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Introduction and Motivation



The need for interpretability

How to maintain trust in Al

Beyond developing initial trust, however, creators of Al also must work to maintain
that trust. Siau and Wang suggest seven ways of "developing continuous trust"
beyond the initial phases of product development:

Usability and reliability. Al "should be designed to operate easily and intuitively,”
Siau and Wang write. "There should be no unexpected downtime or crashes.”

Collaboration and communication. Al developers want to create systems that
perform autonomously, without human involvement. Developers must focus on
creating Al applications that smoothly and easily collaborate and communicate
with humans.

Sociability and bonding. Building social activities into Al applications is one way to
strengthen trust. A robotic dog that can recognize its owner and show affection is
one example, Siau and Wang write.

Security and privacy protection. Al applications rely on large data sets, so
ensuring privacy and security will be crucial to establishing trust in the
applications.

Interpretability. Just as transparency is instrumental in building initial trust,
interpretability — or the ability for a machine to explain its conclusions or actions —

will help sustain trust. 2 / 87



Training Data

Day Outlook Temp Humidity Windy H Play
D1  Sunny Hot High Weak No
D2  Sunny Hot High Strong || No
D3 Overcast Hot High Weak Yes
D4  Rain Mild High Weak Yes
D5  Rain Cool Normal Weak Yes
D6  Rain Cool Normal Strong || No
D7  Overcast Cool Normal Strong || Yes
D8  Sunny Mild High Weak No
D9  Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong || Yes
D12 Overcast Mild High Strong || Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong || No
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Learning a Complicated Neural Network

hidden layer 1  hidden layer 2 hidden layer 3

input layer
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Learnt Decision Tree
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Medical Diagnosis using Decision Trees
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Source: Improving medical decision trees by combining relevant
health-care criteria
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Leo Brieman
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Optimal Decision Tree

Volume 5, number 1 INFORMATION PROCESSING LETTERS May 1976

CONSTRUCTING OPTIMAL BINARY DECISION TREES IS NP-COMPLETE*
Laurent HYAFIL

IRIA — Laboria, 78150 Rocquencourt, France

and

Ronald L. RIVEST
Dept. of Electrical Engineering and Computer Science, M.I.T., Cambridge, Massachusetts 02139, USA

Received 7 November 1975, revised version received 26 January 1976

Binary decision trees, computational complexity, NP-complete
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Pop Quiz #1

Why is finding the optimal decision tree NP-hard?

A) The number of possible trees grows exponentially with
features




Pop Quiz #2

Why is finding the optimal decision tree NP-hard?

A) The number of possible trees grows exponentially with
features

B) We need to consider all possible splits at each node
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C) The problem requires checking all subsets of training
data




Pop Quiz #4
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Pop Quiz #5

Why is finding the optimal decision tree NP-hard?

A) The number of possible trees grows exponentially with
features

B) We need to consider all possible splits at each node

C) The problem requires checking all subsets of training
data

D) All of the above




Pop Quiz #6

Why is finding the optimal decision tree NP-hard?

A) The number of possible trees grows exponentially with
features

B) We need to consider all possible splits at each node

C) The problem requires checking all subsets of training
data

D) All of the above

Answer: D) All of the above - The search space is exponen-

tially large, making brute force optimization computationally
intractable.
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Greedy Algorithm

Core idea: At each level, choose an attribute that gives biggest
estimated performance gain!

——» 30km/h

\ AN \ Y .
@ (- Y Y Y G O
S /
—» 80km/h

Image source: analyticsvidhya
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Towards biggest estimated performance gain

11/87



Towards biggest estimated performance gain

Day Outlook Temp Humidity Windy || Play
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast  Cool Normal Strong || Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11  Sunny Mild Normal Strong || Yes
D12  Overcast Mild High Strong Yes
D13  Overcast Hot Normal Weak Yes
D14  Rain Mild High Strong No
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Yes, 5 No
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Towards biggest estimated performance gain

Day Outlook Temp Humidity Windy || Play

D1 Sunny Hot High Weak No e For examples, we have 9
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D5 Rain Cool Normal Weak Yes 14 Yes or 14 No?
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Towards biggest estimated performance gain

Day Outlook Temp Humidity Windy || Play

D1 Sunny Hot High Weak No e For examples, we have 9
D2 Sunny Hot H!gh Strong No Yes, 5 No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes e Would it be trivial if we had
D5 Rain Cool Normal Weak Yes 14 Yes or 14 No?

D6 Rain Cool Normal Strong No Yes!

D7 Overcast  Cool Normal Strong || Yes ¢ res

D8 Sunny Mild High Weak No e Key insight: Problem is
D9 Sunny Cool Normal Weak Yes “easier’” when there is less
D10 Rain M!Id Normal Weak Yes disagreement

D11  Sunny Mild Normal Strong || Yes

D12  Overcast Mild High Strong || Yes e Need some statistical

D13  Overcast Hot Normal Weak Yes measure of “disagreement”
D14  Rain Mild High Strong No
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Entropy

Statistical measure to characterize the (im)purity of examples
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https://nipunbatra.github.io/ml-teaching/notebooks/entropy.html

Entropy

Statistical measure to characterize the (im)purity of examples

H(X) = - Zf'(:l p(xi) logo p(xi)

Notebook: entropy.html

Entropy vs. P(+)
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https://nipunbatra.github.io/ml-teaching/notebooks/entropy.html

Towards biggest estimated performance gain
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Towards biggest estimated performance gain
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Towards biggest estimated performance gain

Day Outlook Temp Humidity Windy || Play

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes e Can we use Outlook as the
D6 Rain Cool Normal Strong No root node?

D7 Overcast  Cool Normal Strong || Yes e When Outlook is overcast,

D8 Sunny Mild High Weak No we always Play and thus no
D9 Sunny Cool Normal Weak Yes e #

D10  Rain Mild  Normal Weak || Yes disagreement

D11  Sunny Mild Normal Strong || Yes

D12  Overcast Mild High Strong Yes

D13  Overcast Hot Normal Weak Yes

D14  Rain Mild High Strong No
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Information Gain

Reduction in entropy by partitioning examples (S) on attribute A

Gain(S, A) = Entropy(S) — Z "?S‘/’Entropy(sv)
vEValues(A) | |
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Pop Quiz #7

What does entropy measure in the context of decision trees?

A) The depth of the tree




Pop Quiz #38
Quick Question!
What does entropy measure in the context of decision trees?

A) The depth of the tree

B) The impurity or “disagreement” in a set of examples




Pop Quiz #9

What does entropy measure in the context of decision trees?

A) The depth of the tree
B) The impurity or “disagreement” in a set of examples

C) The number of features in the dataset




Pop Quiz #10

What does entropy measure in the context of decision trees?

A
B

The depth of the tree

)

) The impurity or “disagreement” in a set of examples
C) The number of features in the dataset

)

D) The accuracy of the tree




Pop Quiz #11

What does entropy measure in the context of decision trees?

A
B

The depth of the tree

)

) The impurity or “disagreement” in a set of examples
C) The number of features in the dataset

)

D) The accuracy of the tree




Pop Quiz #12

What does entropy measure in the context of decision trees?

A) The depth of the tree

C) The number of features in the dataset

)

B) The impurity or “disagreement” in a set of examples
)

D) The accuracy of the tree

Answer: B) The impurity or “disagreement” in a set of
examples - Higher entropy means more mixed classes, lower
entropy means more pure subsets.
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ID3 (Examples, Target Attribute, Attributes)

e Create a root node for tree
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ID3 (Examples, Target Attribute, Attributes)
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e If all examples are +/-, return root with label = +/-
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ID3 (Examples, Target Attribute, Attributes)

e Create a root node for tree
e If all examples are +/-, return root with label = +/-
e |f attributes = empty, return root with most common value of

Target Attribute in Examples
e Begin
e A <« attribute from Attributes which best classifies Examples

e Root < A
e For each value (v) of A
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ID3 (Examples, Target Attribute, Attributes)

Create a root node for tree

If all examples are +/-, return root with label = +/-

If attributes = empty, return root with most common value of
Target Attribute in Examples

e Begin

e A <« attribute from Attributes which best classifies Examples

e Root + A
e For each value (v) of A
e Add new tree branch : A =v
e Examples,: subset of examples that A = v
e |If Examples,is empty: add leaf with label = most common
value of Target Attribute
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ID3 (Examples, Target Attribute, Attributes)

Create a root node for tree

If all examples are +/-, return root with label = +/-

If attributes = empty, return root with most common value of

Target Attribute in Examples

Begin

e A <« attribute from Attributes which best classifies Examples
e Root + A
e For each value (v) of A

Add new tree branch : A =v

Examples,: subset of examples that A = v

If Examples,is empty: add leaf with label = most common
value of Target Attribute

Else: ID3 (Examples,, Target attribute, Attributes - A)
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Learnt Decision Tree

Root Node (empty)
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Training Data

Day Outlook Temp Humidity Windy H Play
D1  Sunny Hot High Weak No
D2  Sunny Hot High Strong || No
D3 Overcast Hot High Weak Yes
D4  Rain Mild High Weak Yes
D5  Rain Cool Normal Weak Yes
D6  Rain Cool Normal Strong || No
D7  Overcast Cool Normal Strong || Yes
D8  Sunny Mild High Weak No
D9  Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong || Yes
D12 Overcast Mild High Strong || Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong || No
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Entropy calculated

We have 14 examples in S: 5 No, 9 Yes

Entropy(S) = —Pno 1082 PNo — Pes 1082 Pes

5 5\ 9 9
T 14 082 (14) 14 082 (14)
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Information Gain for Qutlook

Outlook | Play
Sunny No
Sunny No
Overcast | Yes
Rain Yes
Rain Yes
Rain No
Overcast | Yes
Sunny No
Sunny Yes
Rain Yes
Sunny Yes
Overcast | Yes
Overcast | Yes
Rain No
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Information Gain for Qutlook
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Information Gain for Qutlook
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3 3
—5logy (3) -

Zlog, (2) =0.971

21/87



Information Gain for Qutlook

Outlook | Play
Sunny No
Sunny No
Sunny No
Sunny Yes
Sunny Yes
We have 2 Yes, 3 No
Entropy =
3 3
—5logy (3) -

Zlog, (2) =0.971

21/87



Information Gain for Qutlook

Outlook | Play
Sunny No
Sunny No
Sunny No
Sunny Yes
Sunny Yes
We have 2 Yes, 3 No
Entropy =
3 3
—5logy (3) -

Zlog, (2) =0.971

Outlook | Play

Overcast | Yes
Overcast | Yes
Overcast | Yes
Overcast | Yes
We have 4 Yes, 0 No
Entropy = 0 (pure
subset)

21/87



Information Gain for Qutlook

Outlook | Play
Sunny No
Sunny No
Sunny No
Sunny Yes
Sunny Yes
We have 2 Yes, 3 No
Entropy =
3 3
—5logy (3) -

Zlog, (2) =0.971

Outlook | Play

Overcast | Yes
Overcast | Yes
Overcast | Yes
Overcast | Yes
We have 4 Yes, 0 No
Entropy = 0 (pure
subset)

21/87



Information Gain for Qutlook

Outlook | Play
Sunny No
Sunny No
Sunny No
Sunny Yes
Sunny Yes
We have 2 Yes, 3 No
Entropy =
3 3
—5logy (3) -

2log, (2) = 0.971

Outlook | Play
Outlook | Play Rain Yes
Overcast | Yes Rain Yes
Overcast | Yes Rain No
Overcast | Yes Rain Yes
Overcast | Yes Rain No
We have 4 Yes, 0 No  We have 3 Yes, 2 No
Entropy = 0 (pure Entropy =
subset) —3log, (3) —

2log, (2) = 0.971
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Information Gain

Gain(S, Outlook) = Entropy(S)— Z ’?’ Entropy(Sy)

ve{Rain, Sunny, Overcast}

5 4
Gain(S, Outlook) = Entropy(S)—ﬁ Entropy(Ssunny)—ﬁ Entropy(Soverca

5 4 5
= 0.940—ﬁ><0.971—ﬁ Xo_ﬁ x0.971 = 0.940—0.347—0—-0.347 = 0.2¢
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Information Gain

Information Gain

4.8 10 2
2.9.1072

Outlook  Humidity Wlnd Temperature
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Learnt Decision Tree
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Calling ID3 on Outlook=Sunny

Day Temp Humidity Windy || Play
D1  Hot High Weak No
D2  Hot High Strong || No
D8  Mild High Weak No
D9  Cool Normal Weak Yes
D11 Mild Normal Strong || Yes
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Calling ID3 on Outlook=Sunny

Day Temp Humidity Windy || Play
D1  Hot High Weak No
D2  Hot High Strong || No
D8  Mild High Weak No
D9  Cool Normal Weak Yes
D11 Mild Normal Strong || Yes

o Gain(Soutlook=Sunny, Temp) = Entropy(2 Yes, 3 No) -
(2/5)*Entropy(0 Yes, 2 No) -(2/5)*Entropy(1 Yes, 1 No) -
(1/5)*Entropy(1 Yes, 0 No)
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Calling ID3 on Outlook=Sunny

Day Temp Humidity Windy || Play
D1  Hot High Weak No
D2  Hot High Strong || No
D8  Mild High Weak No
D9  Cool Normal Weak Yes
D11 Mild Normal Strong || Yes
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(2/5)*Entropy(0 Yes, 2 No) -(2/5)*Entropy(1 Yes, 1 No) -
(1/5)*Entropy(1 Yes, 0 No)
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Calling ID3 on Outlook=Sunny

Day Temp Humidity Windy || Play

D1  Hot High Weak No
D2  Hot High Strong || No
D8 Mild High Weak No

D9 Cool Normal Weak Yes
D11 Mild Normal Strong || Yes

o Gain(Soutlook=Sunny, Temp) = Entropy(2 Yes, 3 No) -
(2/5)*Entropy(0 Yes, 2 No) -(2/5)*Entropy(1 Yes, 1 No) -
(1/5)*Entropy(1 Yes, 0 No)

e Gain(Soutlook=Sunny, Humidity) = Entropy(2 Yes, 3 No) -
(2/5)*Entropy(2 Yes, 0 No) -(3/5)*Entropy(0 Yes, 3 No)
=—> maximum possible for the set
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Calling ID3 on Outlook=Sunny
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Calling ID3 on Outlook=Sunny
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D2  Hot High Strong || No
D8 Mild High Weak No

D9 Cool Normal Weak Yes
D11 Mild Normal Strong || Yes

o Gain(Soutlook=Sunny, Temp) = Entropy(2 Yes, 3 No) -
(2/5)*Entropy(0 Yes, 2 No) -(2/5)*Entropy(1 Yes, 1 No) -
(1/5)*Entropy(1 Yes, 0 No)

e Gain(Soutlook=Sunny, Humidity) = Entropy(2 Yes, 3 No) -
(2/5)*Entropy(2 Yes, 0 No) -(3/5)*Entropy(0 Yes, 3 No)
=—> maximum possible for the set

o Gain(Soutlook=Sunny, Windy) = Entropy(2 Yes, 3 No) -
(3/5)*Entropy(1 Yes, 2 No) -(2/5)*Entropy(1 Yes, 1 No)

2587



Learnt Decision Tree
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Calling ID3 on (Outlook=Rain)

Day Temp Humidity Windy H Play

D4 Mild High Weak Yes
D5 Cool Normal Weak Yes
D6  Cool Normal Strong || No
D10 Mild Normal Weak Yes
D14 Mild High Strong || No

e The attribute Windy gives the highest information gain
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Learnt Decision Tree
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Prediction for Decision Tree

Just walk down the tree!
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Prediction for Decision Tree

Just walk down the tree!

Prediction for <High Humidity, Strong Wind, Sunny Outlook, Hot
Temp> is ?
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Prediction for Decision Tree

Just walk down the tree!

Prediction for <High Humidity, Strong Wind, Sunny Outlook, Hot
Temp> is ?
No

2987



Limiting Depth of Tree

Assuming if you were only allowed depth-1 trees, how would it look
for the current dataset?
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Limiting Depth of Tree

Assuming if you were only allowed depth-1 trees, how would it look
for the current dataset?

Apply the same rules, except when depth limit is reached, the leaf
node is assigned the most common occurring value in that path.

What is depth-0 tree (no decision) for the examples?
Always predicting Yes

What is depth-1 tree (no decision) for the examples?
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Limiting Depth of Tree

Assuming if you were only allowed depth-1 trees, how would it look
for the current dataset?

Apply the same rules, except when depth limit is reached, the leaf
node is assigned the most common occurring value in that path.

What is depth-0 tree (no decision) for the examples?
Always predicting Yes

What is depth-1 tree (no decision) for the examples?
Outlook

Overcast
Yes
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Pop Quiz #13

In the tennis dataset, why did “Outlook” have the highest
information gain?

A) It was the first feature in the dataset




Pop Quiz #14

In the tennis dataset, why did “Outlook” have the highest
information gain?

A) It was the first feature in the dataset

B) When Outlook=Overcast, all examples have Play=Yes
(pure subset)
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In the tennis dataset, why did “Outlook” have the highest
information gain?

A) It was the first feature in the dataset

B) When Outlook=Overcast, all examples have Play=Yes
(pure subset)

C) It has the most possible values




Pop Quiz #16

In the tennis dataset, why did “Outlook” have the highest
information gain?

A) It was the first feature in the dataset

B) When Outlook=Overcast, all examples have Play=Yes
(pure subset)

C) It has the most possible values

D) It was chosen randomly




Pop Quiz #17

In the tennis dataset, why did “Outlook” have the highest
information gain?

A) It was the first feature in the dataset

B) When Outlook=Overcast, all examples have Play=Yes
(pure subset)

C) It has the most possible values

D) It was chosen randomly




Pop Quiz #18

In the tennis dataset, why did “Outlook” have the highest
information gain?

A) It was the first feature in the dataset

B) When Outlook=Overcast, all examples have Play=Yes
(pure subset)

C) It has the most possible values
D) It was chosen randomly

Answer: B) When Outlook=Overcast, all examples
have Play=Yes - This creates a pure subset with entropy=0,

maximizing information gain.
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Discrete Input, Real Output




Modified Dataset

Day Outlook Temp Humidity Wind Minutes Played
D1  Sunny Hot High Weak 20
D2  Sunny Hot High Strong 24
D3 Overcast Hot High Weak 40
D4  Rain Mild High Weak 50
D5 Rain Cool Normal Weak 60
D6  Rain Cool Normal Strong 10
D7  Overcast Cool Normal Strong 4
D8  Sunny Mild High Weak 10
D9  Sunny Cool Normal Weak 60
D10 Rain Mild Normal Weak 40
D11 Sunny Mild High Strong 45
D12 Overcast Mild High Strong 40
D13 Overcast Hot Normal Weak 35
D14 Rain Mild High Strong 20
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Measure of Impurity for Regression?
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Measure of Impurity for Regression?

Any guesses?

Mean Squared Error
MSE(S) = 311.34

e What about splitting criterion for regression?
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Measure of Impurity for Regression?

Any guesses?

Mean Squared Error
MSE(S) = 311.34

e What about splitting criterion for regression?

MSE Reduction (not Information Gain!)

MSE Reduction = MSE(S) — 3, % MSE(S,)

33/87



Gain by splitting on Wind
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Gain by splitting on Wind

Wind Minutes Played

Weak 20
Strong 24
Weak 40
Weak 50
Weak 60
Strong 10
Strong 4

Weak 10
Weak 60
Weak 40
Strong 45
Strong 40
Weak 35
Strong 20

MSE(S)=311.34

3487



Gain by splitting on Wind

Wind Minutes Played

Weak 20
Wind Minutes Played Weak 40

Weak 50
Weak 20 Weak 60
Strong 24 WZZE ég
Weak 40 Weak 40
Weak 50 Weak 35
Weak 60
Strong 10 MSE(SWind:Weak) = 277, Weight =
Strong 4 8
Weak 10 14
Weak 60 Wind Minutes Played
Weak 40 Strong 24
Strong 45 Strong 10
Strong 40 gtrong 25

tron
Weak 35 Strong 40
Strong 20 Strong 20

MSE(S)=311.34 MSE(SWind:onng) = 218, Weight =
6
14
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MSE Reduction Calculation

Correct calculation for Wind split:

MSE Reduction = MSE(S) — Weighted Average MSE

= 311.34— % X 277 + % x 218| = 311.34—[158.857+93.429] = 311.3

Key insight: MSE Reduction > 0 means the split improves our
model!

For regression: Use MSE Reduction, NOT Information Gain!
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Pop Quiz #19

For regression trees, what criterion do we use instead of In-
formation Gain?

A) Information Gain




Pop Quiz #20

For regression trees, what criterion do we use instead of In-
formation Gain?

A) Information Gain

B) Gini Impurity
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For regression trees, what criterion do we use instead of In-
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A) Information Gain
B) Gini Impurity
C) Mean Squared Error (MSE) Reduction




Pop Quiz #22

For regression trees, what criterion do we use instead of In-
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A) Information Gain
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Pop Quiz #23

For regression trees, what criterion do we use instead of In-
formation Gain?

A) Information Gain

B) Gini Impurity

C) Mean Squared Error (MSE) Reduction
)

D) Accuracy




Pop Quiz #24

For regression trees, what criterion do we use instead of In-
formation Gain?

A) Information Gain

B) Gini Impurity

C) Mean Squared Error (MSE) Reduction
D) Accuracy

Answer: C) Mean Squared Error (MSE) Reduction - For
regression, we minimize MSE instead of maximizing informa-

tion gain.
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MSE Reduction for Regression Trees

Notebook: decision-tree-real-output.html

60 —

50

40 -

30 +

20 -

Reduction in MSE

10

6.66

- 3.59

Outlook

Temp

59.15

3.37

m—

Humidity Wind
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Learnt Tree

Wind

Assume atree  |Stong| | Weak |
like this is

learnt ...

[Sunnyj (Ov‘ercastj( Rain )

Day Outlook Temp Humidity Wind Minutes Played

2 D3 Overcast Hot High Weak 40

12 D13 Overcast Hot Normal Weak 35
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Learnt Tree

Wind

Method 1 ‘ Strong | ‘ Weak |
Mins

Played=(40+35) Outlook
/2

(sunny ) (overcast ) ( Rain )

37.5
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Real Input Discrete Output




Finding splits

Day Temperature PlayTennis
D1 40 No
D2 43 No
D3 60 Yes
D4 72 Yes
D5 80 Yes
D6 90 No

e How do you find splits?
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Finding splits

Day Temperature PlayTennis
D1 40 No
D2 43 No
D3 60 Yes
D4 72 Yes
D5 80 Yes
D6 90 No

e How do you find splits?
e Sort by attribute

e Find potential split points (midpoints).

4087



Finding splits

How do you find splits?
Sort by attribute

Day Temperature PlayTennis
D1 40 No
D2 43 No
D3 60 Yes
D4 72 Yes
D5 80 Yes
D6 90 No

Find potential split points (midpoints).

For the above example, we have 5 potential splits: 44, 54, 66,

76, 85
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Finding splits

Day Temperature PlayTennis
D1 40 No
D2 43 No
D3 60 Yes
D4 72 Yes
D5 80 Yes
D6 90 No

How do you find splits?
Sort by attribute

Find potential split points (midpoints).

For the above example, we have 5 potential splits: 44, 54, 66,

76, 85

Calculate the weighted impurity for each split

4087



Finding splits

Day Temperature

PlayTennis

D1
D2
D3
D4
D5
D6

40
48
60
72
80
90

No
No
Yes
Yes
Yes
No

e How do you find splits?
e Sort by attribute

e Find potential split points (midpoints).

e For the above example, we have 5 potential splits: 44, 54, 66,

76, 85

e Calculate the weighted impurity for each split

e Choose the split with the lowest impurity

4087



Finding splits

Day Temperature PlayTennis
D1 40 No
D2 48 No
D3 60 Yes
D4 72 Yes
D5 80 Yes
D6 90 No

e Consider split at 44

41,87



Finding splits

Day Temperature PlayTennis
D1 40 No
D2 48 No
D3 60 Yes
D4 72 Yes
D5 80 Yes
D6 90 No

e Consider split at 44

o LHS has 1 No and 0 Yes; RHS has 3 Yes and 2 No
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Finding splits

Day Temperature PlayTennis
D1 40 No
D2 48 No
D3 60 Yes
D4 72 Yes
D5 80 Yes
D6 90 No

e Consider split at 44

o LHS has 1 No and 0 Yes; RHS has 3 Yes and 2 No
e Entropy for LHS = 0, Entropy for RHS = 0.971
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Finding splits

Day Temperature PlayTennis
D1 40 No
D2 48 No
D3 60 Yes
D4 72 Yes
D5 80 Yes
D6 90 No

Consider split at 44

LHS has 1 No and 0 Yes; RHS has 3 Yes and 2 No
Entropy for LHS = 0, Entropy for RHS = 0.971

Weighted Entropy = 0.971*5/6 = 0.808

41,87



Finding splits

Day Temperature PlayTennis
D1 40 No
D2 48 No
D3 60 Yes
D4 72 Yes
D5 80 Yes
D6 90 No

e Consider split at 54

4287



Finding splits

Day Temperature PlayTennis
D1 40 No
D2 48 No
D3 60 Yes
D4 72 Yes
D5 80 Yes
D6 90 No

e Consider split at 54

o LHS has 2 No and 0 Yes; RHS has 3 Yes and 1 No
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Finding splits

Day Temperature PlayTennis
D1 40 No
D2 48 No
D3 60 Yes
D4 72 Yes
D5 80 Yes
D6 90 No

e Consider split at 54

o LHS has 2 No and 0 Yes; RHS has 3 Yes and 1 No
e Entropy for LHS = 0, Entropy for RHS = 0.811
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Finding splits

Day Temperature PlayTennis
D1 40 No
D2 48 No
D3 60 Yes
D4 72 Yes
D5 80 Yes
D6 90 No

Consider split at 54

LHS has 2 No and 0 Yes; RHS has 3 Yes and 1 No
Entropy for LHS = 0, Entropy for RHS = 0.811

Weighted Entropy = 0.811*4/6 = 0.541

4287



Finding splits

Day Temperature PlayTennis
D1 40 No
D2 48 No
D3 60 Yes
D4 72 Yes
D5 80 Yes
D6 90 No

e Consider split at 66

4387



Finding splits

Day Temperature PlayTennis
D1 40 No
D2 48 No
D3 60 Yes
D4 72 Yes
D5 80 Yes
D6 90 No

e Consider split at 66

o LHS has 2 No and 1 Yes; RHS has 2 Yes and 1 No
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Finding splits

Day Temperature PlayTennis
D1 40 No
D2 48 No
D3 60 Yes
D4 72 Yes
D5 80 Yes
D6 90 No

e Consider split at 66

o LHS has 2 No and 1 Yes; RHS has 2 Yes and 1 No
e Entropy for LHS = 0.918, Entropy for RHS = 0.918
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Finding splits

Day Temperature PlayTennis
D1 40 No
D2 48 No
D3 60 Yes
D4 72 Yes
D5 80 Yes
D6 90 No

Consider split at 66

LHS has 2 No and 1 Yes; RHS has 2 Yes and 1 No
Entropy for LHS = 0.918, Entropy for RHS = 0.918
Weighted Entropy = 0.918*3/6 + 0.918*3/6 = 0.918

4387



Finding splits

Day Temperature PlayTennis
D1 40 No
D2 48 No
D3 60 Yes
D4 72 Yes
D5 80 Yes
D6 90 No

e Consider split at 76
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Finding splits

Day Temperature PlayTennis
D1 40 No
D2 48 No
D3 60 Yes
D4 72 Yes
D5 80 Yes
D6 90 No

e Consider split at 76

o LHS has 2 No and 2 Yes; RHS has 1 Yes and 1 No
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Finding splits

Day Temperature PlayTennis
D1 40 No
D2 48 No
D3 60 Yes
D4 72 Yes
D5 80 Yes
D6 90 No

e Consider split at 76

o LHS has 2 No and 2 Yes; RHS has 1 Yes and 1 No

e Entropy for LHS = 1, Entropy for RHS =1
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Finding splits

Day Temperature PlayTennis
D1 40 No
D2 48 No
D3 60 Yes
D4 72 Yes
D5 80 Yes
D6 90 No

Consider split at 76

LHS has 2 No and 2 Yes; RHS has 1 Yes and 1 No

Entropy for LHS = 1, Entropy for RHS =1
Weighted Entropy = 1*4/6 + 1*2/6 =1

44 /87



Finding splits

Day Temperature PlayTennis

D1 40 No
D2 48 No
D3 60 Yes
D4 72 Yes
D5 80 Yes
D6 90 No

Notebook: decision-tree-real-input-discrete-output.html

Temperature < 54.0
entropy = 1.0
samples = 6
value = [3, 3]

class = No

4587



https://nipunbatra.github.io/ml-teaching/notebooks/decision-tree-real-input-discrete-output.html

Finding splits

Day Temperature PlayTennis
D1 40 No
D2 48 No
D3 60 Yes
D4 72 Yes
D5 80 Yes
D6 90 No

Notebook: decision-tree-real-input-discrete-output.html

Temperature <54.0
entropy = 1.0

46 /87
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Example (DT of depth 2)
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Example (DT of depth 3)
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Example (DT of depth 4)
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Example (DT of depth 5)
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Example (DT of depth 6)
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Example (DT of depth 7)
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Example (DT of depth 8)
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Example (DT of depth 9)
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Pop Quiz #25

When finding splits for continuous features, how do we de-
termine candidate split points?

A) Use all feature values as split points




Pop Quiz #26

When finding splits for continuous features, how do we de-
termine candidate split points?

A) Use all feature values as split points

B) Use midpoints between consecutive sorted feature
values
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When finding splits for continuous features, how do we de-
termine candidate split points?

A) Use all feature values as split points

B) Use midpoints between consecutive sorted feature
values

C) Use random values within the feature range




Pop Quiz #28

When finding splits for continuous features, how do we de-
termine candidate split points?

A) Use all feature values as split points

B) Use midpoints between consecutive sorted feature
values

C) Use random values within the feature range

D) Use only the minimum and maximum values




Pop Quiz #29

When finding splits for continuous features, how do we de-
termine candidate split points?

A) Use all feature values as split points

B) Use midpoints between consecutive sorted feature
values

C) Use random values within the feature range

D) Use only the minimum and maximum values




Pop Quiz #30

When finding splits for continuous features, how do we de-

termine candidate split points?
A) Use all feature values as split points

B) Use midpoints between consecutive sorted feature

values
C) Use random values within the feature range
D) Use only the minimum and maximum values

Answer: B) Use midpoints between consecutive sorted
feature values - This ensures we test all meaningful bound-
aries between different class regions.
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Real Input Real Output




Example 1

Let us consider the dataset given below

Notebook: decision-tree-real-input-real-output.html

2.0 1 [ J [ J
1.5
1.0 4 [ J [
0.5
004 @ [ J

T T T T T T

1 2 3 4 ) 6
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Example 1

What would be the prediction for decision tree with depth 07

Notebook: decision-tree-real-input-real-output.html

2.0 1 [ J [ J
1.5
1.0 4 [ J [
0.5
004 @ [ J

T T T T T T

1 2 3 4 ) 6
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Example 1

Prediction for decision tree with depth 0.
Horizontal dashed line shows the predicted Y value. It is the
average of Y values of all datapoints.

Notebook: decision-tree-real-input-real-output.html

2.0 ® data @ @
— Prediction

1.5

1.0 —_ =

0.5 1

0.0 4 [ ) o 59 / 87
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Example 1

What would be the decision tree with depth 17

Notebook: decision-tree-real-input-real-output.html

2.0 1 [ J [ J
1.5
1.0 4 [ J [
0.5
004 @ [ J

T T T T T T

1 2 3 4 ) 6
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Example 1

Decision tree with depth 1

Notebook: decision-tree-real-input-real-output.html

2.0 ® Data o ()

— Prediction
1.5
1.0 ([ ] ()
0.5 1
0.0 —.—.J

T T T T

0 2 4 6
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Example 1

The Decision Boundary

Notebook: decision-tree-real-input-real-output.html

squared_error = 0.0
samples = 2
value = 0.0
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Example 1

What would be the decision tree with depth 2 7

Notebook: decision-tree-real-input-real-output.html

2.0 1 [ J [ J
1.5
1.0 4 [ J [
0.5
004 @ [ J

T T T T T T

1 2 3 4 ) 6
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Example 1

Decision tree with depth 2

Notebook: decision-tree-real-input-real-output.html

2.0 7 ® Data

— Prediction
1.5
1.0
0.5 1
0.0

T T T T

0 2 4 6
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Example 1

The Decision Boundary

Notebook: decision-tree-real-input-real-output.html

x<=25
squared_error = 0.667
samples = 6
value = 1.0

Tru;e/

squared_error = 0.0
samples = 2
value = 0.0

squared_error = 0.0
samples = 2
value = 1.0
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Objective Function for Regression Trees

Feature is denoted by X and target by Y.
Let the split be at X = s.
Define regions: Ry = {x: x <s} and Ry = {x: x > s}.
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For each region, compute the mean prediction:
_ 1 .
1= TRy 2xieRr, Vi

_ 1 .
0= TRa] Zx,-eR2 Yi
The loss function is:
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Objective Function for Regression Trees

Feature is denoted by X and target by Y.
Let the split be at X = s.
Define regions: Ry = {x: x < s} and Ry = {x: x > s}.

For each region, compute the mean prediction:

_ 1 .
a = [R1] Zx,-eRl Yi
_ 1 .
Q= [R:] Zx,-eR2 Yi

The loss function is:

Loss(s) = Z —a)’+ Z - 0)?

xi€Ry xi€Ry
Our objective is to find the optimal split:
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Algorithm: Finding the Optimal Split

1. Sort all data points (x;, y;) in increasing order of x;.
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Algorithm: Finding the Optimal Split

1. Sort all data points (x;, y;) in increasing order of x;.

2. Evaluate the loss function for all candidate splits:
s= X for j=1,2,...,n—1

3. Select the split s* that minimizes the loss function.
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A Question!

Draw a regression tree for Y = sin(X), 0 < X < 27
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A Question!

Dataset of Y = sin(X), 0 < X < 7 with 10,000 points

Notebook: decision-tree-real-input-real-output.html

1.0 1

0.5 -

0.0 -

—0.5 1

—1.0
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A Question!

Regression tree of depth 1

Notebook: decision-tree-real-input-real-output.html

X <= 3.142
squared_error = 0.498
samples = 200
value =-0.0

True \z‘alse

squared_error = 0.096
samples = 100
value = -0.633
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A Question!

Decision Boundary

Notebook: decision-tree-real-input-real-output.html

1.0 4 ® Data
— Prediction
0.5 1
0.0
—0.5
—1.0
T T T T
0 2 4 6
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A Question!

Regression tree with no depth limit is too big to fit in a slide.
It has of depth 4. The decision boundaries are in figure below.

Notebook: decision-tree-real-input-real-output.html

1.0 ® Data
— Prediction
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0.0
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Pop Quiz #31

What is the prediction function for a regression tree leaf node?

A) The median of target values in that region
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D) A linear function of the features




Pop Quiz #35

What is the prediction function for a regression tree leaf node?

A
B

) The median of target values in that region
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Pop Quiz #36

What is the prediction function for a regression tree leaf node?

A) The median of target values in that region

C

D) A linear function of the features

)
B) The mode of target values in that region
)

The mean of target values in that region

Answer: C) The mean of target values in that region -
Each leaf predicts the average target value of training samples
that reach that leaf.
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Pruning and Overfitting




The Problem: Overfitting in Decision Trees

e Unpruned trees: Can grow very deep and complex

74 /87



The Problem: Overfitting in Decision Trees

e Unpruned trees: Can grow very deep and complex

e Perfect training accuracy: Each leaf contains single training
example

74 /87



The Problem: Overfitting in Decision Trees

e Unpruned trees: Can grow very deep and complex

e Perfect training accuracy: Each leaf contains single training
example

e But: Poor generalization to new data

74 /87



The Problem: Overfitting in Decision Trees

Unpruned trees: Can grow very deep and complex

Perfect training accuracy: Each leaf contains single training

example

e But: Poor generalization to new data

Symptoms:

74 /87



The Problem: Overfitting in Decision Trees

Unpruned trees: Can grow very deep and complex

Perfect training accuracy: Each leaf contains single training

example

e But: Poor generalization to new data

Symptoms:

e High training accuracy, low test accuracy

74 /87



The Problem: Overfitting in Decision Trees

Unpruned trees: Can grow very deep and complex

Perfect training accuracy: Each leaf contains single training

example

e But: Poor generalization to new data

Symptoms:
e High training accuracy, low test accuracy
e Very deep trees with many leaves

74 /87



The Problem: Overfitting in Decision Trees

Unpruned trees: Can grow very deep and complex

Perfect training accuracy: Each leaf contains single training

example

e But: Poor generalization to new data

Symptoms:
e High training accuracy, low test accuracy
e Very deep trees with many leaves
e Rules that are too specific to training data

74 /87



The Problem: Overfitting in Decision Trees

Unpruned trees: Can grow very deep and complex

Perfect training accuracy: Each leaf contains single training

example

e But: Poor generalization to new data

Symptoms:
e High training accuracy, low test accuracy
e Very deep trees with many leaves
e Rules that are too specific to training data

Solution: Pruning to control model complexity

74 /87



Pre-pruning (Early Stopping)

Stop growing tree before it becomes too complex:

e Maximum depth: Limit tree depth (e.g., max_depth = 5)

Advantages: Simple, computationally efficient
Disadvantages: May stop too early, miss good splits later
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Pre-pruning (Early Stopping)

Stop growing tree before it becomes too complex:

Maximum depth: Limit tree depth (e.g., max_depth = 5)

Minimum samples per split: Don't split if node has | N
samples

Minimum samples per leaf: Ensure each leaf has > M
samples

Maximum features: Consider only subset of features at each
split

Minimum impurity decrease: Only split if improvement ;

threshold

Advantages: Simple, computationally efficient

Disadvantages: May stop too early, miss good splits later
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Post-pruning (Tree Simplification)

Grow full tree, then remove unnecessary branches:

e Algorithm:
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Post-pruning (Tree Simplification)

Grow full tree, then remove unnecessary branches:

e Algorithm:

1. Grow complete tree on training data

2. Use validation set to evaluate subtree performance

3. Remove branches that don’t improve validation accuracy
4. Repeat until no beneficial removals remain

e Cost Complexity Pruning: Minimize Error + a x Tree Size

e Advantages: More thorough, can recover from early stopping
mistakes

e Disadvantages: More computationally expensive
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Cost Complexity Pruning Algorithm

Systematic approach to find optimal tree size:

e Cost function: R,(T)=R(T)+ «|T]|
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Cost Complexity Pruning Algorithm

Systematic approach to find optimal tree size:

e Cost function: R,(T)=R(T)+ «|T]|

e R(T): Misclassification error on validation set

e |T|: Number of terminal nodes (tree size)

e «: Complexity parameter (penalty for larger trees)
e Process:

1. Start with full tree (aw = 0)

2. Gradually increase «

3. At each «, prune branches that increase cost
4. Select o with best cross-validation performance

77/87



Bias-Variance Trade-off in Trees

e Unpruned trees:
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Bias-Variance Trade-off in Trees

Unpruned trees:
e Low bias (can fit complex patterns)
e High variance (sensitive to training data changes)
e Prone to overfitting

Heavily pruned trees:
e High bias (may miss important patterns)
e Low variance (more stable predictions)
e Risk of underfitting

Optimal pruning: Balances bias and variance

Cross-validation: Essential for finding this balance
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Practical Pruning Guidelines

e Start simple: Begin with restrictive pre-pruning parameters
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Practical Pruning Guidelines

Start simple: Begin with restrictive pre-pruning parameters

Cross-validation: Always use CV to select pruning parameters

Validation curves: Plot training/validation error vs. tree
complexity

e Common parameters (sklearn):

e max_depth: Start with 3-10

e min samples_split: Try 10-100

e min samples_leaf: Try 5-50

e ccp_alpha: Use for cost complexity pruning

Domain knowledge: Consider interpretability requirements
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Summary

Interpretability an important goal

Decision trees: well known interpretable models

Learning optimal tree is hard

Greedy approach:

Recursively split to maximize “performance gain”
e Issues:

e Can overfit easily!
e Empirically not as powerful as other methods

80 /87



10

81,87



0.1
5 + 0.1
01 =~
4 - —-—
0.1
3 +
0.3
27 03 +
1 -
O T T T T 1
0 2 4 6 8 10

82/87



X2

P(+)
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Weighted Entropy
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