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Pop Quiz #7

Question
What are the main limitations of using only a single train/test
split?

Answer

Does not utilize the full dataset for training

Cannot optimize hyperparameters systematically

Results depend on the particular split chosen

May not get reliable performance estimates
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How to use the full dataset for training?

e Over multiple iterations, use different parts of the dataset for
training and testing

e Typically done via different random splits of the dataset
e Challenge: How to ensure systematic evaluation?

e May not use every data point for training or testing with
random splits

o May be computationally expensive
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K-Fold Cross-Validation: Utilize Full Dataset for Testing

FOLD 1 Train

FOLD 2 Train

FOLD 4 Train
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Pop Quiz #8

Question
If you have 100 data points and use 5-fold cross-validation, how
many data points are used for training in each fold?
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Pop Quiz #10

Question
If you have 100 data points and use 5-fold cross-validation, how
many data points are used for training in each fold?

Answer
80 data points (4 out of 5 folds = 4/5 x 100 = 80)
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Nested Cross-Validation Process

Divide your training set into k equal parts.

Cyclically use 1 part as “validation set” and the rest for training.

Here k = 4

FOLD 1

FOLD 2

FOLD 3

FOLD 4

Train

Train

-I

I- -

Train
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Pop Quiz #11

Question
What is the difference between simple cross-validation and nested
cross-validation?
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Pop Quiz #16

Question
What is the difference between simple cross-validation and nested
cross-validation?
Answer
e Simple CV: Used for model evaluation only

e Nested CV: Outer loop for model evaluation, inner loop for
hyperparameter tuning

e Nested CV provides unbiased estimates when doing
hyperparameter search
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Cross-Validation Results

Average out the validation accuracy across all the folds

Use the hyperparameters with highest average validation accuracy
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e Final model is trained on entire training set
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e Standard deviation gives confidence in results
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Pop Quiz #17

Question
Why do we average the results across all folds instead of picking
the best single fold?
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Pop Quiz #23

Question
Why do we average the results across all folds instead of picking
the best single fold?

Answer

Single fold results can be misleading due to data variance

e Averaging provides more robust performance estimates

Reduces impact of lucky/unlucky splits

Standard deviation indicates reliability of the estimate
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Leave-One-Out Cross-Validation (LOOCV)
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Leave-One-Out Cross-Validation (LOOCV)

e Special case where k = n (number of data points)
e Each fold uses exactly one data point for testing
e Advantages:

e Maximum use of data for training
e Deterministic (no randomness)

e Disadvantages:

e Computationally expensive
e High variance in estimates
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Stratified Cross-Validation

e Maintains class distribution in each fold
e Important for imbalanced datasets
e Each fold has approximately same proportion of classes

e Example: If dataset is 70% class A, 30% class B, each fold
maintains this ratio

e Reduces variance in performance estimates

13/21



Pop Quiz #24

Question

You have a binary classification dataset with 90% negative and
10% positive examples. Why is stratified cross-validation
important here?
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Question
You have a binary classification dataset with 90% negative and
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Answer
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Pop Quiz #30

Question
You have a binary classification dataset with 90% negative and
10% positive examples. Why is stratified cross-validation

important here?

Answer

e Regular CV might create folds with very few (or zero) positive

examples
e This would give misleading performance estimates
e Stratified CV ensures each fold has ~10% positive examples

e Results in more reliable and consistent evaluation

14 /21
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Time Series Cross-Validation

Regular CV assumes data points are independent

Time series data has temporal dependencies

Forward Chaining: Train on past, test on future

Rolling Window: Fixed-size training window

Expanding Window: Growing training set over time

Never use future data to predict past!

15 /21
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Common Cross-Validation Mistakes

e Data Leakage: Information from test set influences training

e Incorrect Splitting: Not accounting for grouped data

e Overfitting to CV: Too much hyperparameter tuning

e Wrong Preprocessing: Scaling on entire dataset before
splitting

e Ignoring Class Imbalance: Not using stratified CV when
needed

16 /21



Pop Quiz #31

Question
What's wrong with computing mean and standard deviation on
the entire dataset before doing cross-validation?
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Pop Quiz #38

Question

What's wrong with computing mean and standard deviation on
the entire dataset before doing cross-validation?

Answer

e This causes data leakage!

Test fold statistics influence the training preprocessing

Should compute statistics only on training folds

Apply same transformation to corresponding test fold

This gives more realistic performance estimates

17 /21
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Cross-Validation: Key Benefits

o Better Data Utilization: Every point used for both training
and testing

e Robust Evaluation: Multiple train/test splits reduce variance

e Hyperparameter Tuning: Systematic way to select best
parameters

e Model Comparison: Fair comparison between different
algorithms

e Confidence Estimates: Standard deviation indicates
reliability

18 /21
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When to Use Different CV Types

K-Fold (k=5,10): General purpose, most common

Stratified: Imbalanced classification problems

e LOOCV: Small datasets, when computational cost is
acceptable

Time Series CV: Temporal data with dependencies

Nested CV: When doing extensive hyperparameter search

19/21



Cross-Validation Best Practices

20/21



Cross-Validation Best Practices

20/21



Cross-Validation Best Practices

e Always preprocess within each fold separately

20/21



Cross-Validation Best Practices

e Always preprocess within each fold separately

20/21



Cross-Validation Best Practices

e Always preprocess within each fold separately

e Use stratification for classification problems

20/21



Cross-Validation Best Practices

e Always preprocess within each fold separately

e Use stratification for classification problems

20/21



Cross-Validation Best Practices

e Always preprocess within each fold separately
e Use stratification for classification problems

e Report mean =+ standard deviation

20/21



Cross-Validation Best Practices

e Always preprocess within each fold separately
e Use stratification for classification problems

e Report mean =+ standard deviation

20/21



Cross-Validation Best Practices

Always preprocess within each fold separately

Use stratification for classification problems

Report mean =+ standard deviation

Don’t overfit to cross-validation results

20/21



Cross-Validation Best Practices

Always preprocess within each fold separately

Use stratification for classification problems

Report mean =+ standard deviation

Don’t overfit to cross-validation results

20/21



Cross-Validation Best Practices

Always preprocess within each fold separately

Use stratification for classification problems

Report mean =+ standard deviation

Don’t overfit to cross-validation results

Consider computational cost vs. benefit trade-off

20/21



Cross-Validation Best Practices

Always preprocess within each fold separately

Use stratification for classification problems

Report mean =+ standard deviation

Don’t overfit to cross-validation results

Consider computational cost vs. benefit trade-off

20/21



Cross-Validation Best Practices

Always preprocess within each fold separately

Use stratification for classification problems

Report mean =+ standard deviation

Don’t overfit to cross-validation results

Consider computational cost vs. benefit trade-off

Use nested CV for unbiased hyperparameter search
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Next time: Ensemble Learning

How to combine various models?

Why combine multiple models?

How can we reduce bias?

e How can we reduce variance?

Bootstrap aggregating (Bagging)

Boosting methods
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