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Introduction and
Motivation



The need for interpretability
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Training Data

Day Outlook Temp Humidity Windy Play
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No
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Learning a Complicated Neural Network
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Learnt Decision Tree

Outlook

Humidity Yes Wind

No Yes NoYes

Sunny
Overcast

Rain

High Normal StrongWeak
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Medical Diagnosis using Decision Trees

Source: Improving medical decision trees by combining relevant
health-care criteria
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Leo Breiman (1928-2005)
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Leo Breiman: Revolutionary Contributions to ML

Key Points: Major Algorithmic Breakthroughs:

• CART (1984): Classification and Regression Trees
• Bagging (1994): Bootstrap Aggregating
• Random Forests (2001): Ensemble of Decision Trees
• Two Cultures (2001): Data Modeling vs. Algorithmic
Modeling
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Computational Complexity Classes: A Quick Primer

Definition: Key Complexity Classes

• P: Problems solvable in polynomial time
◦ Example: Sorting n numbers in O(n log n) time

• NP: Problems where solutions can be verified in polynomial time
◦ Example: Given a sudoku solution, verify it’s correct

• NP-Complete: Hardest problems in NP
◦ Both in NP and at least as hard as any NP problem
◦ Example: Boolean satisfiability (SAT)

• NP-Hard: At least as hard as NP-Complete problems
◦ May not be in NP (solutions might not be verifiable
quickly)

◦ Example: Optimization versions of NP-Complete
problems
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Finding the Optimal Decision Tree

The Problem: Given training data, find the decision tree with
the highest accuracy
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Optimal Decision Trees are NP-Complete

Important: Computational Complexity

Finding optimal decision tree is NP-Complete

• Verification: Given a tree, check its accuracy quickly
• Construction: Exponentially many trees to check

Example: What This Means

• No efficient algorithm exists (unless P = NP)
• Must use heuristics like greedy algorithms
• ID3, C4.5, CART use greedy approaches
• Good solutions, but no optimality guarantee
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Greedy Algorithm

Core idea: At each level, choose an attribute that gives biggest
estimated performance gain!

Greedy ̸= Optimal
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Discrete Input, Discrete
Output



Towards biggest estimated performance gain

Day Outlook Temp Humidity Windy Play
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No

• For examples, we have 9 Yes,
5 No

• Would it be trivial if we had
14 Yes or 14 No?

• Yes!
• Key insight: Problem is

“easier” when there is less
disagreement

• Need some statistical
measure of “disagreement”
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Claude Shannon (1948): The Birth of Information Theory

Definition: The Big Idea

Information is inversely related to probability. Rare events
are more informative!

Think about it: Which headline tells you more?

• “The sun rose this morning”
• “It snowed in Gandhinagar in July”

The second one! Because it’s unexpected.
Shannon’s insight: The amount of information in an event
should be inversely proportional to its probability.
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Measuring Surprise: Step by Step

Shannon’s Information Formula:

I(x) = − log2 p(x)

Why the negative log?

• Probabilities are between 0 and 1
• log2 of values < 1 gives negative numbers
• We want information to be positive
• Hence the negative sign!

Why base 2? So information is measured in bits.
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Calculating Surprise: Detailed Examples

Example 1: Summer weather in Phoenix

• Sunny day: p = 0.9

• Information: I = − log2(0.9) = −(−0.152) = 0.152 bits
• Low surprise - we expect sunny weather

Example 2: Snow in Phoenix in July

• Probability: p = 0.0001 (extremely rare!)
• Information: I = − log2(0.0001) = −(−13.29) = 13.29 bits
• High surprise - this would be shocking news!

Notice: Rare events carry ∼90× more information!
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From Single Events to Distributions

Question: What if we have multiple possible outcomes?
Example: Weather in Delhi (4 possibilities)

• Rainy: p = 0.5

• Cloudy: p = 0.3

• Sunny: p = 0.15

• Snowy: p = 0.05

Problem: Each day gives different amounts of information!

• If it’s rainy: I = − log2(0.5) = 1.0 bit
• If it’s sunny: I = − log2(0.15) = 2.74 bits
• If it’s snowy: I = − log2(0.05) = 4.32 bits

Solution: Take the expected (average) information!
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Entropy: Expected Information

Definition: Entropy Formula

H(X) = E[I(X)] = −
∑

i
p(xi) log2 p(xi)

Entropy = Expected amount of information per observation

Delhi weather calculation:

H = −p(rain) log2 p(rain)− p(cloudy) log2 p(cloudy)
− p(sunny) log2 p(sunny)− p(snow) log2 p(snow)

= −0.5 log2(0.5)− 0.3 log2(0.3)− 0.15 log2(0.15)− 0.05 log2(0.05)
= 0.5(1.0) + 0.3(1.74) + 0.15(2.74) + 0.05(4.32)

= 0.5 + 0.52 + 0.41 + 0.22 = 1.65 bits
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Entropy Intuition: Extreme Cases

Case 1: Completely predictable

• Desert: Always sunny (p = 1.0)
• H = −1.0 log2(1.0) = −1.0× 0 = 0 bits
• Zero entropy = No surprise = Completely predictable

Case 2: Maximum uncertainty

• Fair coin: Heads/Tails equally likely (p = 0.5 each)
• H = −0.5 log2(0.5)− 0.5 log2(0.5) = 0.5(1) + 0.5(1) = 1.0
bit

• Maximum entropy = Maximum surprise = Completely
unpredictable

Key insight: Entropy ranges from 0 (certain) to log2(n)
(uniform over n outcomes)
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Entropy in Decision Trees: The Connection

Why do we care about entropy in ML?

Example: Decision Tree Goal

We want to split data into pure subsets where we can make
confident predictions.

• Pure node: All examples same class → Low entropy →
Good split

• Mixed node: Examples from different classes → High
entropy → Bad split

Strategy: Choose splits that reduce entropy the most! This is
exactly what Information Gain measures.
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Entropy

Statistical measure to characterize the (im)purity of examples
H(X) = −

∑k
i=1 p(xi) log2 p(xi)

Notebook: entropy.html
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Towards biggest estimated performance gain

Day Outlook Temp Humidity Windy Play
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No

• Can we use Outlook as the
root node?

• When Outlook is overcast,
we always Play and thus no
“disagreement”

23 / 121



Information Gain

Reduction in entropy by partitioning examples (S) on attribute A

Gain(S,A) ≡ Entropy(S)−
∑

v∈Values(A)

|Sv|
|S| Entropy(Sv)
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Pop Quiz #1

Answer this!

What does entropy measure in the context of decision
trees?

A) The depth of the tree
B) The impurity or “disagreement” in a set of examples
C) The number of features in the dataset
D) The accuracy of the tree

Answer: B) The impurity or “disagreement” in a set
of examples — Higher entropy means more mixed classes,
lower entropy means more pure subsets.
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ID3 (Examples, Target Attribute, Attributes)

• Create a root node for tree
• If all examples are +/-, return root with label = +/-
• If attributes = empty, return root with most common value
of Target Attribute in Examples

• Begin
◦ A ← attribute from Attributes which best classifies Examples
◦ Root ← A
◦ For each value (v) of A

− Add new tree branch : A = v
− Examplesv: subset of examples that A = v
− If Examplesvis empty: add leaf with label = most common

value of Target Attribute
− Else: ID3 (Examplesv, Target attribute, Attributes - A)
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Training Data

Day Outlook Temp Humidity Windy Play
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No
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Entropy calculated

We have 14 examples in S: 5 No, 9 Yes

Entropy(S) = −pNo log2 pNo − pYes log2 pYes

= − 5

14
log2

(
5

14

)
− 9

14
log2

(
9

14

)
= 0.940
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Information Gain for Outlook

Outlook Play
Sunny No
Sunny No
Overcast Yes
Rain Yes
Rain Yes
Rain No
Overcast Yes
Sunny No
Sunny Yes
Rain Yes
Sunny Yes
Overcast Yes
Overcast Yes
Rain No
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Information Gain for Outlook

Outlook Play
Sunny No
Sunny No
Sunny No
Sunny Yes
Sunny Yes
We have 2 Yes, 3
No Entropy =
−3

5 log2
(
3
5

)
−

2
5 log2

(
2
5

)
= 0.971

Outlook Play
Overcast Yes
Overcast Yes
Overcast Yes
Overcast Yes
We have 4 Yes, 0
No Entropy = 0
(pure subset)

Outlook Play
Rain Yes
Rain Yes
Rain No
Rain Yes
Rain No
We have 3 Yes, 2
No Entropy =
−3

5 log2
(
3
5

)
−

2
5 log2

(
2
5

)
= 0.971
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Information Gain

Gain(S,Outlook) = Entropy(S)−∑
v∈{Rain, Sunny, Overcast}

|Sv|
|S| Entropy(Sv)

= 0.940− 5

14
× 0.971− 4

14
× 0− 5

14
× 0.971

= 0.940− 0.347− 0− 0.347

= 0.246
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Information Gain

Outlook Humidity Wind Temperature

0.25

0.15

4.8 · 10−2

2.9 · 10−2

Information Gain
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Learnt Decision Tree

Outlook

? Yes ?

Sunny
Overcast Rain
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Calling ID3 on Outlook=Sunny

Day Temp Humidity Windy Play
D1 Hot High Weak No
D2 Hot High Strong No
D8 Mild High Weak No
D9 Cool Normal Weak Yes
D11 Mild Normal Strong Yes

• Gain(SOutlook=Sunny, Temp) = Entropy(2 Yes, 3 No) -
(2/5)*Entropy(0 Yes, 2 No) -(2/5)*Entropy(1 Yes, 1 No) -
(1/5)*Entropy(1 Yes, 0 No)

• Gain(SOutlook=Sunny, Humidity) = Entropy(2 Yes, 3 No) -
(2/5)*Entropy(2 Yes, 0 No) -(3/5)*Entropy(0 Yes, 3 No)
=⇒ maximum possible for the set

• Gain(SOutlook=Sunny, Windy) = Entropy(2 Yes, 3 No) -
(3/5)*Entropy(1 Yes, 2 No) -(2/5)*Entropy(1 Yes, 1 No)
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Learnt Decision Tree

Outlook

Humidity Yes ?

No Yes

Sunny
Overcast Rain

High Normal
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Calling ID3 on (Outlook=Rain)

Day Temp Humidity Windy Play
D4 Mild High Weak Yes
D5 Cool Normal Weak Yes
D6 Cool Normal Strong No
D10 Mild Normal Weak Yes
D14 Mild High Strong No

• The attribute Windy gives the highest information gain
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Learnt Decision Tree

Outlook

Humidity Yes Wind

No Yes NoYes

Sunny
Overcast

Rain

High Normal StrongWeak
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Prediction for Decision Tree

Just walk down the tree!
Outlook

Humidity Yes Wind

No Yes NoYes

Sunny
Overcast

Rain

High Normal StrongWeak

Prediction for <High Humidity, Strong Wind, Sunny Outlook,
Hot Temp> is ?
No
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Limiting Tree Depth

Definition: Depth-Limited Trees

When depth limit is reached, assign the most common
class in that path as the leaf node prediction.

• Depth-0 tree (no decisions):
◦ Always predict the most common class
◦ For our dataset: Always predict Yes

• Depth-1 tree (single decision):

Outlook

No Yes Yes

Sunny
Overcast

Rain
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Pop Quiz #3

Answer this!

In the tennis dataset, why did “Outlook” have the
highest information gain?

A) It was the first feature in the dataset
B) When Outlook=Overcast, all examples have Play=Yes

(pure subset)
C) It has the most possible values
D) It was chosen randomly

Answer: B) When Outlook=Overcast, all examples
have Play=Yes - This creates a pure subset with en-
tropy=0, maximizing information gain.
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Discrete Input, Real
Output



Modified Dataset

Day Outlook Temp Humidity Wind Minutes Played
D1 Sunny Hot High Weak 20
D2 Sunny Hot High Strong 24
D3 Overcast Hot High Weak 40
D4 Rain Mild High Weak 50
D5 Rain Cool Normal Weak 60
D6 Rain Cool Normal Strong 10
D7 Overcast Cool Normal Strong 4
D8 Sunny Mild High Weak 10
D9 Sunny Cool Normal Weak 60
D10 Rain Mild Normal Weak 40
D11 Sunny Mild High Strong 45
D12 Overcast Mild High Strong 40
D13 Overcast Hot Normal Weak 35
D14 Rain Mild High Strong 20
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Regression Trees: From Classification to Regression

• Classification trees predict discrete classes (Yes/No,
categories)

• Regression trees predict continuous numeric values
• Key Question: How do we measure impurity for continuous
outputs?

• For classification: Used entropy, information gain
• For regression: Use Mean Squared Error (MSE)

Key Points: Why MSE for Regression?

MSE measures how far predicted values are from actual val-
ues. Lower MSE = Better predictions = Less “impurity” in
the data
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Mean Squared Error (MSE): The Mathematics

Definition: Mean Squared Error

For a dataset S with n data points and target values
y1, y2, . . . , yn:

MSE(S) = 1

n

n∑
i=1

(yi − ȳ)2

where ȳ = 1
n
∑n

i=1 yi is the mean of target values

• (yi − ȳ)2: Squared difference between actual and mean
• Squaring ensures positive values and penalizes large errors
• MSE = 0 when all values are identical (perfect homogeneity)
• Higher MSE = More variation = Higher impurity
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MSE Calculation: Step 1 - The Complete Dataset

Wind Minutes Played
Weak 20
Strong 24
Weak 40
Weak 50
Weak 60
Strong 10
Strong 4
Weak 10
Weak 60
Weak 40
Strong 45
Strong 40
Weak 35
Strong 20

• Tennis Dataset: Predicting minutes played (continuous target)
• Goal: Calculate MSE for the entire dataset S
• Step 1: Find the mean ȳ of all target values
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MSE Calculation: Step 2 - Computing the Mean

Example: Calculating Mean Minutes Played

All target values: 20, 24, 40, 50, 60, 10, 4, 10, 60, 40, 45, 40,
35, 20

Step 1: Sum all values∑
yi = 20 + 24 + 40 + 50 + 60 + 10 + 4 + 10

+ 60 + 40 + 45 + 40 + 35 + 20

= 458

Step 2: Divide by number of data points (n = 14)

ȳ =
458

14
= 32.71 minutes
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MSE Calculation: Step 3 - Computing Squared Differences

Example: Calculating (yi − ȳ)2 for Each Data Point

With ȳ = 32.71:

yi yi − ȳ (yi − ȳ)2
20 20− 32.71 = −12.71 (−12.71)2 = 161.54
24 24− 32.71 = −8.71 (−8.71)2 = 75.86
40 40− 32.71 = 7.29 (7.29)2 = 53.14
50 50− 32.71 = 17.29 (17.29)2 = 299.14
60 60− 32.71 = 27.29 (27.29)2 = 744.74
10 10− 32.71 = −22.71 (−22.71)2 = 515.74
4 4− 32.71 = −28.71 (−28.71)2 = 824.26

Continue this for all 14 data points...
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MSE Calculation: Step 4 - Complete Squared Differences

Example: All Squared Differences

yi yi − ȳ (yi − ȳ)2
20 −12.71 161.54
24 −8.71 75.86
40 7.29 53.14
50 17.29 299.14
60 27.29 744.74
10 −22.71 515.74
4 −28.71 824.26
10 −22.71 515.74
60 27.29 744.74
40 7.29 53.14
45 12.29 151.04
40 7.29 53.14
35 2.29 5.24
20 −12.71 161.54

Sum 4358.86
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MSE Calculation: Step 5 - Final MSE Computation

Example: Computing MSE for Complete Dataset

Formula:

MSE(S) = 1

n

n∑
i=1

(yi − ȳ)2

Substituting our values:

MSE(S) = 1

14
× 4358.86 = 311.35

Interpretation:

• MSE = 311.35 square-minutes
• This measures the “impurity” or variation in our dataset
• Higher MSE = More variation in target values
• When we split the data, we want to reduce this MSE
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MSE Reduction: The Splitting Criterion

Definition: MSE Reduction Formula

For a split on attribute A with values v1, v2, . . . , vk:

MSE Reduction = MSE(S)−
k∑

j=1

|Svj |
|S|

× MSE(Svj )

where:

• S is the original dataset
• Svj is the subset with attribute value vj
• |Svj | is the size of subset Svj

• |S| is the size of original dataset

Key Points: Key Insight

MSE Reduction > 0 means the split improves our model!
Choose the split with highest MSE Reduction
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Splitting on Wind: Step 1 - Partition the Data

Example: Wind = Weak
(8 points)

Wind Minutes
Weak 20
Weak 40
Weak 50
Weak 60
Weak 10
Weak 60
Weak 40
Weak 35

Example: Wind =
Strong (6 points)

Wind Minutes
Strong 24
Strong 10
Strong 4
Strong 45
Strong 40
Strong 20

• Original dataset: 14 points, MSE = 311.35
• After split: 8 points (Weak) + 6 points (Strong)
• Next: Calculate MSE for each subset
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Splitting on Wind: Step 2 - MSE for Wind=Weak

Example: Calculating MSE(SWind=Weak)

Data points: 20, 40, 50, 60, 10, 60, 40, 35
Step 1: Calculate mean

ȳweak =
20 + 40 + 50 + 60 + 10 + 60 + 40 + 35

8

=
315

8
= 39.375

Step 2: Calculate squared differences
yi yi − 39.375 (yi − 39.375)2

20 −19.375 375.39
40 0.625 0.39
50 10.625 112.89
60 20.625 425.39
10 −29.375 862.89
60 20.625 425.39
40 0.625 0.39
35 −4.375 19.14

Sum 2221.87
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Splitting on Wind: Step 3 - Complete MSE for
Wind=Weak

Example: Final MSE Calculation for Wind=Weak

MSE(SWind=Weak) =
1

8
× 2221.87 = 277.73

Example: Verification Check

• Original MSE for all data: 311.35
• MSE for Wind=Weak subset: 277.73
• Good sign: MSE decreased (less variation within this
group)

• This subset is more “homogeneous” than the full dataset
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Splitting on Wind: Step 4 - MSE for Wind=Strong

Example: Calculating MSE(SWind=Strong)

Data points: 24, 10, 4, 45, 40, 20
Step 1: Calculate mean

ȳstrong =
24 + 10 + 4 + 45 + 40 + 20

6
=

143

6
= 23.83

Step 2: Calculate squared differences
yi yi − 23.83 (yi − 23.83)2

24 0.17 0.03
10 −13.83 191.27
4 −19.83 393.23
45 21.17 448.17
40 16.17 261.47
20 −3.83 14.67

Sum 1308.84

MSE(SWind=Strong) =
1

6
× 1308.84 = 218.14
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Splitting on Wind: Step 5 - Computing MSE Reduction

Example: Final MSE Reduction Calculation

We have:

• MSE(S) = 311.35 (original dataset)
• MSE(SWind=Weak) = 277.73 (8 points)
• MSE(SWind=Strong) = 218.14 (6 points)

Weighted Average MSE:

Weighted MSE =
8

14
× 277.73 +

6

14
× 218.14

= 0.571× 277.73 + 0.429× 218.14

= 158.60 + 93.58 = 252.18

MSE Reduction:

MSE Reduction = 311.35− 252.18 = 59.17
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MSE Reduction: Interpretation and Decision Making

Key Points: What Does MSE Reduction = 59.17 Mean?

• Positive value: The split improves our model!
• Magnitude: We reduced prediction error by 59.17 square-minutes
• Percentage: (59.17/311.35)× 100% = 19% improvement
• Intuition: Wind attribute helps separate high/low playing minutes

Example: Decision Tree Building Process

• Step 1: Calculate MSE reduction for all possible splits
• Step 2: Choose the split with highest MSE reduction
• Step 3: Recursively apply to child nodes
• Stop when: MSE reduction becomes too small or max depth reached
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MSE Reduction: Interpretation and Decision Making

Example: Decision Tree Building Process

• Step 1: Calculate MSE reduction for all possible splits
• Step 2: Choose the split with highest MSE reduction
• Step 3: Recursively apply to child nodes
• Stop when: MSE reduction becomes too small or max depth
reached

Important: Key Difference from Classification

Classification: Use Information Gain (maximize information)
Regression: Use MSE Reduction (minimize prediction error)
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Pop Quiz #5

Answer this!

For regression trees, what criterion do we use instead
of Information Gain?

A) Information Gain
B) Gini Impurity
C) Mean Squared Error (MSE) Reduction
D) Accuracy

Answer: C) Mean Squared Error (MSE) Reduction
- For regression, we minimize MSE instead of maximizing
information gain.
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MSE Reduction for Regression Trees

Notebook: decision-tree-real-output.html

Outlook Temp Humidity Wind
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Learnt Tree

59 / 121



Learnt Tree
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Real Input, Discrete
Output



Moving to Our Third Case

Key Points: Our Journey Through Decision Tree Types

• Discrete Input, Discrete Output: Simple categorical splits
• Real Input, Real Output: Continuous features, regression trees
• Real Input, Discrete Output: Continuous features, classification

What’s different now?

• Input: Continuous/real-valued features (like temperature, age, income)
• Output: Discrete classes (Yes/No, Low/Medium/High, etc.)
• Challenge: Where exactly should we split the continuous feature?
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The Key Challenge: Infinite Split Points

Important: The Problem

With continuous features, we have potentially infinite split points!

• Temperature could be split at 45°C, 45.1°C, 45.01°C, ...
• We need a systematic approach to find the best split points

The Intuitive Solution:

1. Look for ”natural boundaries” between different classes
2. Focus on points where class labels actually change
3. Test splits that maximize information gain
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The Tennis Example - Setting the Stage

Scenario: Should we play tennis based on temperature?
Day Temperature PlayTennis
D1 40 No
D2 48 No
D3 60 Yes
D4 72 Yes
D5 80 Yes
D6 90 No

Question: How do we find the best split point in this
continuous temperature data?
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The Sorting Intuition - Why Start Here?

Example: Why Sort the Data First?

• Sorting reveals the natural class boundaries in the data
• We can see where labels change: No → Yes → No
• Only need to consider splits between different class labels
• Eliminates millions of irrelevant split points!

Sorted Data: (already sorted in our example)
Day Temperature PlayTennis
D1 40 No
D2 48 No
D3 60 Yes
D4 72 Yes
D5 80 Yes
D6 90 No
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Finding Smart Split Points

Definition: The Midpoint Strategy

Only consider splits at midpoints between consecutive different classes:

• Between 48(No) and 60(Yes): split at (48 + 60)/2 = 54

• Between 80(Yes) and 90(No): split at (80 + 90)/2 = 85

All candidate splits: 44, 54, 66, 76, 85

Key Points: Why These 5 Splits?

• 44: Separates D1 from rest
• 54: Separates No’s from Yes’s
• 66, 76: Split within the Yes region
• 85: Separates last Yes from final No
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Evaluating Split at Temperature ≤ 44

Day Temperature PlayTennis
D1 40 No
D2 48 No
D3 60 Yes
D4 72 Yes
D5 80 Yes
D6 90 No

Example: Split Analysis

Left side (Temp ≤ 44): 1 example, all ”No” → Perfect
purity!
Right side (Temp > 44): 5 examples, 3 ”Yes”, 2 ”No” →
Mixed
Entropy(Left) = 0, Entropy(Right) = 0.971
Weighted Entropy = 1

6 × 0 + 5
6 × 0.971 = 0.808
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Evaluating Split at Temperature ≤ 54

Day Temperature PlayTennis
D1 40 No
D2 48 No
D3 60 Yes
D4 72 Yes
D5 80 Yes
D6 90 No

Example: Split Analysis

Left side (Temp ≤ 54): 2 examples, all ”No” → Perfect
purity!
Right side (Temp > 54): 4 examples, 3 ”Yes”, 1 ”No” →
Better!
Entropy(Left) = 0, Entropy(Right) = 0.811
Weighted Entropy = 2

6 × 0 + 4
6 × 0.811 = 0.541

Much better! This split creates a purer separation.
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Comparing All Candidate Splits

Split Point Left Side Right Side Weighted Entropy Info Gain
44 1 No 3 Yes, 2 No 0.808 0.142
54 2 No 3 Yes, 1 No 0.541 0.409
66 2 No, 1 Yes 2 Yes, 1 No 0.918 0.032
76 2 No, 2 Yes 1 Yes, 1 No 1.000 -0.050
85 2 No, 3 Yes 1 No 0.650 0.300

Key Points: Winner: Split at 54!

• Lowest weighted entropy (0.541)
• Highest information gain (0.409)
• Creates the best class separation
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The Algorithm Summary

Definition: Decision Tree Algorithm for Continuous
Features

1. Sort data by feature values
2. Identify candidate split points (midpoints between

different classes)
3. Evaluate each split using information gain:

◦ Calculate weighted entropy for the split
◦ Information Gain = Original Entropy - Weighted Entropy

4. Choose split with highest information gain
5. Recurse on left and right subsets
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Visual Example: The Resulting Decision Tree

Day Temperature PlayTennis
D1 40 No
D2 48 No
D3 60 Yes
D4 72 Yes
D5 80 Yes
D6 90 No

Notebook: decision-tree-real-input-discrete-output.html

Temperature ≤ 54.0
entropy = 1.0
samples = 6
value = [3, 3]
class = No

entropy = 0.0
samples = 2
value = [2, 0]
class = No

True

entropy = 0.811
samples = 4
value = [1, 3]
class = Yes

False
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Finding splits

Day Temperature PlayTennis
D1 40 No
D2 48 No
D3 60 Yes
D4 72 Yes
D5 80 Yes
D6 90 No

Notebook: decision-tree-real-input-discrete-output.html

Temperature ≤ 54.0
entropy = 1.0
samples = 6
value = [3, 3]
class = No

entropy = 0.0
samples = 2
value = [2, 0]
class = No

True

Temperature ≤ 85.0
entropy = 0.811
samples = 4
value = [1, 3]
class = Yes

False

entropy = 0.0
samples = 3
value = [0, 3]
class = Yes

entropy = 0.0
samples = 1
value = [1, 0]
class = No
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Example (DT of depth 1)

Notebook: decision-tree-real-input-discrete-output.html

−4 −2 0 2 4

x1

−2.5

0.0

2.5

5.0

7.5

10.0

x
2
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Example (DT of depth 2)

Notebook: decision-tree-real-input-discrete-output.html

−4 −2 0 2 4

x1

−2.5

0.0

2.5

5.0

7.5

10.0

x
2

73 / 121

https://nipunbatra.github.io/ml-teaching/notebooks/decision-tree-real-input-discrete-output.html


Example (DT of depth 3)

Notebook: decision-tree-real-input-discrete-output.html

−4 −2 0 2 4

x1

−2.5

0.0

2.5

5.0

7.5

10.0

x
2
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Example (DT of depth 4)

Notebook: decision-tree-real-input-discrete-output.html

−4 −2 0 2 4

x1

−2.5

0.0

2.5

5.0

7.5

10.0

x
2
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Example (DT of depth 5)

Notebook: decision-tree-real-input-discrete-output.html

−4 −2 0 2 4

x1

−2.5

0.0

2.5

5.0

7.5

10.0

x
2
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Example (DT of depth 6)

Notebook: decision-tree-real-input-discrete-output.html

−4 −2 0 2 4

x1

−2.5

0.0

2.5

5.0

7.5

10.0

x
2
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Example (DT of depth 7)

Notebook: decision-tree-real-input-discrete-output.html

−4 −2 0 2 4

x1

−2.5

0.0

2.5

5.0

7.5

10.0

x
2
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Example (DT of depth 8)

Notebook: decision-tree-real-input-discrete-output.html

−4 −2 0 2 4

x1

−2.5

0.0

2.5

5.0

7.5

10.0

x
2
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Example (DT of depth 9)

Notebook: decision-tree-real-input-discrete-output.html

−4 −2 0 2 4

x1

−2.5

0.0

2.5

5.0

7.5

10.0

x
2
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Pop Quiz #7

Answer this!

When finding splits for continuous features, how do
we determine candidate split points?

A) Use all feature values as split points
B) Use midpoints between consecutive sorted feature

values
C) Use random values within the feature range
D) Use only the minimum and maximum values

Answer: B) Use midpoints between consecutive
sorted feature values - This ensures we test all mean-
ingful boundaries between different class regions.
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Real Input, Real Output



Completing Our Journey: The Fourth Case

Key Points: Our Decision Tree Journey - Final Stop:

• Discrete Input, Discrete Output: Categorical splits, entropy
• Real Input, Discrete Output: Continuous features, classification (Case

3)
• Real Input, Real Output: Continuous features, regression (Case 2 -

revisited!)
• Real Input, Real Output: Let’s build intuition from Cases 2 & 3!

What we learned:

• From Case 2: Use MSE for regression, predict means in leaves
• From Case 3: Sort data, find midpoint splits, evaluate systematically
• Case 4: Combine both approaches for regression trees!
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The Key Insights from Previous Cases

Example: From Case 3 (Real Input, Discrete Output)

• Sorting Strategy: Sort by feature values to find natural boundaries
• Candidate Splits: Only consider midpoints between different points
• Systematic Evaluation: Test each split, choose best information gain

Example: From Case 2 (Regression Trees)

• MSE Criterion: Use Mean Squared Error instead of entropy
• Leaf Predictions: Predict mean of target values in each region
• Weighted Loss: Consider subset sizes in evaluation
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The Challenge: Regression with Continuous Features

Important: What Makes This Different?

• Input: Continuous features (like Case 3)
• Output: Continuous targets (like Case 2)
• Challenge: Where to split continuous features for best regression

performance?

Our Strategy:
1. Apply Case 3’s sorting and candidate generation approach
2. Use Case 2’s MSE-based evaluation criteria
3. Weight by sample sizes for fair comparison

84 / 121



Example Dataset
Let us consider the regression dataset below:

Notebook: decision-tree-real-input-real-output.html

1 2 3 4 5 6

0.0

0.5

1.0

1.5

2.0

Goal: Find the best split point to minimize prediction error
85 / 121

https://nipunbatra.github.io/ml-teaching/notebooks/decision-tree-real-input-real-output.html


Baseline: Decision Tree with Depth 0
Question: What would be the prediction for decision tree with
depth 0 (no splits)?

Notebook: decision-tree-real-input-real-output.html

1 2 3 4 5 6

0.0

0.5

1.0

1.5

2.0

Key Points: Answer

Predict the mean of all Y values! (Same as Case 2)
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Baseline Performance Visualization
Depth 0 Prediction: Horizontal line = average of all Y values

Notebook: decision-tree-real-input-real-output.html

0 2 4 6

0.0

0.5

1.0

1.5

2.0
data

Prediction

Problem: This single prediction doesn’t capture the X-Y
relationship!
We need to find better splits to reduce prediction error.
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Finding Split Candidates - Learning from Case 3

Definition: Split Candidate Strategy (from Case 3)

1. Sort data points by X values:
(x1, y1), (x2, y2), . . . , (xn, yn)

2. Consider midpoints between consecutive X values:

Split candidates =
{

xi + xi+1

2
| i = 1, 2, . . . , n− 1

}
3. Evaluate each split using MSE reduction (not entropy!)

Why midpoints? They ensure we capture all meaningful
boundaries where the trend might change.
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Objective Function for Regression Trees - Setup

Feature is denoted by X and target by Y.
Let the split be at X = s.
Define regions: R1 = {x : x ≤ s} and R2 = {x : x > s}.
For each region, compute the mean prediction:

c1 =
1

|R1|
∑

xi∈R1

yi and c2 =
1

|R2|
∑

xi∈R2

yi

89 / 121



Objective Function - Weighted MSE

Example: Sample-Weighted MSE

Weighted Loss(s) = |R1|
|R1|+ |R2|

· MSE(R1) +
|R2|

|R1|+ |R2|
· MSE(R2)

Where: MSE(Ri) =
1

|Ri|
∑

xj∈Ri
(yj − ci)2

Our objective: s∗ = arg mins Weighted Loss(s)
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Example: Finding the Best Split
What would be the decision tree with depth 1?

Notebook: decision-tree-real-input-real-output.html

1 2 3 4 5 6

0.0

0.5

1.0

1.5

2.0
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Example 1
Decision tree with depth 1

Notebook: decision-tree-real-input-real-output.html

0 2 4 6

0.0

0.5

1.0

1.5

2.0
Data

Prediction
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Example 1

The Decision Boundary

Notebook: decision-tree-real-input-real-output.html

x <= 2.5
squared_error = 0.667

samples = 6
value = 1.0

squared_error = 0.0
samples = 2
value = 0.0

True

squared_error = 0.25
samples = 4
value = 1.5

False
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Example 1
What would be the decision tree with depth 2 ?

Notebook: decision-tree-real-input-real-output.html

1 2 3 4 5 6

0.0

0.5

1.0

1.5

2.0
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Example 1
Decision tree with depth 2

Notebook: decision-tree-real-input-real-output.html

0 2 4 6

0.0

0.5

1.0

1.5

2.0
Data

Prediction
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Example 1
The Decision Boundary

Notebook: decision-tree-real-input-real-output.html

x <= 2.5
squared_error = 0.667

samples = 6
value = 1.0

squared_error = 0.0
samples = 2
value = 0.0

True

x <= 4.5
squared_error = 0.25

samples = 4
value = 1.5

False

squared_error = 0.0
samples = 2
value = 1.0

squared_error = 0.0
samples = 2
value = 2.0
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Algorithm: Finding the Optimal Split

1. Sort all data points (xi, yi) in increasing order of xi.
2. Evaluate the loss function for all candidate splits:

s = xi+xi+1

2 for i = 1, 2, . . . , n− 1

3. Select the split s∗ that minimizes the loss function.
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A Question!

Draw a regression tree for Y = sin(X), 0 ≤ X ≤ 2π
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A Question!
Dataset of Y = sin(X), 0 ≤ X ≤ 7 with 10,000 points

Notebook: decision-tree-real-input-real-output.html

0 1 2 3 4 5 6

−1.0

−0.5

0.0

0.5

1.0
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A Question!

Regression tree of depth 1

Notebook: decision-tree-real-input-real-output.html

x <= 3.142
squared_error = 0.498

samples = 200
value = -0.0

squared_error = 0.096
samples = 100
value = 0.633

True

squared_error = 0.096
samples = 100
value = -0.633

False
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A Question!
Decision Boundary

Notebook: decision-tree-real-input-real-output.html

0 2 4 6

−1.0

−0.5

0.0

0.5

1.0
Data

Prediction
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A Question!
Regression tree with no depth limit is too big to fit in a slide.
It has of depth 4. The decision boundaries are in figure below.

Notebook: decision-tree-real-input-real-output.html

0 2 4 6

−1.0

−0.5

0.0

0.5

1.0
Data

Prediction
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Pop Quiz #8

Answer this!

What is the prediction function for a regression tree
leaf node?

A) The median of target values
B) The mode of target values
C) The mean of target values
D) A linear function

Answer: C) The mean of target values
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Why Weighted Entropy?

Key Points: Weighted Entropy

• Sometimes points have different importance:
◦ From resampling (e.g., Boosting)
◦ Class imbalance correction
◦ Prior knowledge about reliability of examples

• Standard entropy assumes equal weight for all points.
• Weighted entropy respects point importance.
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Weighted Entropy Formula

For dataset S with points (xj, yj) and weights wj:

Hw(S) = −
∑
c∈C

∑
j∈c wj∑
j∈S wj︸ ︷︷ ︸

Weighted P(c)

log2

(∑
j∈c wj∑
j∈S wj

)

• wj: weight of point j (can be fractional)
• C: set of classes
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Weighted Entropy

0 2 4 6 8 10

X1

0

1

2

3

4

5

6
X

2

Setup: We start with mixed data - let’s see how splitting helps
us achieve purity
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Weighted Entropy

0 2 4 6 8 10

X1

0

1

2

3

4
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6
X

2

0.3

0.1

0.1

0.3

0.1
0.1

Original Entropy Calculation:
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Computing Original Entropy

0 2 4 6 8 10

X1

0

1

2

3

4
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6

X
2

0.3

0.1

0.1

0.3

0.1
0.1

Entropy = −P(+) log2 P(+)− P(−) log2 P(−)

P(+) =
0.1 + 0.1 + 0.3

1
= 0.5, P(−) = 0.3 + 0.1 + 0.1

1
= 0.5

Entropy = Es = −
1

2
log2

1

2
− 1

2
log2

1

2
= 1

Maximum impurity! Perfect 50-50 split
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Choosing a Split

0 2 4 6 8 10

X1

0

1

2
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6

X
2

0.3

0.1

0.1

0.3

0.1
0.1

Candidate Split: X1 = 4 (denoted as X∗
1)

Let’s see if this vertical line creates purer subsets!
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Left Subset: X1 ≤ X∗1

0 2 4 6 8 10

X1

0

1
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X
2

0.3

0.1

0.1

0.3

0.1
0.1

Computing entropy of left subset:

P(+) =
0.1 + 0.1

0.1 + 0.1 + 0.3
=

2

5
= 0.4

P(−) = 0.3

0.5
=

3

5
= 0.6

H(left) = −0.4 log2(0.4)− 0.6 log2(0.6) ≈ 0.971
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Right Subset: X1 > X∗1
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Computing entropy of right subset:

P(+) =
0.3

0.3 + 0.2
=

3

5
= 0.6

P(−) = 0.2

0.5
=

2

5
= 0.4

H(right) = −0.6 log2(0.6)− 0.4 log2(0.4) ≈ 0.971

111 / 121



Computing Weighted Entropy

0 2 4 6 8 10

X1
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Example: Weighted Entropy Calculation

Weighted Entropy =
|Sleft|
|S|

· H(left) +
|Sright|
|S|

· H(right)

=
0.5

1.0
· 0.971 +

0.5

1.0
· 0.971

= 0.5× 0.971 + 0.5× 0.971 = 0.971
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Information Gain Calculation

Key Points: Information Gain

Information Gain = Original Entropy - Weighted Entropy

IG(X1 = X∗
1) = ES − Weighted Entropy

= 1.0− 0.971 = 0.029

Interpretation: Small gain means this split doesn’t help much in creating purer
subsets. We should try other splits!
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Key Takeaways

• Weighted entropy generalizes normal entropy.
• Handles fractional and non-uniform point importance.
• Essential for boosting and class imbalance handling.
• Always normalize weights before computing probabilities.
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Pruning and Overfitting



The Problem: Overfitting in Decision Trees

• Unpruned trees: Can grow very deep and complex
• Perfect training accuracy: Each leaf contains single
training example

• But: Poor generalization to new data
• Symptoms:

◦ High training accuracy, low test accuracy
◦ Very deep trees with many leaves
◦ Rules that are too specific to training data

• Solution: Pruning to control model complexity
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Pre-pruning (Early Stopping)

Stop growing tree before it becomes too complex:

• Maximum depth: Limit tree depth (e.g., max_depth = 5)
• Minimum samples per split: Don’t split if node has < N
samples

• Minimum samples per leaf: Ensure each leaf has ≥ M
samples

• Maximum features: Consider only subset of features at
each split

• Minimum impurity decrease: Only split if improvement >
threshold

Advantages: Simple, computationally efficient
Disadvantages: May stop too early, miss good splits later
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Post-pruning (Tree Simplification)

Grow full tree, then remove unnecessary branches:
• Algorithm:

1. Grow complete tree on training data
2. Use validation set to evaluate subtree performance
3. Remove branches that don’t improve validation accuracy
4. Repeat until no beneficial removals remain

• Cost Complexity Pruning: Minimize Error+ α× Tree Size
• Advantages: More thorough, can recover from early
stopping mistakes

• Disadvantages: More computationally expensive
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Cost Complexity Pruning Algorithm

Systematic approach to find optimal tree size:
• Cost function: Rα(T) = R(T) + α|T|

◦ R(T): Misclassification error on validation set
◦ |T|: Number of terminal nodes (tree size)
◦ α: Complexity parameter (penalty for larger trees)

• Process:
1. Start with full tree (α = 0)
2. Gradually increase α
3. At each α, prune branches that increase cost
4. Select α with best cross-validation performance

118 / 121



Bias-Variance Trade-off in Trees

• Unpruned trees:
◦ Low bias (can fit complex patterns)
◦ High variance (sensitive to training data changes)
◦ Prone to overfitting

• Heavily pruned trees:
◦ High bias (may miss important patterns)
◦ Low variance (more stable predictions)
◦ Risk of underfitting

• Optimal pruning: Balances bias and variance
• Cross-validation: Essential for finding this balance
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Practical Pruning Guidelines

• Start simple: Begin with restrictive pre-pruning parameters
• Cross-validation: Always use CV to select pruning
parameters

• Validation curves: Plot training/validation error vs. tree
complexity

• Common parameters (sklearn):
◦ max_depth: Start with 3-10
◦ min_samples_split: Try 10-100
◦ min_samples_leaf: Try 5-50
◦ ccp_alpha: Use for cost complexity pruning

• Domain knowledge: Consider interpretability requirements

120 / 121



Summary and Key
Takeaways



Summary and Key Takeaways

• Interpretability an important goal
• Decision trees: well known interpretable models
• Learning optimal tree is hard
• Greedy approach:
• Recursively split to maximize “performance gain”
• Issues:

◦ Can overfit easily!
◦ Empirically not as powerful as other methods
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