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Introduction and Motivation



The need for interpretability
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Training Data

Day Outlook Temp Humidity Windy Play

D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No
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Learning a Complicated Neural Network
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Learnt Decision Tree

Outlook

Humidity Yes Wind

No Yes NoYes

Sunny

Overcast
Rain

High Normal StrongWeak
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Medical Diagnosis using Decision Trees

Source: Improving medical decision trees by combining relevant

health-care criteria
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Leo Brieman
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Optimal Decision Tree
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Pop Quiz #1

Quick Question!

Why is finding the optimal decision tree NP-hard?

A) The number of possible trees grows exponentially with

features

B) We need to consider all possible splits at each node

C) The problem requires checking all subsets of training

data

D) All of the above

Answer: D) All of the above - The search space is exponen-

tially large, making brute force optimization computationally

intractable.
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Greedy Algorithm

Core idea: At each level, choose an attribute that gives biggest

estimated performance gain!

Greedy ̸= Optimal
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Towards biggest estimated performance gain

Day Outlook Temp Humidity Windy Play

D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No

• For examples, we have 9

Yes, 5 No

• Would it be trivial if we had

14 Yes or 14 No?

• Yes!

• Key insight: Problem is

“easier” when there is less

disagreement

• Need some statistical

measure of “disagreement”
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Entropy

Statistical measure to characterize the (im)purity of examples

H(X ) = −∑k
i=1 p(xi ) log2 p(xi )

Notebook: entropy.html
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Towards biggest estimated performance gain

Day Outlook Temp Humidity Windy Play
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D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No

• Can we use Outlook as the

root node?

• When Outlook is overcast,

we always Play and thus no

“disagreement”
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Information Gain

Reduction in entropy by partitioning examples (S) on attribute A

Gain(S ,A) ≡ Entropy(S)−
∑

v∈Values(A)

|Sv |
|S | Entropy(Sv )
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Pop Quiz #7

Quick Question!

What does entropy measure in the context of decision trees?

A) The depth of the tree

B) The impurity or “disagreement” in a set of examples

C) The number of features in the dataset

D) The accuracy of the tree

Answer: B) The impurity or “disagreement” in a set of

examples - Higher entropy means more mixed classes, lower

entropy means more pure subsets.

15 / 87
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ID3 (Examples, Target Attribute, Attributes)

• Create a root node for tree

• If all examples are +/-, return root with label = +/-

• If attributes = empty, return root with most common value of

Target Attribute in Examples

• Begin

• A ← attribute from Attributes which best classifies Examples

• Root ← A

• For each value (v) of A

• Add new tree branch : A = v

• Examplesv: subset of examples that A = v

• If Examplesvis empty: add leaf with label = most common

value of Target Attribute

• Else: ID3 (Examplesv, Target attribute, Attributes - A)
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Learnt Decision Tree

Root Node (empty)
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Training Data

Day Outlook Temp Humidity Windy Play

D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No
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Entropy calculated

We have 14 examples in S : 5 No, 9 Yes

Entropy(S) = −pNo log2 pNo − pYes log2 pYes

= − 5

14
log2

(
5

14

)
− 9

14
log2

(
9

14

)
= 0.940
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Information Gain for Outlook

Outlook Play

Sunny No
Sunny No
Overcast Yes
Rain Yes
Rain Yes
Rain No
Overcast Yes
Sunny No
Sunny Yes
Rain Yes
Sunny Yes
Overcast Yes
Overcast Yes
Rain No
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Information Gain for Outlook

Outlook Play

Sunny No
Sunny No
Sunny No
Sunny Yes
Sunny Yes

We have 2 Yes, 3 No

Entropy =

−3
5 log2

(
3
5

)
−

2
5 log2

(
2
5

)
= 0.971

Outlook Play

Overcast Yes
Overcast Yes
Overcast Yes
Overcast Yes

We have 4 Yes, 0 No

Entropy = 0 (pure

subset)

Outlook Play

Rain Yes
Rain Yes
Rain No
Rain Yes
Rain No

We have 3 Yes, 2 No

Entropy =

−3
5 log2

(
3
5

)
−

2
5 log2

(
2
5

)
= 0.971
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Information Gain

Gain(S ,Outlook) = Entropy(S)−
∑

v∈{Rain, Sunny, Overcast}

|Sv |
|S | Entropy(Sv )

Gain(S ,Outlook) = Entropy(S)− 5

14
Entropy(SSunny)−

4

14
Entropy(SOvercast)−

5

14
Entropy(SRain)

= 0.940− 5

14
×0.971− 4

14
×0− 5

14
×0.971 = 0.940−0.347−0−0.347 = 0.246
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Information Gain

Outlook Humidity Wind Temperature

0.25

0.15

4.8 · 10−2

2.9 · 10−2

Information Gain
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Learnt Decision Tree

Outlook

? Yes ?

Sunny

Overcast
Rain
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Calling ID3 on Outlook=Sunny

Day Temp Humidity Windy Play

D1 Hot High Weak No
D2 Hot High Strong No
D8 Mild High Weak No
D9 Cool Normal Weak Yes
D11 Mild Normal Strong Yes

• Gain(SOutlook=Sunny, Temp) = Entropy(2 Yes, 3 No) -

(2/5)*Entropy(0 Yes, 2 No) -(2/5)*Entropy(1 Yes, 1 No) -

(1/5)*Entropy(1 Yes, 0 No)

• Gain(SOutlook=Sunny, Humidity) = Entropy(2 Yes, 3 No) -

(2/5)*Entropy(2 Yes, 0 No) -(3/5)*Entropy(0 Yes, 3 No)

=⇒ maximum possible for the set

• Gain(SOutlook=Sunny, Windy) = Entropy(2 Yes, 3 No) -

(3/5)*Entropy(1 Yes, 2 No) -(2/5)*Entropy(1 Yes, 1 No)
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Learnt Decision Tree

Outlook

Humidity Yes ?

No Yes

Sunny

Overcast
Rain

High Normal
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Calling ID3 on (Outlook=Rain)

Day Temp Humidity Windy Play

D4 Mild High Weak Yes
D5 Cool Normal Weak Yes
D6 Cool Normal Strong No
D10 Mild Normal Weak Yes
D14 Mild High Strong No

• The attribute Windy gives the highest information gain
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Learnt Decision Tree

Outlook

Humidity Yes Wind

No Yes NoYes

Sunny

Overcast
Rain

High Normal StrongWeak
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Prediction for Decision Tree

Just walk down the tree!

Outlook

Humidity Yes Wind

No Yes NoYes

Sunny

Overcast
Rain

High Normal StrongWeak

Prediction for <High Humidity, Strong Wind, Sunny Outlook, Hot

Temp> is ?

No
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Prediction for Decision Tree

Just walk down the tree!
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Limiting Depth of Tree

Assuming if you were only allowed depth-1 trees, how would it look

for the current dataset?

Apply the same rules, except when depth limit is reached, the leaf

node is assigned the most common occurring value in that path.

What is depth-0 tree (no decision) for the examples?

Always predicting Yes

What is depth-1 tree (no decision) for the examples?

Outlook

No Yes Yes

Sunny

Overcast
Rain
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Pop Quiz #13

Quick Question!

In the tennis dataset, why did “Outlook” have the highest

information gain?

A) It was the first feature in the dataset

B) When Outlook=Overcast, all examples have Play=Yes

(pure subset)

C) It has the most possible values

D) It was chosen randomly

Answer: B) When Outlook=Overcast, all examples

have Play=Yes - This creates a pure subset with entropy=0,

maximizing information gain.
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Pop Quiz #18

Quick Question!

In the tennis dataset, why did “Outlook” have the highest
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Discrete Input, Real Output



Modified Dataset

Day Outlook Temp Humidity Wind Minutes Played

D1 Sunny Hot High Weak 20
D2 Sunny Hot High Strong 24
D3 Overcast Hot High Weak 40
D4 Rain Mild High Weak 50
D5 Rain Cool Normal Weak 60
D6 Rain Cool Normal Strong 10
D7 Overcast Cool Normal Strong 4
D8 Sunny Mild High Weak 10
D9 Sunny Cool Normal Weak 60
D10 Rain Mild Normal Weak 40
D11 Sunny Mild High Strong 45
D12 Overcast Mild High Strong 40
D13 Overcast Hot Normal Weak 35
D14 Rain Mild High Strong 20
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Measure of Impurity for Regression?

• Any guesses?

• Mean Squared Error

• MSE(S) = 311.34

• What about splitting criterion for regression?

• MSE Reduction (not Information Gain!)

• MSE Reduction = MSE(S)−∑
v

|Sv |
|S | MSE(Sv )
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Gain by splitting on Wind

Wind Minutes Played

Weak 20
Strong 24
Weak 40
Weak 50
Weak 60
Strong 10
Strong 4
Weak 10
Weak 60
Weak 40
Strong 45
Strong 40
Weak 35
Strong 20

MSE(S)=311.34

Wind Minutes Played

Weak 20
Weak 40
Weak 50
Weak 60
Weak 10
Weak 60
Weak 40
Weak 35

MSE(SWind=Weak) = 277, Weight =
8
14

Wind Minutes Played

Strong 24
Strong 10
Strong 4
Strong 45
Strong 40
Strong 20

MSE(SWind=Strong) = 218, Weight =
6
14
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MSE Reduction Calculation

Correct calculation for Wind split:

MSE Reduction = MSE(S)−Weighted Average MSE

= 311.34−
[
8

14
× 277 +

6

14
× 218

]
= 311.34−[158.857+93.429] = 311.34−252.286 = 59.05

Key insight: MSE Reduction > 0 means the split improves our

model!

For regression: Use MSE Reduction, NOT Information Gain!
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Pop Quiz #19

Quick Question!

For regression trees, what criterion do we use instead of In-

formation Gain?

A) Information Gain

B) Gini Impurity

C) Mean Squared Error (MSE) Reduction

D) Accuracy

Answer: C) Mean Squared Error (MSE) Reduction - For

regression, we minimize MSE instead of maximizing informa-

tion gain.
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Pop Quiz #24

Quick Question!

For regression trees, what criterion do we use instead of In-

formation Gain?

A) Information Gain
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C) Mean Squared Error (MSE) Reduction

D) Accuracy
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MSE Reduction for Regression Trees

Notebook: decision-tree-real-output.html
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Learnt Tree
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Real Input Discrete Output



Finding splits

Day Temperature PlayTennis

D1 40 No
D2 48 No
D3 60 Yes
D4 72 Yes
D5 80 Yes
D6 90 No

• How do you find splits?

• Sort by attribute

• Find potential split points (midpoints).

• For the above example, we have 5 potential splits: 44, 54, 66,

76, 85

• Calculate the weighted impurity for each split

• Choose the split with the lowest impurity
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Finding splits

Day Temperature PlayTennis

D1 40 No
D2 48 No
D3 60 Yes
D4 72 Yes
D5 80 Yes
D6 90 No

• Consider split at 44

• LHS has 1 No and 0 Yes; RHS has 3 Yes and 2 No

• Entropy for LHS = 0, Entropy for RHS = 0.971

• Weighted Entropy = 0.971*5/6 = 0.808
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Finding splits

Day Temperature PlayTennis

D1 40 No
D2 48 No
D3 60 Yes
D4 72 Yes
D5 80 Yes
D6 90 No

• Consider split at 54

• LHS has 2 No and 0 Yes; RHS has 3 Yes and 1 No

• Entropy for LHS = 0, Entropy for RHS = 0.811

• Weighted Entropy = 0.811*4/6 = 0.541
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Finding splits

Day Temperature PlayTennis

D1 40 No
D2 48 No
D3 60 Yes
D4 72 Yes
D5 80 Yes
D6 90 No

• Consider split at 66

• LHS has 2 No and 1 Yes; RHS has 2 Yes and 1 No

• Entropy for LHS = 0.918, Entropy for RHS = 0.918

• Weighted Entropy = 0.918*3/6 + 0.918*3/6 = 0.918
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Finding splits

Day Temperature PlayTennis

D1 40 No
D2 48 No
D3 60 Yes
D4 72 Yes
D5 80 Yes
D6 90 No
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• LHS has 2 No and 2 Yes; RHS has 1 Yes and 1 No

• Entropy for LHS = 1, Entropy for RHS = 1

• Weighted Entropy = 1*4/6 + 1*2/6 = 1
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Finding splits

Day Temperature PlayTennis

D1 40 No
D2 48 No
D3 60 Yes
D4 72 Yes
D5 80 Yes
D6 90 No

Notebook: decision-tree-real-input-discrete-output.html

Temperature ≤ 54.0
entropy = 1.0
samples = 6
value = [3, 3]
class = No

entropy = 0.0
samples = 2
value = [2, 0]
class = No

True

entropy = 0.811
samples = 4
value = [1, 3]
class = Yes

False
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Temperature ≤ 54.0
entropy = 1.0
samples = 6
value = [3, 3]
class = No

entropy = 0.0
samples = 2
value = [2, 0]
class = No

True

Temperature ≤ 85.0
entropy = 0.811
samples = 4
value = [1, 3]
class = Yes

False

entropy = 0.0
samples = 3
value = [0, 3]
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Example (DT of depth 1)

Notebook: decision-tree-real-input-discrete-output.html

−4 −2 0 2 4

x1

−2.5

0.0

2.5

5.0

7.5

10.0

x
2

47 / 87

https://nipunbatra.github.io/ml-teaching/notebooks/decision-tree-real-input-discrete-output.html


Example (DT of depth 2)

Notebook: decision-tree-real-input-discrete-output.html

−4 −2 0 2 4

x1

−2.5

0.0

2.5

5.0

7.5

10.0

x
2

48 / 87

https://nipunbatra.github.io/ml-teaching/notebooks/decision-tree-real-input-discrete-output.html


Example (DT of depth 3)

Notebook: decision-tree-real-input-discrete-output.html
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Example (DT of depth 4)

Notebook: decision-tree-real-input-discrete-output.html
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Example (DT of depth 5)

Notebook: decision-tree-real-input-discrete-output.html
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Example (DT of depth 6)

Notebook: decision-tree-real-input-discrete-output.html
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Example (DT of depth 7)

Notebook: decision-tree-real-input-discrete-output.html

−4 −2 0 2 4

x1

−2.5

0.0

2.5

5.0

7.5

10.0

x
2

53 / 87

https://nipunbatra.github.io/ml-teaching/notebooks/decision-tree-real-input-discrete-output.html


Example (DT of depth 8)

Notebook: decision-tree-real-input-discrete-output.html
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Example (DT of depth 9)

Notebook: decision-tree-real-input-discrete-output.html
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Pop Quiz #25

Quick Question!

When finding splits for continuous features, how do we de-

termine candidate split points?

A) Use all feature values as split points

B) Use midpoints between consecutive sorted feature

values

C) Use random values within the feature range

D) Use only the minimum and maximum values

Answer: B) Use midpoints between consecutive sorted

feature values - This ensures we test all meaningful bound-

aries between different class regions.

56 / 87



Pop Quiz #26

Quick Question!

When finding splits for continuous features, how do we de-

termine candidate split points?

A) Use all feature values as split points

B) Use midpoints between consecutive sorted feature

values

C) Use random values within the feature range

D) Use only the minimum and maximum values

Answer: B) Use midpoints between consecutive sorted

feature values - This ensures we test all meaningful bound-

aries between different class regions.

56 / 87



Pop Quiz #27

Quick Question!

When finding splits for continuous features, how do we de-

termine candidate split points?

A) Use all feature values as split points

B) Use midpoints between consecutive sorted feature

values

C) Use random values within the feature range

D) Use only the minimum and maximum values

Answer: B) Use midpoints between consecutive sorted

feature values - This ensures we test all meaningful bound-

aries between different class regions.

56 / 87



Pop Quiz #28

Quick Question!

When finding splits for continuous features, how do we de-

termine candidate split points?

A) Use all feature values as split points

B) Use midpoints between consecutive sorted feature

values

C) Use random values within the feature range

D) Use only the minimum and maximum values

Answer: B) Use midpoints between consecutive sorted

feature values - This ensures we test all meaningful bound-

aries between different class regions.

56 / 87
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Pop Quiz #30

Quick Question!

When finding splits for continuous features, how do we de-

termine candidate split points?

A) Use all feature values as split points

B) Use midpoints between consecutive sorted feature

values

C) Use random values within the feature range

D) Use only the minimum and maximum values

Answer: B) Use midpoints between consecutive sorted

feature values - This ensures we test all meaningful bound-

aries between different class regions.
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Real Input Real Output



Example 1

Let us consider the dataset given below

Notebook: decision-tree-real-input-real-output.html
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0.0

0.5

1.0

1.5

2.0
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Example 1

What would be the prediction for decision tree with depth 0?

Notebook: decision-tree-real-input-real-output.html
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Example 1

Prediction for decision tree with depth 0.

Horizontal dashed line shows the predicted Y value. It is the

average of Y values of all datapoints.

Notebook: decision-tree-real-input-real-output.html
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data
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Example 1

What would be the decision tree with depth 1?

Notebook: decision-tree-real-input-real-output.html
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Example 1

Decision tree with depth 1

Notebook: decision-tree-real-input-real-output.html
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Example 1

The Decision Boundary

Notebook: decision-tree-real-input-real-output.html

x <= 2.5
squared_error = 0.667

samples = 6
value = 1.0

squared_error = 0.0
samples = 2
value = 0.0

True

squared_error = 0.25
samples = 4
value = 1.5

False
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Example 1

What would be the decision tree with depth 2 ?

Notebook: decision-tree-real-input-real-output.html
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Example 1

Decision tree with depth 2

Notebook: decision-tree-real-input-real-output.html
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Example 1

The Decision Boundary

Notebook: decision-tree-real-input-real-output.html

x <= 2.5
squared_error = 0.667

samples = 6
value = 1.0

squared_error = 0.0
samples = 2
value = 0.0

True

x <= 4.5
squared_error = 0.25

samples = 4
value = 1.5

False

squared_error = 0.0
samples = 2
value = 1.0

squared_error = 0.0
samples = 2
value = 2.0
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Objective Function for Regression Trees

Feature is denoted by X and target by Y .

Let the split be at X = s.

Define regions: R1 = {x : x ≤ s} and R2 = {x : x > s}.
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Objective Function for Regression Trees

Feature is denoted by X and target by Y .

Let the split be at X = s.

Define regions: R1 = {x : x ≤ s} and R2 = {x : x > s}.

For each region, compute the mean prediction:

c1 =
1

|R1|
∑

xi∈R1
yi

c2 =
1

|R2|
∑

xi∈R2
yi

The loss function is:

Loss(s) =
∑
xi∈R1

(yi − c1)
2 +

∑
xi∈R2

(yi − c2)
2

Our objective is to find the optimal split:

s∗ = argmin
s

 ∑
xi∈R1(s)

(yi − c1(s))
2 +

∑
xi∈R2(s)

(yi − c2(s))
2
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Algorithm: Finding the Optimal Split

1. Sort all data points (xi , yi ) in increasing order of xi .

2. Evaluate the loss function for all candidate splits:

s = xi+xi+1

2 for i = 1, 2, . . . , n − 1

3. Select the split s∗ that minimizes the loss function.
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A Question!

Draw a regression tree for Y = sin(X), 0 ≤ X ≤ 2π
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A Question!

Dataset of Y = sin(X), 0 ≤ X ≤ 7 with 10,000 points

Notebook: decision-tree-real-input-real-output.html
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A Question!

Regression tree of depth 1

Notebook: decision-tree-real-input-real-output.html

x <= 3.142
squared_error = 0.498

samples = 200
value = -0.0

squared_error = 0.096
samples = 100
value = 0.633

True

squared_error = 0.096
samples = 100
value = -0.633

False
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A Question!

Decision Boundary

Notebook: decision-tree-real-input-real-output.html
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A Question!

Regression tree with no depth limit is too big to fit in a slide.

It has of depth 4. The decision boundaries are in figure below.

Notebook: decision-tree-real-input-real-output.html
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Pop Quiz #31

Quick Question!

What is the prediction function for a regression tree leaf node?

A) The median of target values in that region

B) The mode of target values in that region

C) The mean of target values in that region

D) A linear function of the features

Answer: C) The mean of target values in that region -

Each leaf predicts the average target value of training samples

that reach that leaf.
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Pop Quiz #36

Quick Question!
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Pruning and Overfitting



The Problem: Overfitting in Decision Trees

• Unpruned trees: Can grow very deep and complex

• Perfect training accuracy: Each leaf contains single training

example

• But: Poor generalization to new data

• Symptoms:

• High training accuracy, low test accuracy

• Very deep trees with many leaves

• Rules that are too specific to training data

• Solution: Pruning to control model complexity
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Pre-pruning (Early Stopping)

Stop growing tree before it becomes too complex:

• Maximum depth: Limit tree depth (e.g., max depth = 5)

• Minimum samples per split: Don’t split if node has ¡ N

samples

• Minimum samples per leaf: Ensure each leaf has ≥ M

samples

• Maximum features: Consider only subset of features at each

split

• Minimum impurity decrease: Only split if improvement ¿

threshold

Advantages: Simple, computationally efficient

Disadvantages: May stop too early, miss good splits later
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Post-pruning (Tree Simplification)

Grow full tree, then remove unnecessary branches:

• Algorithm:

1. Grow complete tree on training data

2. Use validation set to evaluate subtree performance

3. Remove branches that don’t improve validation accuracy

4. Repeat until no beneficial removals remain

• Cost Complexity Pruning: Minimize Error + α× Tree Size

• Advantages: More thorough, can recover from early stopping

mistakes

• Disadvantages: More computationally expensive
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Cost Complexity Pruning Algorithm

Systematic approach to find optimal tree size:

• Cost function: Rα(T ) = R(T ) + α|T |

• R(T ): Misclassification error on validation set

• |T |: Number of terminal nodes (tree size)

• α: Complexity parameter (penalty for larger trees)

• Process:

1. Start with full tree (α = 0)

2. Gradually increase α

3. At each α, prune branches that increase cost

4. Select α with best cross-validation performance
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Bias-Variance Trade-off in Trees

• Unpruned trees:

• Low bias (can fit complex patterns)

• High variance (sensitive to training data changes)

• Prone to overfitting

• Heavily pruned trees:

• High bias (may miss important patterns)

• Low variance (more stable predictions)

• Risk of underfitting

• Optimal pruning: Balances bias and variance

• Cross-validation: Essential for finding this balance
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Practical Pruning Guidelines

• Start simple: Begin with restrictive pre-pruning parameters

• Cross-validation: Always use CV to select pruning parameters

• Validation curves: Plot training/validation error vs. tree

complexity

• Common parameters (sklearn):

• max depth: Start with 3-10

• min samples split: Try 10-100

• min samples leaf: Try 5-50

• ccp alpha: Use for cost complexity pruning

• Domain knowledge: Consider interpretability requirements
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Summary and Key Takeaways



Summary

• Interpretability an important goal

• Decision trees: well known interpretable models

• Learning optimal tree is hard

• Greedy approach:

• Recursively split to maximize “performance gain”

• Issues:

• Can overfit easily!

• Empirically not as powerful as other methods
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Weighted Entropy
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