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The Scenario: True Function

For the purpose of this lecture we assume that there
exists a relation between Housing Prices and area of the
house.

Here, the true function fθtrue is used to model the relation
yt = fθtrue(xt)
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The 3 Sources of Error

Any prediction made is affected by 3 sources of error:

• Noise

• Bias
• Variance
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Noise

A relation between price and size will be affected by
other factors that we have not considered or cannot be
perfectly captured. Such factors would include:

• the condition of the house (cannot be measured
perfectly)

• sale prices of other houses in the neighborhood
(measurements that have biases in themselves)

4 / 29
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A relation between price and size will be affected by
other factors that we have not considered or cannot be
perfectly captured. Such factors would include:

• the condition of the house (cannot be measured
perfectly)

• sale prices of other houses in the neighborhood
(measurements that have biases in themselves)

Because of this, data is inherently noisy.

4 / 29



Noise

This is not a property of data but rather an irreducible
error.
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Noise

This is not a property of data but rather an irreducible
error.
This error can be captured by the error term ϵ which
causes the final value of the house to follow the
equation: yt = fθtrue(xt) + ϵt
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Noise

This noise can be assumed to be mean-centered around
0 with spread called the variance of the noise.
This causes yt to become mean centered around the true
relation.
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Bias

Bias is a measure of how well a model can fit a given
relation.
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Bias

Bias is a measure of how well a model can fit a given
relation.
To understand this, let us take an example where we try
to learn the relation that models the Price and Size of a
house using a constant function.
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Bias

So the bias in this scenario looks something like this:
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Bias

But it is important to understand that there are a large
number of different datasets possible for a given
situation, with each having their individual fits.
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Bias

But it is important to understand that there are a large
number of different datasets possible for a given
situation, with each having their individual fits.
Assume that we have two datasets of houses sold.
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Bias

But it is important to understand that there are a large
number of different datasets possible for a given
situation, with each having their individual fits.
If we try to fit a constant function to them.
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Bias

But it is important to understand that there are a large
number of different datasets possible for a given
situation, with each having their individual fits.
We see that they show different predictions.
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Bias

Doing so for all possible size N training sets we get
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Bias

Doing so for all possible size N training sets we get
A way of consolidating all these possible fits is to
calculate an average fit that is weighted by how likely
they are to appear.
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Bias

Averaging all the fits (as in this scenario all datasets are
equally likely) we get the average fit.
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Bias Contribution

Bias(x) = fθtrue(x)− fθ̄(x)
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Bias Contribution

Bias(x) = fθtrue(x)− fθ̄(x)
It is a measure of how flexible the fit is in capturing
fθtrue(x)
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Bias Contribution: Effect of Complexity
As we increase the complexity of the fit
=⇒ fit becomes more flexible
=⇒ bias decreases

Degree = 0 Degree = 1

f Actual Prices True Function Bias

Effect of degree on Bias of the fit
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Bias Contribution: Effect of Complexity
As we increase the complexity of the fit
=⇒ fit becomes more flexible
=⇒ bias decreases

Degree = 2 Degree = 3
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Effect of degree on Bias of the fit
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Bias: Calculating the Bias

Bias calculation for a model is at the core a calculation of
the area under a curve.
Therefore, finding the bias for a model in the range (a,b)
is the calculation of the integral:∫ b

a
|fθ̄(x)− fθ(true)(x)|dx
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Variance

Variance of the fit is a measure of the variation in the fits
when trained across different training sets.
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Variance Contribution

For Low Complexity
=⇒ variations between curves are less
=⇒ Variance is less
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Variance Contribution

For High Complexity we see very high variation

Data Point Prediction True Function

Variance in high complexity fits
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Variance Contribution

For High Complexity
=⇒ high variation
=⇒ Variance is high
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The Bias-Variance Trade off

Degree = 1 Degree = 3 Degree = 7

Prediction True Function Bias True Function Variance

Variance in high complexity fits
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The Bias-Variance Trade off

Plot Graph - 306 Variance and the bias-variance trade
off
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Measuring the goodness of a Model

To measure the goodness of a model, we have to
understand how well it can predict the behavior of the
phenomenon it is trying to model.

This behavior varies due to training set randomness.
Therefore, it is important to measure performance
averaged over all possible training sets (of size N.

Etraining set[error of θ̂(training set)]

gives a measure of the average error by doing an
expectation of the errors of all possible training sets of
size N.
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Expected Prediction Error at a point

Any prediction made is affected by 3 sources of error:

• Noise

• Bias
• Variance

Therefore, Etrain[at a point xt] = f(noise, bias, variance)
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Formally defining the 3 sources of error: Noise

Noise is an irreducible error captured by the error term ϵ.
The equation of the relation becomes yt = fθ(true)(xt) + ϵt
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Formally defining the 3 sources of error: Noise

Noise is an irreducible error captured by the error term ϵ.
The equation of the relation becomes yt = fθ(true)(xt) + ϵt
The noise is mean-centered around 0 with spread called
the variance of the noise, denoted by σ2.
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Formally defining the 3 sources of error: Noise

Noise is an irreducible error captured by the error term ϵ.
The equation of the relation becomes yt = fθ(true)(xt) + ϵt
The noise is mean-centered around 0 with spread called
the variance of the noise, denoted by σ2.
That is, it can be denoted by ϵt ∼ N (0, σ2)
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Formally defining the 3 sources of error: Bias
Bias is a measure of how flexible the fit is in capturing the
true function fθtrue(x)

Bias(xt) = fθtrue(xt)− fθ̄(xt)

where fθ̄ denotes the average fit over all datasets.
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Formally defining the 3 sources of error: Bias

Bias is a measure of how flexible the fit is in capturing the
true function fθtrue(x)

Bias(xt) = fθtrue(xt)− fθ̄(xt)

where fθ̄ denotes the average fit over all datasets.
As fθ̄ denotes the average fit over all datasets, it can be
expressed by fθ̄(xt) = Etrain[fθ̂(xt)]
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Formally defining the 3 sources of error: Variance

Variance of the fit is a measure of the variation in the fits
when trained across different training sets.
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Formally defining the 3 sources of error: Variance

Variance of the fit is a measure of the variation in the fits
when trained across different training sets.
Variance of the fit can be defined by

var(fθ̂(xt)) = Etrain[(fθ̂(x)− fθ̄(xt))2]

where fθ̂(x)− fθ̄(xt) denotes the deviation that a specific
fit has from the average.
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Deriving Expected Prediction Error

Now we will see how,
Etrain[at a point xt] = σ2 + [bias(fθ̂(xt))]

2 + var(fθ̂(xt))
where,
given a training set, the parameters θ̂ of the fit are
learned as fθ̂
and, the prediction at a point xt for the model trained on
that training set is fθ̂(xt)
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Deriving Expected Prediction Error

Prediction Error at a point xt can be calculated using the
squared loss function.

Prediction error at xt = (yt − fθ̂(train)(xt))
2

To find the “Expected Prediction Error” at a point xt we
average out the prediction error at that point over all
possible learned models. This can be done by finding the
expectation of prediction error for that point over all
possible training datasets (train) and labels for that point
(yt).

Expected prediction error at xt = Etrain,yt [(yt − fθ̂(train)(xt))
2]
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Deriving Expected Prediction Error
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a

+(fθ(true)(xt)− fθ̂(train)(xt))︸ ︷︷ ︸
b

)2]

= Etrain,yt [(a+ b)2]

= Etrain,yt [a2 + 2ab+ b2]

Using Linearity of Expectation)
= Etrain,yt [a2] + 2Etrain,yt [ab] + Etrain,yt [b2].......................Eqn.
1
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Deriving Expected Prediction Error

Etrain,yt [a2] = Etrain,yt [(yt − fθ(true)(xt))2]
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Deriving Expected Prediction Error
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Since there is no dependence on training set)
= Eyt [(yt − fθ(true)(xt))2]
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Deriving Expected Prediction Error

Etrain,yt [a2] = Etrain,yt [(yt − fθ(true)(xt))2]

(∵ there is no dependence on training set)

= Eyt [(yt − fθ(true)(xt))2︸ ︷︷ ︸
ϵ2t

]

= Eyt [ϵ2t ]

= σ2By definition)

Etrain,yt [a2] = σ2.................Eqn. 2
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Deriving Expected Prediction Error

Etrain,yt [ab] =
Etrain,yt [(yt − fθ(true)(xt))(fθ(true)(xt)− fθ̂(train)(xt))]
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By definition ϵt has mean 0

Etrain,yt [ab] = 0..............Eqn. 3
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Deriving Expected Prediction Error

Etrain,yt [b2] = Etrain,yt [(fθ(true)(xt)− fθ̂(train)(xt))
2]
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Deriving Expected Prediction Error
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(fθ(true)(xt)− fθ̂(train)(xt) is independent of yt)

= Etrain[(fθ(true)(xt)− fθ̂(train)(xt))
2]

= MSE(fθ̂(train)(xt))

Etrain,yt [b2] = MSE(fθ̂(train)(xt)) ............ Eqn. 4
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Deriving Expected Prediction Error

From Eqn. 1, 2, 3 and 4, we get,

Expected prediction error at xt = σ2 +MSE(fθ̂(train)(xt))

Now, we will further simplify the MSE term into bias and
variance.
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Deriving Expected Prediction Error

MSE(fθ̂(train)(xt)) = Etrain[(fθ(true)(xt)− fθ̂(train)(xt))
2]
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Deriving Expected Prediction Error
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Deriving Expected Prediction Error

Etrain[α2] = Etrain[(fθ(true)(xt)− fθ̄(xt))2]
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Deriving Expected Prediction Error

Etrain[αβ]
= Etrain[(fθ(true)(xt)− fθ̄(xt))(fθ̄(xt)− fθ̂(train)(xt))]
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Deriving Expected Prediction Error

Etrain[β2] = Etrain[(fθ̄(xt)− fθ̂(train)(xt))
2]

= Etrain[(fθ̂(train)(xt)− fθ̄(xt))2]
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2]

(∵ fθ̄(xt) = Etrain[(fθ̂(train)(xt)] )

= variance(fθ̂(xt))

Etrain[β2] = variance(fθ̂(xt))...............Eqn. 8
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Deriving Expected Prediction Error

From Eqn. 1 - 8, we get,

Expected prediction error at xt

= σ2 +MSE(fθ̂(train)(xt))

= σ2 + bias(fθ̂(xt))
2 + variance(fθ̂(xt))
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