Ensemble Learning

Nipun Batra and teaching staff
IIT Gandhinagar

August 25, 2025

1/100

Table of Contents

1. Introduction to Ensemble Learning

2. Bagging: Bootstrap Aggregation

3. Boosting: Learning from Mistakes

4. Random Forest: Double Randomness

2 /100

Introduction to Ensemble
Learning

What is Ensemble Learning?

Important: The Core Idea

“The wisdom of crowds”: Combine multiple models to make
better predictions than any single model could achieve alone.

Key Points: Key Insight

« Individual models make different mistakes

« By combining them intelligently, we can reduce overall error

« Most Kaggle competition winners use ensemble methods!

\

3/100

Real-World Analogy: Medical Diagnosis

Example: Why Do We Seek Second Opinions?

Single Doctor:

« Might miss subtle symptoms
« Could have personal biases
« Limited by individual experience

Multiple Doctors (Ensemble):

- Different perspectives and expertise
« Collective wisdom reduces misdiagnosis

« More robust and reliable decisions

4 /100

Simple Ensemble Examples

Example: Classification

Problem: Spam detection
Individual Predictions:

« Model 1: Spam

« Model 2: Spam

« Model 3: Not Spam

Ensemble (Majority Vote):
Spam

Example: Regression

Problem: House price predic-
tion

Individual Predictions:

- Model 1: $420K

« Model 2: $450K

« Model 3: $430K

Ensemble
$433K

(Average):

5/100

Why Do Ensembles Work? Three Key Reasons

Important: Based on Ensemble Methods in ML by Diet-

terich

Three fundamental reasons why combining models works
better:

J

Key Points: Three Key Reasons

1. Statistical: Limited data — Multiple valid hypotheses

2. Computational: Models get stuck in local optima

3. Representational: Individual models have limitations

6 /100

Reason 1: Statistical Problem

Definition: The Statistical Challenge

When data is limited, many competing hypotheses can achieve
the same accuracy on training data.

Example: Decision Trees Example

« Same dataset — multiple valid trees

« Combining reduces risk of picking the “wrong” one

\

Statistical

7/100

Reason 2: Computational Problem

Definition: The Computational Challenge

Learning algorithms can get stuck in local optima or use greedy
strategies.

Example: Examples

 Decision trees: greedy splits

« Neural networks: local minima

« Different runs — different solutions

\

Computational

H

8/100

Reason 3: Representational Problem

Definition: The Representational Challenge

Some models cannot learn the true form of the target function.

J

Example: Limitations

 Decision trees: axis-parallel splits only

 Linear models: no non-linear relationships

« Each model has inherent biases

Representational

9/100

Visual Example: Decision Trees vs Random Forest

Important: Representation Comparison

Question: How do individual decision trees compare to their en-
semble?

Notebook: ensemble-representation.html

Input data Decision Tree (Depth 1) Random Forest

10 /100

https://nipunbatra.github.io/ml-teaching/notebooks/ensemble-representation.html

Individual Tree Behavior

Key Points: Observation

Individual trees create rigid, rectangular decision boundaries

11 /100

Random Forest: The Power of Combination

Example: Ensemble Effect

Result: Combining multiple trees creates smoother, more flexible
decision boundaries

Notebook: ensemble-representation.html

Input data Decision Tree (Depth 2) Random Forest

.'v’;}.pn

o z's'g-?’.'

12 /100

https://nipunbatra.github.io/ml-teaching/notebooks/ensemble-representation.html

Ensemble Advantage

Key Points: Key Insight

The ensemble overcomes individual model limitations!

13 /100

When Do Ensembles Work? Two Key Requirements

Definition: Necessary and Sufficient Conditions

For an ensemble to outperform individual members, models must
be:

1. Accurate: Better than random guessing
2. Diverse: Make different errors on new data

J

Key Points: Key Terms

« Accurate: Error rate < 50% (better than coin flip)
- Diverse: Models disagree on different examples

14 /100

Diversity: The Magic Ingredient

Important: Identical Mod- E Y Model
els (No Diversity)

Scenario: Models make dif-
ferent mistakes
When hy(x) is wrong:

Scenario: All three models
make the same mistakes
When hy(x) is wrong:

- Bld) 1 e TS « ha(x) might be correct

gl i 5 e « h3(x) might be correct

- Ensemble prediction:

« Ensemble prediction:
Correct!

Wrong

Key Points: Bottom Line

Diversity allows the ensemble to correct individual model errors!

15 /100

Mathematical Proof: Why Ensembles Work

Definition: Majority Voting Analysis

Setup: 3 models, each with error probability ¢ = 0.3
Ensemble fails when: 2 or 3 models are wrong

Example: Calculation

P(ensemble wrong) = (3)2(1 —¢) + (3)53
=3x%0.32x0.741x0.33
= 0.189 + 0.027 = 0.216

Key Points: Result

Ensemble error (21.6%) < Individual error (30%)!

\

16 /100

The Power of Scaling: More Models = Better Performance

Example: Good Individual Important: Poor Individual

Models (¢ = 0.3) Models (¢ = 0.6)

Models | Ensemble Error # Models | Ensemble Error
1 30.0% 1 60.0%
3 21.6% 3 64.8%
5 16.3% 5 68.3%
Ensembles help! Ensembles hurt!

Key Points: Key Insight

Ensembles only help when base models are better than random!

17 /100

When Ensembles Fail: Common Pitfalls

Important: Ensemble Limitations

Ensembles DON’T work well when:

E le: Lack of Diversit
Example: Poor Base Mod-

els

« All models make same

« Individual accuracy < 50% ISELES

« High correlation between

» Models worse than L
predictions

random guessing
« No complementary

- Garbage in — Garbage out
& & strengths

Key Points: Solution

Ensure base models are accurate AND diverse!
18 /100

Bagging: Bootstrap
Aggregation

What is Bagging?

Definition: Bagging = Bootstrap + Aggregation

Goal: Create diverse models from a single dataset to reduce vari-
ance

J

Key Points: Key Insight

Even with the same algorithm and same data, we can create dif-
ferent models by training on different subsets!

J

Important: The Challenge

Problem: How do we get different training sets from one dataset?
Solution: Bootstrap sampling (sampling with replacement)

\

19 /100

Bootstrap Sampling: The Core Technique

Example: Bootstrap Process

Original Dataset: D= {D;, D5, D3, ..., D,}
For each model: Create new dataset by sampling n examples
with replacement

Definition: Bootstrap Sam- DIEHLE o0z p e

ple 2

ple 1

D23 D4a Dla Dn, D37 O
Different sample, different
model!

Ds, D5, Dg, D1, Ds,
Notice: D; appears twice!

Key Points: Result

Each bootstrap sample is slightly different — Diverse models!

20

100

Bagging Example: The Dataset

Important: Classification Problem

Task: Classify points as red or blue circles
Challenge: Points (3,3) and (5,8) are outliers/anomalies

5 o o o
X

4 ° ° °

3 ° ° ° °

2 ° ° °

21 /100

The Outlier Challenge

Key Points: Question

How will a single decision tree handle these outliers?

22 /100

Single Decision Tree: Overfitting Problem

Example: Deep Decision Tree (Depth = 6)

Result: Complex boundary that memorizes outliers

X1 23/100

The High Variance Problem

Important: The Problem

High Variance: Small changes in data — Very different decision
boundaries

24 /100

Bootstrap Samples: Part 1

Example: Creating Diverse Training Sets

Generate different bootstrap samples from original dataset

Sample 1 Sample 2
81 ® L] L] L] L] L] L] 81 ® L e L]
7 L] L] L] L] L] L] 71 e L] L] L]
61 @ L] L] L] L] L] 6 L] o
5 . s « o
2 2
4 ° . 4 .
; . s . . .
2 L] 2 L]
1 L] 1 L] L] L]
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
X; X;

25 /100

Bootstrap Samples: Part 2

Sample 3 Sample 4

s e L] . s e . . e o o

7 e o o 7{e . e o o o

61 e . e e o o . 61 e e o o

5 . . 5 e o o

X X

a . (] 4 .

3 . . 3 e o o

2 . 2 e o

1 . . 1 .
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

X1 X

26 /100

Bootstrap Samples: Part 3

Sample 5

Key Points: Key Insight

Each sample has different combinations of points!

27 /100

Bagging : Classification Example

Round - 1 Round - 2 Round - 3

Tree Depth = 4 Tree Depth =5 Tree Depth =5

Round - 4 Round - 5

Tree Depth = 2 Tree Depth = 4

28 /100

Bagging : Classification Example

Using majority voting to combine all predictions, we get the decision
boundary below.

29/100

Bagging

Summary

« We take “strong” learners and combine them to reduce variance.

« All learners are independent of each other.

30/100

Boosting: Learning from
Mistakes

What is Boosting?

Definition: Boosting Philosophy

Goal: Combine weak learners sequentially to create a strong en-
semble

Key Points: Key Differences from Bagging

- Sequential: Models built one after another (not in parallel)

- Focus on Mistakes: Each model learns from previous
model’s errors

» Reduce Bias: Turn weak learners into strong ensemble

Example: The Boosting Intuition

“If at first you don’t succeed, try harder on what you got wrong!”

31/100

Boosting vs Bagging: Side-by-Side Comparison

R Eerei Key Points: Boosting

Strategy: Sequential learn-

Strategy: Parallel learning -
« Models trained

. « Models learn from
independently

mistakes

» Reduces variance .
» Reduces bias

« Works with “weak”
learners

« Works with “strong”

learners
» Bootstrap sampling NI p—

o Sl sty e « Weighted combination

Definition: Weak Learner Definition

Weak Learner: Any classifier that performs slightly better than random
guessing (accuracy > 50% for binary classification) o100

AdaBoost: Adaptive Boosting

Definition: AdaBoost Core ldea

Each model adapts to previous model's mistakes

Key Points: Process

1. Train weak learner on weighted data

2. Increase weights of misclassified examples

3. Repeat: Focus on “hard” examples

33 /100

AdaBoost Step-by-Step: Problem Setup

Definition: AdaBoost Notation

+ N training samples: {(x1, 1), (x2,y2). - - (xt, y)}
- Sample weights: w; (importance of sample i for training)
« M weak learners: hy, hy, ... hy

« Learner weights: a,, (importance of learner m in final
ensemble)

34 /100

AdaBoost: Visual Setup

Key Points: Goal

Learn a strong classifier H(x) = sign (Zgﬂ amhm(x))

35/100

AdaBoost Step 1: Initialize Sample Weights

Important: Step 1: Equal Importance for All Samples

Initialize: W,(-l) =g foralli=1,2,...,N

Why equal weights?

+ No prior knowledge about “hard” samples
« Weights adapt as we learn from mistakes

A
w=0.1
o
w=0.1 w=0.1
w=0.1
O
w=0.1
WEg.l
w=0.1
(]
w=0.1
w=01 @ w=0.1

36 /100

AdaBoost Step 2: Train First Weak Learner

Important: Step 2a: Train Classifier on Weighted Data

Train weak learner hy using current sample weights W,(l)

Key Points: Key Insight

Higher weight = more training focus

« Initially all weights equal — standard training

. 37 /100

AdaBoost Step 2: Evaluate First Classifier

Important: Step 2b: Identify Mistakes

First classifier h; makes some mistakes (shown in red crosses)

Key Points: Important Observation

« Even weak learners make mistakes

« These mistakes guide the next learning step
- Key question: How much do we trust this classifier?

\

38 /100

AdaBoost Step 2: Visualizing Mistakes

MISCLASSIFIED

Example: Teacher Analogy

After first quiz, teacher sees which students got questions wrong

39/100

AdaBoost Step 3: Calculate Error

Definition: Weighted Error

weights of mistakes
err, =

total weights

MISCLASSIFIED

Example: Example

err; = 0.3 (30% error — better than random)

40 /100

AdaBoost Step 4: Calculate Classifier Weight

Definition: Classifier Weight Formula

1 (1 - errm>
am=—=In{ ——
2 errm,

Purpose: Determine how much to trust this classifier in final
ensemble

MISCLASSIFIED

41 00

AdaBoost Step 4: Example Calculation

Example: Example Calculation

errp = 0.3

o1 = §In (1542) = $ n(233) = 0.4

Key Points: Alpha Intuition

« Lower error — Higher a

« Higher « — More trust
« a =0 when err= 0.5 (random)

\

42 /100

Understanding the Alpha Formula

Key Points: Understanding Alpha

What does o = %ln (1;6”) really mean?
err

Important: Random Classi-
fier

Definition: Perfect Classi-

fier
err=05=a=0

err=0=a =+ Translation: No trust
Translation: Infinite trust

Important: Worse than

Example: Good Classifier Random
err=01=a=1.1 err=09=a=-1.1
Translation: High trust Translation: Negative trust

(flip predictions!)

J5 /100

AdaBoost: Mathematical Elegance

Example: Key Insight

AdaBoost is mathematically elegant: Even “bad” classifiers
(worse than random) can be useful by flipping their predictions!

44 /100

Boosting : AdaBoost

Consider we have a dataset of N samples.
Sample i has weight w;. There are M classifiers in the ensemble.

1. Initialize weights of data samples: w; = %
2. Form=1,... M:

Learn classifier using current weights w;'s
>_; wj(incorrect)

Compute the weighted error: err,, = S

Compute am = %loge (ﬂ)

errm
For samples which were predicted correctly: w; = w;e™ “™
For samples which were predicted incorrectly: w; = w;e™™

45 /100

Boosting : AdaBoost

w=0.1exp(-0.42)

O

w=0.1lexp(-0.42)

w=0.1exp(0.42)
O

w=0.1lexp(0.42)

w=0.1exp(-0.42)
@

Qw=0.1exp(0.42)
w=0.1exp(-0.42)

w=0.1exp(-0.42)
@

w=0.1
@) w=0.1exp(-0.42)

-

46 /100

Boosting : AdaBoost

w=0.15
w=0.15 w=0.06
Qw=0.15
w=0.06
w=0.06
w=0.06

47 /100

Boosting : AdaBoost

Consider we have a dataset of N samples.
Sample i has weight w;. There are M classifiers in the ensemble.

1. Initialize weights of data samples: w; =

2. Form=1,..., M

Learn classifier using current weights w;'s
Compute the weighted error: err, = W

_ 1 l—errpy
Compute ay, = 5 log, (ﬁ)
For samples which were predicted correctly: w; = wie
For samples which were predicted incorrectly: w; = w;e™
Normalize w;'s to sum to 1.

—am

48 /100

Boosting : AdaBoost

w=0.17
w=0.17 w=0.07
Qw=0.17
w=0.07
w=0.07
w=0.07

49 /100

Boosting : AdaBoost

Consider we have a dataset of N samples.
Sample i has weight w;. There are M classifiers in the ensemble.

1. Initialize weights of data samples: w; =

2. Form=1,..., M
Learn classifier using current weights w;'s

Compute the weighted error: err, = 2, wilincorrect)

2w
Compute am = %IOge (1;%)
w=017 %17 w=0, ecsstes 021
o) & errp, = ——
Ow=0,17 1
w=0.07 1 1 B 021
)
w=0.07 Qg = 7/0 T no1 = 066
o ¥ 2758 (0.21)

50 /100

Boosting : AdaBoost

Consider we have a dataset of N samples.
Sample i has weight w;. There are M classifiers in the ensemble.

1. Initialize weights of data samples: w; = %
2. Form=1,... M:

Learn classifier using current weights w;'s
>_; wj(incorrect)

Compute the weighted error: err,, = S

Compute am = %loge (ﬂ)

errm
For samples which were predicted correctly: w; = w;e™ “™
For samples which were predicted incorrectly: w; = w;e™™

51

Boosting : AdaBoost

w=0.09
w=0.09 w=0.14
Q w=0.09
w=0.04
w=0.14
W=0.04

Boosting : AdaBoost

Consider we have a dataset of N samples.
Sample i has weight w;. There are M classifiers in the ensemble.

1. Initialize weights of data samples: w; =

2. Form=1,..., M

Learn classifier using current weights w;'s
Compute the weighted error: err, = W

_ 1 l—errpy
Compute ay, = 5 log, (ﬁ)
For samples which were predicted correctly: w; = wie
For samples which were predicted incorrectly: w; = w;e™
Normalize w;'s to sum to 1.

—am

53 /100

Boosting : AdaBoost

w=0.10
w=0.10 w=0.16
O w=0.10
w=0.04
w=0.16
w=0.04

O w=0.04 (0)

w=0.16 Q@ w=0.04

54 /100

Boosting : AdaBoost

Consider we have a dataset of N samples.
Sample i has weight w;. There are M classifiers in the ensemble.

1. Initialize weights of data samples: w; =

2. Form=1,...,M:

Learn classifier using current weights w;'s
>~ wi(incorrect)

Wi

Compute the weighted error: err,, =

Compute am, = %log,E (176""')

errm

w=0.10

w=0.10 w=0.16 O) 1 2

Qw=0.10 err3 = T

w004 1 1-0.12
w=0.16 .__» = — | —— | =0.
O W_.Oio‘t—y Misclassified a3 2 Og < 0.12) 0 99
o vy & —
w=0.16 w=0.04

55 /100

Boosting: Adaboost

Intuitively, after each iteration, importance of wrongly classified
samples is increased by increasing their weights and importance of
correctly classified samples is decreased by decreasing their weights.

56 /100

Boosting: Adaboost

Testing

- For each sample x, compute the prediction of each classifier h,,(x).

« Final prediction is the sign of the sum of weighted predictions,
given as:

« SIGN(ay hy(x) + asha(x) + ... + aphpu(x))

57 /100

Boosting: Adaboost

Example

MISCLASSIFIED

Misclassified

az = 0.99

Let us say, yellow class is +1 and
blue class is -1

Prediction = SIGN(0.42*-1 +
0.66*-1 + 0.99%+1) = Negative =
blue

58 /100

Intuition behind weight update formula

Notebook: boosting-
explanation.html

T T T T
0.1 0.2 0.3 0.4 0.5

errm

Notebook: boosting-
explanation.html

5

Weight Multiplier

T T T T T
0.1 0.2 0.3 0.4 0.5

errm

59

https://nipunbatra.github.io/ml-teaching/notebooks/boosting-explanation.html
https://nipunbatra.github.io/ml-teaching/notebooks/boosting-explanation.html
https://nipunbatra.github.io/ml-teaching/notebooks/boosting-explanation.html
https://nipunbatra.github.io/ml-teaching/notebooks/boosting-explanation.html

ADABoost for regresion

From Paper: Improving Regressors using Boosting Techniques

Our problem will be that the modeling error is also
nonzero because we have to determine the model in the
presence of noise. Since we don’t know the probability
distributions, we approximate the expectation of the ME.
and PE using the sample ME (if the truth is known) and
sample PE and then average over multiple experiments.

In the following discussion, we detail both bagging and
boosting. We then discuss how to build trees which are

the basic building blocks of our regression machines and

use these ensembles on some standard test functions.

2.BAGGING

‘The following is a paraphrase of Breiman (1996b) with
some difference in notation. Suppose we pick with
replacement N, examples from the training set of size
N and call the k'th set of observations O;. Based on
these. observations, we form a predictor. y?'(c,0,).
Because we are sampling with replacement, we may
have multiple_observations or no observations of a
particular training example. Sampling with replacement
s sometimes termed bootstrap sampling [Efron and
Tibshirani (1993)] and therefore this method is called
bootstrap agregating or bagging for short. The
xsenabe predico i formed from the spproiction
the cxpectation over all the obscrvation sets,
Eoly® (x,0)] by using the average of the outputs of ;u
the predictors. Breiman discusses which algorithms are
good candidates for predictors and concludes that the
best predictors are unstable, ic., a small change in the
training set O, causes a large change in the predictor
»P(x,0,). Good candidates are regression frees and
neural nets.

3.BOOSTING

In bagging, each training example is equally likely to be
picked. In boosting, the probability of @ particular
example being in the training set of a particular machine
depends on the performance of the prior machines on
that example. The following is a modification of
Adaboost.R [Freund and Schapire (19962)).

Initially, to each training pattern we assign a weight
s

Repeat the following while the average loss L defined

set. Each machine makes a hypothesis: h,-x—>y

. Pass every member of the training set through this
machine to obtain a prediction Y (x;) i=1,..N .
4. Cajeulate a loss for each training sample
L =L||y?@)-y| |. The loss L may be of any
functional form as long as LE[0,1]. If we let

D=sup | 30'(x) =i | i=1,Ny

then we have three candidate loss functions:

e

(linear)

D) -y, |?
15 (x.)2 il (square 1aw)

1P
(exponential)

n
5. Calculate an average loss: L=3L;p;
=1

6. Form p

predictor.
prediction.

B is a measure of confidence in the

I-L
Low B means high confidence in the

7. Update the weights: w,—w;B**[1-L], where **
indicates exponentiation. The smaller the loss, the more
the weight i reduced making th probabily smaler
that this pattem will be picked as a member of the
training set for the next machine in the ensemble.

8. For a particular input x;, each of the T machines
makes a prediction f, £=1,....T. Obtain the cumulative
prediction /i using the T predictors:

60

Random Forest: Double
Randomness

What is Random Forest?

Definition: Random Forest = Bagging + Feature Random-

ness

Core Idea: Combine many decision trees trained on random sub-
sets of data AND random subsets of features

J

Key Points: Two Sources of Randomness

- Bootstrap Sampling: Each tree sees different training
samples (like bagging)

- Feature Subsampling: Each split considers only random
subset of features

61 /100

Why Double Randomness?

Example: Why Double Randomness?

Goal: Create diverse trees that make different mistakes

- Data randomness — Different perspectives on the problem
« Feature randomness — Different decision criteria

« Result: Highly decorrelated predictions!

62 /100

Random Forest Algorithm: Hyperparameters

Definition: Random Forest Hyperparameters

« B = Number of trees in the forest
< m = Number of features considered at each split (typically

VM or log,(M))

» max_depth = Maximum depth of each tree

63 /100

Random Forest Algorithm: Training Process

Important: Random Forest Training Algorithm

For b=1,2,...,B:

1. Bootstrap: Sample n training examples with replacement
2. Train Tree: Build tree with feature randomness:

At each split: randomly select m out of M features
Choose best split among these m features only

J

Key Points: Key Insight

Each tree is “strong” individually but they make different mistakes
due to randomness!

64 /100

Random Forest: Feature Selection at Each Split

Example: Iris Example

4 features available = m = /4 = 2 features per split

Definition: Tree 1 - Split

1

Random subset: {Sepal
Length, Petal Width}

Best split: Petal Width <
0.8

Definition: Tree 2 - Split
1

Random subset: {Sepal
Width, Petal Length}

Best split: Petal Length <
2.5

65 /100

Random Forest: The Power of Feature Diversity

Key Points: Result

Different trees focus on different feature combinations — Diverse
predictions

66 /100

Random Forest Example: Iris Dataset

Example: The Iris Classification Problem

Task: Classify iris flowers into 3 species based on 4 measurements

sepal_length sepal_width petal_length petal_width species

0 5.1 3.5 1.4 0.2 setosa

1 4.9 3.0 1.4 0.2 setosa

2 4.7 3.2 1.3 0.2 setosa

3 4.6 3.1 1.5 0.2 setosa

4 5.0 3.6 1.4 0.2 setosa
145 6.7 3.0 5.2 2.3 virginica
146 6.3 2.5 5.0 1.9 virginica
147 6.5 3.0 5.2 2.0 virginica
148 6.2 3.4 5.4 2.3 Vvirginica
149 59 3.0 5.1 1.8 Vvirginica

67 /100

Random Forest Setup for Iris

Key Points: Random Forest Setup

- 4 features available — Consider m = 2 features per split
« Bootstrap samples for each tree

- Combine predictions via majority voting

68 /100

Decision Tree # 0

Notebook: ensemble-feature-importance.html

69 /100

https://nipunbatra.github.io/ml-teaching/notebooks/ensemble-feature-importance.html

Decision Tree # 1

Notebook: ensemble-feature-importance.html

nodo 70
petal_width =08
1564

70 /100

https://nipunbatra.github.io/ml-teaching/notebooks/ensemble-feature-importance.html

Decision Tree # 2

Notebook: ensemble-feature-importance.html

71/100

https://nipunbatra.github.io/ml-teaching/notebooks/ensemble-feature-importance.html

Decision Tree # 3

Notebook: ensemble-feature-importance.html

node #0
sopal_longth <555
entr 573

72/

https://nipunbatra.github.io/ml-teaching/notebooks/ensemble-feature-importance.html

Decision Tree # 4

Notebook: ensemble-feature-importance.html

73 /100

https://nipunbatra.github.io/ml-teaching/notebooks/ensemble-feature-importance.html

Decision Tree # 5

Notebook: ensemble-feature-importance.html

74 /100

https://nipunbatra.github.io/ml-teaching/notebooks/ensemble-feature-importance.html

Decision Tree # 6

Notebook: ensemble-feature-importance.html

75 /100

https://nipunbatra.github.io/ml-teaching/notebooks/ensemble-feature-importance.html

Decision Tree # 7

Notebook: ensemble-feature-importance.html

76 /100

https://nipunbatra.github.io/ml-teaching/notebooks/ensemble-feature-importance.html

Decision Tree # 8

Notebook: ensemble-feature-importance.html

77 /100

https://nipunbatra.github.io/ml-teaching/notebooks/ensemble-feature-importance.html

Decision Tree # 9

Notebook: ensemble-feature-importance.html

node #0
petal_length =26
entropy = 157

78 /100

https://nipunbatra.github.io/ml-teaching/notebooks/ensemble-feature-importance.html

Feature Importance: The Big Picture

Definition: What is Feature Importance?

Goal: Measure how much each feature contributes to reducing
impurity across all trees in the random forest

Key Points: Core Intuition

- Features that create “better splits” (reduce impurity more)
are more important
« We measure this across ALL trees in the forest

« Then average to get final importance scores

79 /100

Random Forest: Multiple Trees Overview

Uses: Xl,Xg,Xz Uses: XQ,Xl.X4 Uses: X4,X3,X1 Uses: Xl,XQ,Xg

NV

Feature Importance

Key Insight: Each tree uses different features at different nodes.
We aggregate information from ALL trees!

80 /100

Step 1: Focus on One Tree (Tree #1)

Let's examine the first tree in our random forest...

Tree #1 Structure

Class A

Class B

Class A

Class B

81 /100

Step 2: Identify Features Used in Tree 1

X1 used at root

> 0.6
X3 used at left node X5 used at right node

< 0.2 > 0.8

(Class A| [ClassB| |ClassA| |Class B

Key Points: Tree 1 Feature Usage

Tree 1 uses: Xi, Xa, and X3 (but NOT X4)

82 /100

Step 3: Focus on Specific Feature (X; = Xi)

Important:

Let's calculate importance of X; in Tree 1

Example: F

or Xj at root node: We need p(root) x Aji(root)

\

83 /100

Step 3: Highlighting X; in the Tree

Focus on Xi: Calculate
p(root) x Ai(root)

84 /100

Step 4: Calculate Node Proportion p(t)

Definition: Node Proportion

N; samples at node ¢

t) = —
P() N total samples

J

Key Points: Root Node Property

Root node always has p(root) = 1.0 (all samples start here)

85 /100

Step 4: Visual Example of Node Proportion

Calculation:
p(root) = 1330 = 1.0
1000 samples
Total Dataset: 1000 samples‘

86 /100

Step 5: Calculate Impurity Reduction Ai(t)

Definition: Impurity Reduction Formula

i(root) = 0.5
1000 samples
Calculation:
Ai=0.5— A% .3 — 890 02

1000 1000
=05-04%x03-0.6x0.2

@ @ =05-0.12-0.12=0.26

i(tL) =0.3 i(tR) =0.2
400 samples 600 samples

87 /100

Step 6: Contribution of X; in Tree 1

Example: X; Contribution in Tree 1

Contributionx, Tree 1 = p(root) x Ai(root) = 1.0 x 0.26 = 0.26

Important: This is just Xi's contribution in ONE tree. We need
to do this for ALL trees!

88 /100

Step 6b: What's Next?

Key Points: Remaining Steps

« Calculate Xi's contribution in Tree 2, Tree 3, ..., Tree M
« Sum all contributions and divide by M (number of trees)
« This gives us the final importance score for X;

Definition:

General Pattern: Repeat this process for every feature
(XlaX27X37X47"')

89 /100

Now Let's Calculate X3 Contribution

Example: Calculate importance of X3 in the same Tree 1

Focus on Xj:
Calculate p(left) x Ai(left)

90 /100

X3 Step 1: Calculate Node Proportion

Definition: Node Proportion for Left Child

(left) = Nier: samples at left node
& N total samples

1000 samples

Calculation:
400 _
p(left) = 1505 = 0.4

400 samples 600 samples

91 /100

X3 Step 2: Calculate Impurity Reduction

i(left) = 0.3
400 samples

Calculation:

Ai=03— 152 x0.1— 233 x0.2
=0.3—-0.375 x 0.1 — 0.625 x 0.2
=0.3—0.0375—0.125 = 0.1375

il =0.1 i(lr) =0.2
150 samples 250 samples

92 /100

X3 Step 3: Final Contribution

Example: X3 Contribution in Tree 1

Contributionx, Tree 1 = p(left) x Ai(left) = 0.4 x 0.1375 = 0.055

Important:

Key Insight: Root nodes typically have higher contributions since
p(root) = 1.0

\

93 /100

Comparison: Xj; vs X3 in Tree 1

Key Points: Comparison in Tree 1

+ Xi contribution: 0.26 (at root)
« X3 contribution: 0.055 (at left child)

Why the difference?

« Xi: p=1.0, Ai=0.26 — Higher impact
« X3: p=04, Ai=0.1375 — Lower impact

\

94 /100

Step 7: Aggregate Across All Trees

X1 contrib: 0.26 X1 contrib: 0.15 Xy contrib: 0.31 Xy contrib: 0.22

X1 Importance
0.2640.1540.31+---40.22
M

Definition: Final Formula for X;

Importance(X;) = Z Z L[je = 1] - p(t) - Ai(t)

m 1 t€Tree,,

Step 8: Repeat for All Features

0.32
L
S| 024
B .
9 0.21
Iz X3 | 012
2 X Xo
E X4
Features

Key Points: Feature Importance Result

X3 is most important (0.32), followed by X; (0.24), then X
(0.21), and X, (0.12)

96 /100

Feature Importance: General Mathematical Formula

Definition: Complete Feature Importance Formula

For any feature Xj in a Random Forest with M trees:

Importance(X, Z Z L(je=J) - p(t) - Ai(t)

m 1t€Epm

This formula captures everything we just learned step-by-step!

97 /100

Formula Components Explained

Key Points: Formula Components

Where:

o M = number of trees in the forest
« o, = set of all nodes in tree m

« 1(js = j) = indicator function (1 if node t uses feature Xj, 0
otherwise)

Remaining components:

- p(t) = % = proportion of samples at node t

« Ai(t) = impurity reduction at node t

\

98 /100

Feature Importance!

Importance of variable X; for an ensemble of M trees ¢, is:

Imp(X ZZM—J{ Ay,

m—1 tEpm

where j; denotes the variable used at node t, p(t) = N;/N and Ai(t) is

the impurity reduction at node t:

Ai(t) = i(t) — A/\I/t: i(t) — Nﬁtl(t}?)

1Slide Courtesy Gilles Louppe

99 /100

Computed Feature Importance

Notebook: ensemble-feature-importance.html

0.5 -
0.4-
0.3 -
0.2 -
0.1-
0.0 j I

sepal_length sepal_width petallength petal width

100 /100

https://nipunbatra.github.io/ml-teaching/notebooks/ensemble-feature-importance.html

	Introduction to Ensemble Learning
	Bagging: Bootstrap Aggregation
	Boosting: Learning from Mistakes
	Random Forest: Double Randomness

