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Introduction to Bias-Variance



A Question!

What would be the decision boundary of a decision tree classifier?

1 2 3 4 5 6 7
X1

1.0

1.5

2.0

2.5

3.0

3.5

4.0
X 2

2 / 100



Decision Boundary for a tree with depth 1

1 2 3 4 5 6 7
X1

1.0

1.5

2.0

2.5

3.0

3.5

4.0

X 2

Decision Boundary

X[0] <= 4.0
entropy = 1.0
samples = 12
value = [6, 6]

entropy = 0.65
samples = 6
value = [5, 1]

True

entropy = 0.65
samples = 6
value = [1, 5]

False

Decision Tree

3 / 100



Decision Boundary for a tree with no depth limit
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Are deeper trees always better?

As we saw, deeper trees learn more complex decision boundaries.
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Are deeper trees always better?

As we saw, deeper trees learn more complex decision boundaries.

But, sometimes this can lead to poor generalization
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An example

Consider the dataset below
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Underfitting

Underfitting is also known as high bias, since it has a very biased

incorrect assumption.
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Overfitting

Overfitting is also known as high variance, since very small changes

in data can lead to very different models.

Decision tree learned has depth of 10.
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Intuition for Variance

A small change in data can lead to very different models.
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Intuition for Variance
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Intuition for Variance
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A Good Fit
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Accuracy vs Depth Curve
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At very high depths, test accuracy is not good (overfitting).
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Accuracy vs Depth Curve : Underfitting

The highlighted region is the underfitting region.

Model is too simple (less depth) to learn from the data.

2 4 6 8 10
Depth

60

70

80

90

100

Ac
cu

ra
cy

Test Accuracy
Train Accuracy

13 / 100



Accuracy vs Depth Curve : Overfitting

The highlighted region is the overfitting region.

Model is complex (high depth) and hence also learns the anomalies

in data.
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Accuracy vs Depth Curve

The highlighted region is the good fit region.

We want to maximize test accuracy while being in this region.
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The big question!?

How to find the optimal depth for a decision tree?
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The big question!?

How to find the optimal depth for a decision tree?

Use cross-validation!
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Our General Training Flow
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K-Fold cross-validation: Utilise full dataset for testing
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The Validation Set

Train Data Test Data

 Model
Depth = 1
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Validation

 Model
Depth = 2

 Model
Depth = 3

Accuracy on 
validation set
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Depth 1 : 70%
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Select model having 
highest validation 
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Nested Cross Validation

Divide your training set into k equal parts.

Cyclically use 1 part as “validation set” and the rest for training.

Here k = 4

Train Validation

Train Validation Train

Train Validation Train

Validation Train
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Nested Cross Validation

Average out the validation accuracy across all the folds

Use the model with highest validation accuracy

Train Validation

Train Validation Train

Train Validation Train

Validation Train

FOLD 1

FOLD 2

FOLD 3

FOLD 4

Average out 
Validation Accuracy 
across all folds.

Select the 
hyperparameter for 
which the model 
gives the highest 
average validation 
accuracy
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Practice and Review



Pop Quiz: Bias-Variance Concepts

1. What causes high bias in a model? Give an example.

2. What causes high variance in a model? Give an example.

3. How does cross-validation help in model selection?

4. Why can’t we directly optimize for test error?
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Key Takeaways

• Bias-Variance Decomposition: Total error = Bias² +

Variance + Noise

• High Bias: Underfitting, model too simple

• High Variance: Overfitting, model too complex

• Cross-Validation: Essential for proper model evaluation

• Model Selection: Choose complexity that balances bias and

variance

• No Free Lunch: Cannot reduce both bias and variance

simultaneously
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Next time: Ensemble Learning

• How to combine various models?

• Why to combine multiple models?

• How can we reduce bias?

• How can we reduce variance?
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