta-\alpha X^{\top}(X \theta-y)$
For each iteration, we have:

- Computing $X \theta$ is $\mathcal{O}(N D)$
- Computing $X \theta-y$ is $\mathcal{O}(N)$
- Computing αX^{\top} is $\mathcal{O}(N D)$
- Computing $\alpha X^{\top}(X \theta-y)$ is $\mathcal{O}(N D)$
- Computing $\theta=\theta-\alpha X^{\top}(X \theta-y)$ is $\mathcal{O}(D)$

Gradient Descent (Alternative)

If we do not rewrite the expression $\theta=\theta-\alpha X^{\top}(X \theta-y)$
For each iteration, we have:

- Computing $X \theta$ is $\mathcal{O}(N D)$
- Computing $X \theta-y$ is $\mathcal{O}(N)$
- Computing αX^{\top} is $\mathcal{O}(N D)$
- Computing $\alpha X^{\top}(X \theta-y)$ is $\mathcal{O}(N D)$
- Computing $\theta=\theta-\alpha X^{\top}(X \theta-y)$ is $\mathcal{O}(D)$

Gradient Descent (Alternative)

If we do not rewrite the expression $\theta=\theta-\alpha X^{\top}(X \theta-y)$
For each iteration, we have:

- Computing $X \theta$ is $\mathcal{O}(N D)$
- Computing $X \theta-y$ is $\mathcal{O}(N)$
- Computing αX^{\top} is $\mathcal{O}(N D)$
- Computing $\alpha X^{\top}(X \theta-y)$ is $\mathcal{O}(N D)$
- Computing $\theta=\theta-\alpha X^{\top}(X \theta-y)$ is $\mathcal{O}(D)$

What is overall computational complexity?

Gradient Descent (Alternative)

If we do not rewrite the expression $\theta=\theta-\alpha X^{\top}(X \theta-y)$
For each iteration, we have:

- Computing $X \theta$ is $\mathcal{O}(N D)$
- Computing $X \theta-y$ is $\mathcal{O}(N)$
- Computing αX^{\top} is $\mathcal{O}(N D)$
- Computing $\alpha X^{\top}(X \theta-y)$ is $\mathcal{O}(N D)$
- Computing $\theta=\theta-\alpha X^{\top}(X \theta-y)$ is $\mathcal{O}(D)$

What is overall computational complexity?
$\mathcal{O}(N D t)$

