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Introduction to Bias-Variance



A Question!

What would be the decision boundary of a decision tree classifier?

404 @

3.5

3.01

201 ® [ ]

1.5

104 ® [ ] [ ]

2/100



Decision Boundary for a tree with depth 1
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Decision Boundary for a tree with no depth limit
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Are deeper trees always better?

As we saw, deeper trees learn more complex decision boundaries.
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Are deeper trees always better?

As we saw, deeper trees learn more complex decision boundaries.

But, sometimes this can lead to poor generalization
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An example

Consider the dataset below
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Underfitting

Underfitting is also known as high bias, since it has a very biased

incorrect assumption.
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Overfitting

Overfitting is also known as high variance, since very small changes
in data can lead to very different models.
Decision tree learned has depth of 10.
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Intuition for Variance

A small change in data can lead to very different models.
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Intuition for Variance

A small change in data can lead to very different models.
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Intuition for Variance

A small change in data can lead to very different models.

Dataset 1 Dataset 2

Train dataset
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Intuition for Variance

10/100



Intuition for Variance
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Intuition for Variance
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A Good Fit
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A Good Fit
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entropy = 0.964
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X[1]<=5.5
entropy = 0.997
samples = 30
value =[16, 14]

X[0] <= 1.5
entropy = 0.98
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Accuracy vs Depth Curve
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Accuracy vs Depth Curve
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Accuracy vs Depth Curve
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Accuracy vs Depth Curve
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As depth increases, train accuracy improves
As depth increases, test accuracy improves till a point

At very high depths, test accuracy is not good (overfitting).
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Accuracy vs Depth Curve : Underfitting

The highlighted region is the underfitting region.
Model is too simple (less depth) to learn from the data.
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Accuracy vs Depth Curve : Overfitting

The highlighted region is the overfitting region.

Model is complex (high depth) and hence also learns the anomalies

in data.
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Accuracy vs Depth Curve

The highlighted region is the good fit region.

We want to maximize test accuracy while being in this region.
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The big question!?

How to find the optimal depth for a decision tree?
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The big question!?

How to find the optimal depth for a decision tree?

Use cross-validation!
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Our General Training Flow
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K-Fold cross-validation: Utilise full dataset for testing

FOLD 1 Train

FOLD 2 Train

FOLD 4 Train
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The Validation Set
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Nested Cross Validation

Divide your training set into k equal parts.

Cyclically use 1 part as “validation set” and the rest for training.

Here k = 4
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Nested Cross Validation

Average out the validation accuracy across all the folds

Use the model with highest validation accuracy
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Practice and Review



Pop Quiz: Bias-Variance Concepts

1. What causes high bias in a model? Give an example.
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Pop Quiz: Bias-Variance Concepts

1. What causes high bias in a model? Give an example.
2. What causes high variance in a model? Give an example.
3. How does cross-validation help in model selection?

4. Why can't we directly optimize for test error?
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Key Takeaways

e Bias-Variance Decomposition: Total error = Bias® +
Variance + Noise
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Key Takeaways

e Bias-Variance Decomposition: Total error = Bias® +

Variance + Noise
e High Bias: Underfitting, model too simple
e High Variance: Overfitting, model too complex
e Cross-Validation: Essential for proper model evaluation

e Model Selection: Choose complexity that balances bias and

variance

e No Free Lunch: Cannot reduce both bias and variance

simultaneously
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Next time: Ensemble Learning

e How to combine various models?
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Next time: Ensemble Learning

How to combine various models?

Why to combine multiple models?
e How can we reduce bias?

How can we reduce variance?
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