
Pruning and Overfitting

The Problem: Overfitting in Decision Trees

• Unpruned trees: Can grow very deep and complex
• Perfect training accuracy: Each leaf contains single

training example
• But: Poor generalization to new data
• Symptoms:

◦ High training accuracy, low test accuracy
◦ Very deep trees with many leaves
◦ Rules that are too specific to training data

• Solution: Pruning to control model complexity

1 / 7

Pre-pruning (Early Stopping)

Stop growing tree before it becomes too complex:

• Maximum depth: Limit tree depth (e.g., max_depth = 5)
• Minimum samples per split: Don’t split if node has < N

samples
• Minimum samples per leaf: Ensure each leaf has ≥ M

samples
• Maximum features: Consider only subset of features at

each split
• Minimum impurity decrease: Only split if improvement >

threshold

Advantages: Simple, computationally efficient
Disadvantages: May stop too early, miss good splits later

2 / 7

Post-pruning (Tree Simplification)

Grow full tree, then remove unnecessary branches:

• Algorithm:
1. Grow complete tree on training data
2. Use validation set to evaluate subtree performance
3. Remove branches that don’t improve validation accuracy
4. Repeat until no beneficial removals remain

• Cost Complexity Pruning: Minimize Error + α × Tree Size
• Advantages: More thorough, can recover from early

stopping mistakes
• Disadvantages: More computationally expensive

3 / 7

Cost Complexity Pruning Algorithm

Systematic approach to find optimal tree size:

• Cost function: Rα(T) = R(T) + α|T |
◦ R(T): Total impurity (training error)
◦ |T |: Number of leaves
◦ α: Complexity penalty parameter

• Weakest Link: At each pruning step, compute:

g(t) = R(t) − R(Tt)
|Tt | − 1

◦ g(t): The α value at which subtree rooted at node t should be
pruned

◦ R(t): Impurity of node t, treating it as leaf node
◦ R(Tt): Total impurity of subtree rooted at node t
◦ |Tt |: Number of leaves in subtree rooted at node t

4 / 7

Cost Complexity Pruning: Algorithm Steps

Iterative pruning process:

• Process:
1. Start with full tree (α = 0)
2. Compute g(t) for all internal nodes
3. Prune node with smallest g(t) (weakest link)
4. Repeat until only root remains
5. Use cross-validation to select optimal α

5 / 7

Bias-Variance Trade-off in Trees

• Unpruned trees:
◦ Low bias (can fit complex patterns)
◦ High variance (sensitive to training data changes)
◦ Prone to overfitting

• Heavily pruned trees:
◦ High bias (may miss important patterns)
◦ Low variance (more stable predictions)
◦ Risk of underfitting

• Optimal pruning: Balances bias and variance
• Cross-validation: Essential for finding this balance

6 / 7

Practical Pruning Guidelines

• Start simple: Begin with restrictive pre-pruning parameters
• Cross-validation: Always use CV to select pruning

parameters
• Validation curves: Plot training/validation error vs. tree

complexity
• Common parameters (sklearn):

◦ max_depth: Start with 3-10
◦ min_samples_split: Try 10-100
◦ min_samples_leaf: Try 5-50
◦ ccp_alpha: Use for cost complexity pruning

• Domain knowledge: Consider interpretability requirements

7 / 7

	Pruning and Overfitting

