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Introduction to Ensemble
Learning



What is Ensemble Learning?

Important: The Core Idea

“The wisdom of crowds”: Combine multiple models to make
better predictions than any single model could achieve alone.

Key Points: Key Insight

• Individual models make different mistakes
• By combining them intelligently, we can reduce overall error
• Most Kaggle competition winners use ensemble methods!
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Real-World Analogy: Medical Diagnosis

Example: Why Do We Seek Second Opinions?

Single Doctor:

• Might miss subtle symptoms
• Could have personal biases
• Limited by individual experience

Multiple Doctors (Ensemble):

• Different perspectives and expertise
• Collective wisdom reduces misdiagnosis
• More robust and reliable decisions
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Simple Ensemble Examples

Example: Classification

Problem: Spam detection
Individual Predictions:

• Model 1: Spam
• Model 2: Spam
• Model 3: Not Spam

Ensemble (Majority Vote):
Spam

Example: Regression

Problem: House price predic-
tion
Individual Predictions:

• Model 1: $420K
• Model 2: $450K
• Model 3: $430K

Ensemble (Average):
$433K
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Why Do Ensembles Work? Three Key Reasons

Important: Based on Ensemble Methods in ML by Diet-
terich

Three fundamental reasons why combining models works
better:

Key Points: Three Key Reasons

1. Statistical: Limited data → Multiple valid hypotheses
2. Computational: Models get stuck in local optima
3. Representational: Individual models have limitations
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Reason 1: Statistical Problem

Definition: The Statistical Challenge

When data is limited, many competing hypotheses can achieve
the same accuracy on training data.

Example: Decision Trees Example

• Same dataset → multiple valid trees
• Combining reduces risk of picking the “wrong” one
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Reason 2: Computational Problem

Definition: The Computational Challenge

Learning algorithms can get stuck in local optima or use greedy
strategies.

Example: Examples

• Decision trees: greedy splits
• Neural networks: local minima
• Different runs → different solutions
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Reason 3: Representational Problem

Definition: The Representational Challenge

Some models cannot learn the true form of the target function.

Example: Limitations

• Decision trees: axis-parallel splits only
• Linear models: no non-linear relationships
• Each model has inherent biases
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Visual Example: Decision Trees vs Random Forest

Important: Representation Comparison

Question: How do individual decision trees compare to their en-
semble?

Notebook: ensemble-representation.html

Input data

.75

Decision Tree (Depth 1)

.85

Random Forest

.65 .68
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Individual Tree Behavior

Key Points: Observation

Individual trees create rigid, rectangular decision boundaries
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Random Forest: The Power of Combination

Example: Ensemble Effect

Result: Combining multiple trees creates smoother, more flexible
decision boundaries

Notebook: ensemble-representation.html

Input data

.90

Decision Tree (Depth 2)

.90

Random Forest

.68 .82
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Ensemble Advantage

Key Points: Key Insight

The ensemble overcomes individual model limitations!
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When Do Ensembles Work? Two Key Requirements

Definition: Necessary and Sufficient Conditions

For an ensemble to outperform individual members, models must
be:

1. Accurate: Better than random guessing
2. Diverse: Make different errors on new data

Key Points: Key Terms

• Accurate: Error rate < 50% (better than coin flip)
• Diverse: Models disagree on different examples
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Diversity: The Magic Ingredient

Important: Identical Mod-
els (No Diversity)

Scenario: All three models
make the same mistakes
When h1(x) is wrong:

• h2(x) is also wrong
• h3(x) is also wrong
• Ensemble prediction:
Wrong

Example: Diverse Models

Scenario: Models make dif-
ferent mistakes
When h1(x) is wrong:

• h2(x) might be correct
• h3(x) might be correct
• Ensemble prediction:
Correct!

Key Points: Bottom Line

Diversity allows the ensemble to correct individual model errors!
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Mathematical Proof: Why Ensembles Work

Definition: Majority Voting Analysis

Setup: 3 models, each with error probability ε = 0.3
Ensemble fails when: 2 or 3 models are wrong

Example: Calculation

P(ensemble wrong) =
(
3
2

)
ε2(1− ε) +

(
3
3

)
ε3

= 3× 0.32 × 0.7 + 1× 0.33

= 0.189 + 0.027 = 0.216

Key Points: Result

Ensemble error (21.6%) < Individual error (30%)!
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The Power of Scaling: More Models = Better Performance

Example: Good Individual
Models (ε = 0.3)

# Models Ensemble Error
1 30.0%
3 21.6%
5 16.3%

Ensembles help!

Important: Poor Individual
Models (ε = 0.6)

# Models Ensemble Error
1 60.0%
3 64.8%
5 68.3%

Ensembles hurt!

Key Points: Key Insight

Ensembles only help when base models are better than random!
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When Ensembles Fail: Common Pitfalls

Important: Ensemble Limitations

Ensembles DON’T work well when:

Example: Poor Base Mod-
els

• Individual accuracy < 50%
• Models worse than
random guessing

• Garbage in → Garbage out

Example: Lack of Diversity

• All models make same
mistakes

• High correlation between
predictions

• No complementary
strengths

Key Points: Solution

Ensure base models are accurate AND diverse!
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Bagging: Bootstrap
Aggregation



What is Bagging?

Definition: Bagging = Bootstrap + Aggregation

Goal: Create diverse models from a single dataset to reduce vari-
ance

Key Points: Key Insight

Even with the same algorithm and same data, we can create dif-
ferent models by training on different subsets!

Important: The Challenge

Problem: How do we get different training sets from one dataset?
Solution: Bootstrap sampling (sampling with replacement)
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Bootstrap Sampling: The Core Technique

Example: Bootstrap Process

Original Dataset: D = {D1,D2,D3, . . . ,Dn}
For each model: Create new dataset by sampling n examples
with replacement

Definition: Bootstrap Sam-
ple 1

D1,D3,D6,D1,D5, . . .
Notice: D1 appears twice!

Definition: Bootstrap Sam-
ple 2

D2,D4,D1,Dn,D3, . . .
Different sample, different
model!

Key Points: Result

Each bootstrap sample is slightly different → Diverse models!
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Bagging Example: The Dataset

Important: Classification Problem

Task: Classify points as red or blue circles
Challenge: Points (3,3) and (5,8) are outliers/anomalies

1 2 3 4 5 6 7 8
X1

1

2

3

4

5

6

7

8

X 2
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The Outlier Challenge

Key Points: Question

How will a single decision tree handle these outliers?
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Single Decision Tree: Overfitting Problem

Example: Deep Decision Tree (Depth = 6)

Result: Complex boundary that memorizes outliers

1 2 3 4 5 6 7 8
X1

1

2

3

4

5

6

7

8

X 2
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The High Variance Problem

Important: The Problem

High Variance: Small changes in data → Very different decision
boundaries
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Bootstrap Samples: Part 1

Example: Creating Diverse Training Sets

Generate different bootstrap samples from original dataset

Sample 1

1 2 3 4 5 6 7 8
X1

1

2

3

4

5

6

7

8

X 2

Sample 2

1 2 3 4 5 6 7 8
X1

1

2

3

4

5

6

7

8

X 2
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Bootstrap Samples: Part 2

Sample 3

1 2 3 4 5 6 7 8
X1

1

2

3

4

5

6

7

8

X 2

Sample 4

1 2 3 4 5 6 7 8
X1

1

2

3

4

5

6

7

8

X 2
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Bootstrap Samples: Part 3

Sample 5

1 2 3 4 5 6 7 8
X1

1

2

3

4

5

6

7

8

X 2

Key Points: Key Insight

Each sample has different combinations of points!
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Bagging : Classification Example
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Bagging : Classification Example
Using majority voting to combine all predictions, we get the decision
boundary below.

1 2 3 4 5 6 7 8
X1

1

2

3

4

5

6

7

8
X 2
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Bagging

Summary

• We take “strong” learners and combine them to reduce variance.
• All learners are independent of each other.
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Boosting: Learning from
Mistakes



What is Boosting?

Definition: Boosting Philosophy

Goal: Combine weak learners sequentially to create a strong en-
semble

Key Points: Key Differences from Bagging

• Sequential: Models built one after another (not in parallel)
• Focus on Mistakes: Each model learns from previous
model’s errors

• Reduce Bias: Turn weak learners into strong ensemble

Example: The Boosting Intuition

“If at first you don’t succeed, try harder on what you got wrong!”
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Boosting vs Bagging: Side-by-Side Comparison

Important: Bagging

Strategy: Parallel learning

• Models trained
independently

• Reduces variance
• Works with “strong”
learners

• Bootstrap sampling
• Simple majority voting

Key Points: Boosting

Strategy: Sequential learn-
ing

• Models learn from
mistakes

• Reduces bias
• Works with “weak”
learners

• Weighted sampling
• Weighted combination

Definition: Weak Learner Definition

Weak Learner: Any classifier that performs slightly better than random
guessing (accuracy > 50% for binary classification) 32 / 100



AdaBoost: Adaptive Boosting

Definition: AdaBoost Core Idea

Each model adapts to previous model’s mistakes

Key Points: Process

1. Train weak learner on weighted data
2. Increase weights of misclassified examples
3. Repeat: Focus on “hard” examples
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AdaBoost Step-by-Step: Problem Setup

Definition: AdaBoost Notation

• N training samples: {(x1, y1), (x2, y2), . . . , (xN, yN)}
• Sample weights: wi (importance of sample i for training)
• M weak learners: h1, h2, . . . , hM
• Learner weights: αm (importance of learner m in final
ensemble)
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AdaBoost: Visual Setup

Key Points: Goal

Learn a strong classifier H(x) = sign
(∑M

m=1 αmhm(x)
)
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AdaBoost Step 1: Initialize Sample Weights

Important: Step 1: Equal Importance for All Samples

Initialize: w(1)
i = 1

N for all i = 1, 2, . . . ,N

Why equal weights?
• No prior knowledge about “hard” samples
• Weights adapt as we learn from mistakes
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AdaBoost Step 2: Train First Weak Learner

Important: Step 2a: Train Classifier on Weighted Data

Train weak learner h1 using current sample weights w(1)
i

Key Points: Key Insight

Higher weight = more training focus

• Initially all weights equal → standard training
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AdaBoost Step 2: Evaluate First Classifier

Important: Step 2b: Identify Mistakes

First classifier h1 makes some mistakes (shown in red crosses)

Key Points: Important Observation

• Even weak learners make mistakes
• These mistakes guide the next learning step
• Key question: How much do we trust this classifier?
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AdaBoost Step 2: Visualizing Mistakes

Example: Teacher Analogy

After first quiz, teacher sees which students got questions wrong
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AdaBoost Step 3: Calculate Error

Definition: Weighted Error

errm =
weights of mistakes

total weights

Example: Example

err1 = 0.3 (30% error → better than random)
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AdaBoost Step 4: Calculate Classifier Weight

Definition: Classifier Weight Formula

αm =
1

2
ln

(
1− errm
errm

)
Purpose: Determine how much to trust this classifier in final
ensemble
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AdaBoost Step 4: Example Calculation

Example: Example Calculation

err1 = 0.3
α1 = 1

2 ln
(
1−0.3
0.3

)
= 1

2 ln(2.33) = 0.42

Key Points: Alpha Intuition

• Lower error → Higher α
• Higher α → More trust
• α = 0 when err = 0.5 (random)
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Understanding the Alpha Formula

Key Points: Understanding Alpha

What does α = 1
2 ln

(
1−err

err
)
really mean?

Definition: Perfect Classi-
fier

err = 0 ⇒ α = +∞
Translation: Infinite trust

Example: Good Classifier

err = 0.1 ⇒ α = 1.1
Translation: High trust

Important: Random Classi-
fier

err = 0.5 ⇒ α = 0
Translation: No trust

Important: Worse than
Random

err = 0.9 ⇒ α = −1.1
Translation: Negative trust
(flip predictions!)
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AdaBoost: Mathematical Elegance

Example: Key Insight

AdaBoost is mathematically elegant: Even “bad” classifiers
(worse than random) can be useful by flipping their predictions!
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Boosting : AdaBoost

Consider we have a dataset of N samples.
Sample i has weight wi. There are M classifiers in the ensemble.

1. Initialize weights of data samples: wi =
1
N

2. For m = 1, . . . ,M:
1) Learn classifier using current weights wi’s
2) Compute the weighted error: errm =

∑
i wi(incorrect)∑

i wi

3) Compute αm = 1
2

loge

(
1−errm

errm

)
4) For samples which were predicted correctly: wi = wie−αm

5) For samples which were predicted incorrectly: wi = wieαm
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Boosting : AdaBoost
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Boosting : AdaBoost
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Boosting : AdaBoost

Consider we have a dataset of N samples.
Sample i has weight wi. There are M classifiers in the ensemble.

1. Initialize weights of data samples: wi =
1
N

2. For m = 1, . . . ,M:
1) Learn classifier using current weights wi’s
2) Compute the weighted error: errm =

∑
i wi(incorrect)∑

i wi

3) Compute αm = 1
2

loge

(
1−errm

errm

)
4) For samples which were predicted correctly: wi = wie−αm

5) For samples which were predicted incorrectly: wi = wieαm

6) Normalize wi’s to sum to 1.
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Boosting : AdaBoost
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Boosting : AdaBoost

Consider we have a dataset of N samples.
Sample i has weight wi. There are M classifiers in the ensemble.

1. Initialize weights of data samples: wi =
1
N

2. For m = 1, . . . ,M:
1) Learn classifier using current weights wi’s
2) Compute the weighted error: errm =

∑
i wi(incorrect)∑

i wi

3) Compute αm = 1
2

loge

(
1−errm

errm

)

err2 =
0.21

1

α2 =
1

2
log

(
1− 0.21

0.21

)
= 0.66
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Boosting : AdaBoost

Consider we have a dataset of N samples.
Sample i has weight wi. There are M classifiers in the ensemble.

1. Initialize weights of data samples: wi =
1
N

2. For m = 1, . . . ,M:
1) Learn classifier using current weights wi’s
2) Compute the weighted error: errm =

∑
i wi(incorrect)∑

i wi

3) Compute αm = 1
2

loge

(
1−errm

errm

)
4) For samples which were predicted correctly: wi = wie−αm

5) For samples which were predicted incorrectly: wi = wieαm
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Boosting : AdaBoost
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Boosting : AdaBoost

Consider we have a dataset of N samples.
Sample i has weight wi. There are M classifiers in the ensemble.

1. Initialize weights of data samples: wi =
1
N

2. For m = 1, . . . ,M:
1) Learn classifier using current weights wi’s
2) Compute the weighted error: errm =

∑
i wi(incorrect)∑

i wi

3) Compute αm = 1
2

loge

(
1−errm

errm

)
4) For samples which were predicted correctly: wi = wie−αm

5) For samples which were predicted incorrectly: wi = wieαm

6) Normalize wi’s to sum to 1.
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Boosting : AdaBoost
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Boosting : AdaBoost
Consider we have a dataset of N samples.
Sample i has weight wi. There are M classifiers in the ensemble.

1. Initialize weights of data samples: wi =
1
N

2. For m = 1, . . . ,M:
1) Learn classifier using current weights wi’s
2) Compute the weighted error: errm =

∑
i wi(incorrect)∑

i wi

3) Compute αm = 1
2

loge

(
1−errm

errm

)

err3 =
0.12

1

α3 =
1

2
log

(
1− 0.12

0.12

)
= 0.99
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Boosting: Adaboost

Intuitively, after each iteration, importance of wrongly classified
samples is increased by increasing their weights and importance of
correctly classified samples is decreased by decreasing their weights.
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Boosting: Adaboost

Testing

• For each sample x, compute the prediction of each classifier hm(x).
• Final prediction is the sign of the sum of weighted predictions,
given as:

• SIGN(α1h1(x) + α2h2(x) + . . . + αMhM(x))
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Boosting: Adaboost

Example

α1 = 0.42 α2 = 0.66 α3 = 0.99

Let us say, yellow class is +1 and
blue class is -1
Prediction = SIGN(0.42*-1 +
0.66*-1 + 0.99*+1) = Negative =
blue
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Intuition behind weight update formula

Notebook: boosting-
explanation.html

0.1 0.2 0.3 0.4 0.5

errm

0.0
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Notebook: boosting-
explanation.html
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ADABoost for regresion

From Paper: Improving Regressors using Boosting Techniques
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Random Forest: Double
Randomness



What is Random Forest?

Definition: Random Forest = Bagging + Feature Random-
ness

Core Idea: Combine many decision trees trained on random sub-
sets of data AND random subsets of features

Key Points: Two Sources of Randomness

• Bootstrap Sampling: Each tree sees different training
samples (like bagging)

• Feature Subsampling: Each split considers only random
subset of features
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Why Double Randomness?

Example: Why Double Randomness?

Goal: Create diverse trees that make different mistakes

• Data randomness → Different perspectives on the problem
• Feature randomness → Different decision criteria
• Result: Highly decorrelated predictions!
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Random Forest Algorithm: Hyperparameters

Definition: Random Forest Hyperparameters

• B = Number of trees in the forest
• m = Number of features considered at each split (typically√

M or log2(M))
• max_depth = Maximum depth of each tree
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Random Forest Algorithm: Training Process

Important: Random Forest Training Algorithm

For b = 1, 2, . . . ,B:

1. Bootstrap: Sample n training examples with replacement
2. Train Tree: Build tree with feature randomness:

◦ At each split: randomly select m out of M features
◦ Choose best split among these m features only

Key Points: Key Insight

Each tree is “strong” individually but they make different mistakes
due to randomness!
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Random Forest: Feature Selection at Each Split

Example: Iris Example

4 features available ⇒ m =
√
4 = 2 features per split

Definition: Tree 1 - Split
1

Random subset: {Sepal
Length, Petal Width}
Best split: Petal Width <
0.8

Definition: Tree 2 - Split
1

Random subset: {Sepal
Width, Petal Length}
Best split: Petal Length <
2.5
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Random Forest: The Power of Feature Diversity

Key Points: Result

Different trees focus on different feature combinations → Diverse
predictions

66 / 100



Random Forest Example: Iris Dataset

Example: The Iris Classification Problem

Task: Classify iris flowers into 3 species based on 4 measurements
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Random Forest Setup for Iris

Key Points: Random Forest Setup

• 4 features available → Consider m = 2 features per split
• Bootstrap samples for each tree
• Combine predictions via majority voting
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Decision Tree # 0

Notebook: ensemble-feature-importance.html

node #0
petal_width ≤ 0.75
entropy = 1.573
samples = 94

value = [47, 44, 59]
class = virginica

node #1
entropy = 0.0
samples = 31

value = [47, 0, 0]
class = setosa

True

node #2
petal_length ≤ 4.85
entropy = 0.985
samples = 63

value = [0, 44, 59]
class = virginica

False

node #3
petal_width ≤ 1.65
entropy = 0.348
samples = 32

value = [0, 43, 3]
class = versicolor

node #8
sepal_length ≤ 6.6
entropy = 0.127
samples = 31

value = [0, 1, 56]
class = virginica

node #4
entropy = 0.0
samples = 29

value = [0, 42, 0]
class = versicolor

node #5
sepal_width ≤ 3.0
entropy = 0.811
samples = 3

value = [0, 1, 3]
class = virginica

node #6
entropy = 0.0
samples = 2

value = [0, 0, 3]
class = virginica

node #7
entropy = 0.0
samples = 1

value = [0, 1, 0]
class = versicolor

node #9
entropy = 0.0
samples = 15

value = [0, 0, 27]
class = virginica

node #10
petal_length ≤ 5.2
entropy = 0.211
samples = 16

value = [0, 1, 29]
class = virginica

node #11
entropy = 0.0
samples = 1

value = [0, 1, 0]
class = versicolor

node #12
entropy = 0.0
samples = 15

value = [0, 0, 29]
class = virginica
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Decision Tree # 1

Notebook: ensemble-feature-importance.html

node #0
petal_width ≤ 0.8
entropy = 1.564
samples = 100

value = [46.0, 62.0, 42.0]
class = versicolor

node #1
entropy = 0.0
samples = 33

value = [46, 0, 0]
class = setosa

True

node #2
petal_width ≤ 1.75
entropy = 0.973
samples = 67

value = [0, 62, 42]
class = versicolor

False

node #3
petal_length ≤ 4.95
entropy = 0.387
samples = 39

value = [0, 61, 5]
class = versicolor

node #10
petal_length ≤ 4.85
entropy = 0.176
samples = 28

value = [0, 1, 37]
class = virginica

node #4
entropy = 0.0
samples = 35

value = [0, 58, 0]
class = versicolor

node #5
petal_length ≤ 5.45
entropy = 0.954
samples = 4

value = [0, 3, 5]
class = virginica

node #6
sepal_width ≤ 2.45
entropy = 0.971
samples = 3

value = [0, 3, 2]
class = versicolor

node #9
entropy = 0.0
samples = 1

value = [0, 0, 3]
class = virginica

node #7
entropy = 0.0
samples = 1

value = [0, 0, 2]
class = virginica

node #8
entropy = 0.0
samples = 2

value = [0, 3, 0]
class = versicolor

node #11
sepal_width ≤ 3.1
entropy = 0.918
samples = 2

value = [0, 1, 2]
class = virginica

node #14
entropy = 0.0
samples = 26

value = [0, 0, 35]
class = virginica

node #12
entropy = 0.0
samples = 1

value = [0, 0, 2]
class = virginica

node #13
entropy = 0.0
samples = 1

value = [0, 1, 0]
class = versicolor
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Decision Tree # 2

Notebook: ensemble-feature-importance.html

node #0
sepal_length ≤ 5.55
entropy = 1.582
samples = 98

value = [51.0, 46.0, 53.0]
class = virginica

node #1
petal_width ≤ 0.8
entropy = 0.823
samples = 40

value = [49, 12, 1]
class = setosa

True

node #6
petal_width ≤ 1.55
entropy = 1.103
samples = 58

value = [2, 34, 52]
class = virginica

False

node #2
entropy = 0.0
samples = 29

value = [49, 0, 0]
class = setosa

node #3
petal_width ≤ 1.6
entropy = 0.391
samples = 11

value = [0, 12, 1]
class = versicolor

node #4
entropy = 0.0
samples = 10

value = [0, 12, 0]
class = versicolor

node #5
entropy = 0.0
samples = 1

value = [0, 0, 1]
class = virginica

node #7
petal_width ≤ 0.75
entropy = 0.501
samples = 24

value = [2, 32, 1]
class = versicolor

node #12
petal_length ≤ 4.65
entropy = 0.232
samples = 34

value = [0, 2, 51]
class = virginica

node #8
entropy = 0.0
samples = 2

value = [2, 0, 0]
class = setosa

node #9
petal_length ≤ 5.0
entropy = 0.196
samples = 22

value = [0, 32, 1]
class = versicolor

node #10
entropy = 0.0
samples = 21

value = [0, 32, 0]
class = versicolor

node #11
entropy = 0.0
samples = 1

value = [0, 0, 1]
class = virginica

node #13
entropy = 0.0
samples = 1

value = [0, 1, 0]
class = versicolor

node #14
petal_width ≤ 1.7
entropy = 0.137
samples = 33

value = [0, 1, 51]
class = virginica

node #15
petal_length ≤ 5.45
entropy = 0.811
samples = 2

value = [0, 1, 3]
class = virginica

node #18
entropy = 0.0
samples = 31

value = [0, 0, 48]
class = virginica

node #16
entropy = 0.0
samples = 1

value = [0, 1, 0]
class = versicolor

node #17
entropy = 0.0
samples = 1

value = [0, 0, 3]
class = virginica
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Decision Tree # 3
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node #0
sepal_length ≤ 5.55
entropy = 1.573
samples = 96

value = [44, 59, 47]
class = versicolor

node #1
sepal_width ≤ 2.8
entropy = 1.011
samples = 38

value = [43, 12, 3]
class = setosa

True

node #8
petal_width ≤ 1.7
entropy = 1.075
samples = 58

value = [1.0, 47.0, 44.0]
class = versicolor

False

node #2
sepal_length ≤ 4.95
entropy = 0.722
samples = 7

value = [0, 12, 3]
class = versicolor

node #7
entropy = 0.0
samples = 31

value = [43, 0, 0]
class = setosa

node #3
sepal_width ≤ 2.45
entropy = 0.985
samples = 2

value = [0, 4, 3]
class = versicolor

node #6
entropy = 0.0
samples = 5

value = [0, 8, 0]
class = versicolor

node #4
entropy = 0.0
samples = 1

value = [0, 4, 0]
class = versicolor

node #5
entropy = 0.0
samples = 1

value = [0, 0, 3]
class = virginica

node #9
sepal_width ≤ 3.7
entropy = 0.287
samples = 31

value = [1.0, 47.0, 1.0]
class = versicolor

node #18
entropy = 0.0
samples = 27

value = [0, 0, 43]
class = virginica

node #10
petal_width ≤ 1.45
entropy = 0.146
samples = 30

value = [0, 47, 1]
class = versicolor

node #17
entropy = 0.0
samples = 1

value = [1, 0, 0]
class = setosa

node #11
entropy = 0.0
samples = 20

value = [0, 34, 0]
class = versicolor

node #12
sepal_width ≤ 2.35
entropy = 0.371
samples = 10

value = [0, 13, 1]
class = versicolor

node #13
sepal_length ≤ 6.1
entropy = 0.811
samples = 2

value = [0, 3, 1]
class = versicolor

node #16
entropy = 0.0
samples = 8

value = [0, 10, 0]
class = versicolor

node #14
entropy = 0.0
samples = 1

value = [0, 0, 1]
class = virginica

node #15
entropy = 0.0
samples = 1

value = [0, 3, 0]
class = versicolor
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Decision Tree # 4
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node #0
petal_width ≤ 0.7
entropy = 1.561
samples = 95

value = [50, 61, 39]
class = versicolor

node #1
entropy = 0.0
samples = 31

value = [50, 0, 0]
class = setosa

True

node #2
petal_width ≤ 1.75
entropy = 0.965
samples = 64

value = [0, 61, 39]
class = versicolor

False

node #3
petal_length ≤ 4.95
entropy = 0.435
samples = 41

value = [0, 61, 6]
class = versicolor

node #10
entropy = 0.0
samples = 23

value = [0, 0, 33]
class = virginica

node #4
entropy = 0.0
samples = 35

value = [0, 56, 0]
class = versicolor

node #5
petal_width ≤ 1.55
entropy = 0.994
samples = 6

value = [0, 5, 6]
class = virginica

node #6
entropy = 0.0
samples = 3

value = [0, 0, 5]
class = virginica

node #7
petal_length ≤ 5.45
entropy = 0.65
samples = 3

value = [0, 5, 1]
class = versicolor

node #8
entropy = 0.0
samples = 2

value = [0, 5, 0]
class = versicolor

node #9
entropy = 0.0
samples = 1

value = [0, 0, 1]
class = virginica
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Decision Tree # 5
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node #0
petal_width ≤ 0.8
entropy = 1.584
samples = 94

value = [49, 53, 48]
class = versicolor

node #1
entropy = 0.0
samples = 28

value = [49, 0, 0]
class = setosa

True

node #2
petal_length ≤ 4.95
entropy = 0.998
samples = 66

value = [0, 53, 48]
class = versicolor

False

node #3
sepal_width ≤ 2.85
entropy = 0.367
samples = 35

value = [0, 53, 4]
class = versicolor

node #8
entropy = 0.0
samples = 31

value = [0, 0, 44]
class = virginica

node #4
petal_width ≤ 1.6
entropy = 0.477
samples = 23

value = [0, 35, 4]
class = versicolor

node #7
entropy = 0.0
samples = 12

value = [0, 18, 0]
class = versicolor

node #5
entropy = 0.0
samples = 20

value = [0, 35, 0]
class = versicolor

node #6
entropy = 0.0
samples = 3

value = [0, 0, 4]
class = virginica
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Decision Tree # 6
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node #0
petal_width ≤ 0.7
entropy = 1.568
samples = 95

value = [46, 43, 61]
class = virginica

node #1
entropy = 0.0
samples = 27

value = [46, 0, 0]
class = setosa

True

node #2
petal_length ≤ 4.75
entropy = 0.978
samples = 68

value = [0, 43, 61]
class = virginica

False

node #3
sepal_length ≤ 4.95
entropy = 0.281
samples = 28

value = [0, 39, 2]
class = versicolor

node #6
petal_length ≤ 5.15
entropy = 0.341
samples = 40

value = [0, 4, 59]
class = virginica

node #4
entropy = 0.0
samples = 1

value = [0, 0, 2]
class = virginica

node #5
entropy = 0.0
samples = 27

value = [0, 39, 0]
class = versicolor

node #7
petal_width ≤ 1.75
entropy = 0.634
samples = 17

value = [0, 4, 21]
class = virginica

node #14
entropy = 0.0
samples = 23

value = [0, 0, 38]
class = virginica

node #8
petal_width ≤ 1.55
entropy = 0.918
samples = 5

value = [0, 4, 2]
class = versicolor

node #13
entropy = 0.0
samples = 12

value = [0, 0, 19]
class = virginica

node #9
petal_width ≤ 1.45
entropy = 0.918
samples = 3

value = [0, 1, 2]
class = virginica

node #12
entropy = 0.0
samples = 2

value = [0, 3, 0]
class = versicolor

node #10
entropy = 0.0
samples = 1

value = [0, 1, 0]
class = versicolor

node #11
entropy = 0.0
samples = 2

value = [0, 0, 2]
class = virginica
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Decision Tree # 7
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node #0
petal_length ≤ 2.6
entropy = 1.571
samples = 101

value = [58.0, 41.0, 51.0]
class = setosa

node #1
entropy = 0.0
samples = 37

value = [58, 0, 0]
class = setosa

True

node #2
petal_length ≤ 4.75
entropy = 0.991
samples = 64

value = [0, 41, 51]
class = virginica

False

node #3
entropy = 0.0
samples = 28

value = [0, 37, 0]
class = versicolor

node #4
petal_length ≤ 5.15
entropy = 0.376
samples = 36

value = [0, 4, 51]
class = virginica

node #5
petal_width ≤ 1.75
entropy = 0.702
samples = 15

value = [0, 4, 17]
class = virginica

node #16
entropy = 0.0
samples = 21

value = [0, 0, 34]
class = virginica

node #6
sepal_length ≤ 6.5
entropy = 1.0
samples = 6

value = [0, 4, 4]
class = versicolor

node #15
entropy = 0.0
samples = 9

value = [0, 0, 13]
class = virginica

node #7
petal_length ≤ 4.95
entropy = 0.918
samples = 4

value = [0, 2, 4]
class = virginica

node #14
entropy = 0.0
samples = 2

value = [0, 2, 0]
class = versicolor

node #8
entropy = 0.0
samples = 1

value = [0, 1, 0]
class = versicolor

node #9
sepal_length ≤ 6.15
entropy = 0.722
samples = 3

value = [0, 1, 4]
class = virginica

node #10
petal_width ≤ 1.55
entropy = 0.918
samples = 2

value = [0, 1, 2]
class = virginica

node #13
entropy = 0.0
samples = 1

value = [0, 0, 2]
class = virginica

node #11
entropy = 0.0
samples = 1

value = [0, 0, 2]
class = virginica

node #12
entropy = 0.0
samples = 1

value = [0, 1, 0]
class = versicolor 76 / 100
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Decision Tree # 8
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node #0
petal_width ≤ 0.7
entropy = 1.575
samples = 91

value = [42.0, 54.0, 54.0]
class = versicolor

node #1
entropy = 0.0
samples = 29

value = [42, 0, 0]
class = setosa

True

node #2
sepal_length ≤ 6.25

entropy = 1.0
samples = 62

value = [0, 54, 54]
class = versicolor

False

node #3
petal_length ≤ 4.8
entropy = 0.76
samples = 29

value = [0, 39, 11]
class = versicolor

node #14
petal_width ≤ 1.75
entropy = 0.825
samples = 33

value = [0.0, 15.0, 43.0]
class = virginica

node #4
sepal_length ≤ 4.95
entropy = 0.384
samples = 22

value = [0, 37, 3]
class = versicolor

node #9
petal_width ≤ 1.55
entropy = 0.722
samples = 7

value = [0, 2, 8]
class = virginica

node #5
sepal_width ≤ 2.45
entropy = 0.811
samples = 2

value = [0, 1, 3]
class = virginica

node #8
entropy = 0.0
samples = 20

value = [0, 36, 0]
class = versicolor

node #6
entropy = 0.0
samples = 1

value = [0, 1, 0]
class = versicolor

node #7
entropy = 0.0
samples = 1

value = [0, 0, 3]
class = virginica

node #10
entropy = 0.0
samples = 2

value = [0, 0, 4]
class = virginica

node #11
petal_width ≤ 1.7
entropy = 0.918
samples = 5

value = [0, 2, 4]
class = virginica

node #12
entropy = 0.0
samples = 1

value = [0, 2, 0]
class = versicolor

node #13
entropy = 0.0
samples = 4

value = [0, 0, 4]
class = virginica

node #15
petal_length ≤ 5.05
entropy = 0.742
samples = 9

value = [0, 15, 4]
class = versicolor

node #18
entropy = 0.0
samples = 24

value = [0, 0, 39]
class = virginica

node #16
entropy = 0.0
samples = 7

value = [0, 15, 0]
class = versicolor

node #17
entropy = 0.0
samples = 2

value = [0, 0, 4]
class = virginica
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Decision Tree # 9
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node #0
petal_length ≤ 2.6
entropy = 1.57
samples = 96

value = [55.0, 40.0, 55.0]
class = setosa

node #1
entropy = 0.0
samples = 36

value = [55, 0, 0]
class = setosa

True

node #2
petal_length ≤ 4.95
entropy = 0.982
samples = 60

value = [0, 40, 55]
class = virginica

False

node #3
sepal_length ≤ 5.95
entropy = 0.446
samples = 30

value = [0, 39, 4]
class = versicolor

node #8
sepal_length ≤ 6.6
entropy = 0.137
samples = 30

value = [0, 1, 51]
class = virginica

node #4
entropy = 0.0
samples = 15

value = [0, 23, 0]
class = versicolor

node #5
petal_width ≤ 1.65
entropy = 0.722
samples = 15

value = [0, 16, 4]
class = versicolor

node #6
entropy = 0.0
samples = 12

value = [0, 16, 0]
class = versicolor

node #7
entropy = 0.0
samples = 3

value = [0, 0, 4]
class = virginica

node #9
entropy = 0.0
samples = 16

value = [0, 0, 33]
class = virginica

node #10
sepal_length ≤ 6.75
entropy = 0.297
samples = 14

value = [0, 1, 18]
class = virginica

node #11
petal_width ≤ 2.0
entropy = 0.722
samples = 4

value = [0, 1, 4]
class = virginica

node #14
entropy = 0.0
samples = 10

value = [0, 0, 14]
class = virginica

node #12
entropy = 0.0
samples = 1

value = [0, 1, 0]
class = versicolor

node #13
entropy = 0.0
samples = 3

value = [0, 0, 4]
class = virginica
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Feature Importance: The Big Picture

Definition: What is Feature Importance?

Goal: Measure how much each feature contributes to reducing
impurity across all trees in the random forest

Key Points: Core Intuition

• Features that create “better splits” (reduce impurity more)
are more important

• We measure this across ALL trees in the forest
• Then average to get final importance scores
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Random Forest: Multiple Trees Overview

Tree 1

Uses: X1, X3, X2

Tree 2

Uses: X2, X1, X4

Tree 3

Uses: X4, X3, X1

Tree M

Uses: X1, X2, X3

· · ·

Feature Importance

Important:

Key Insight: Each tree uses different features at different nodes.
We aggregate information from ALL trees!
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Step 1: Focus on One Tree (Tree #1)

Example:

Let’s examine the first tree in our random forest...

Tree #1 Structure

X1

X3 X2

Class A Class B Class A Class B

< 0.6 ≥ 0.6

< 0.2 ≥ 0.2 < 0.8 ≥ 0.8
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Step 2: Identify Features Used in Tree 1

X1

X3 X2

Class A Class B Class A Class B

< 0.6 ≥ 0.6

< 0.2 ≥ 0.2 < 0.8 ≥ 0.8

X1 used at root

X3 used at left node X2 used at right node

Key Points: Tree 1 Feature Usage

Tree 1 uses: X1, X2, and X3 (but NOT X4)
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Step 3: Focus on Specific Feature (Xj = X1)

Important:

Let’s calculate importance of X1 in Tree 1

Example: F

or X1 at root node: We need p(root)×∆i(root)
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Step 3: Highlighting X1 in the Tree

X1

X3 X2

A B A B

Focus on X1: Calculate
p(root) x ∆i(root)
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Step 4: Calculate Node Proportion p(t)

Definition: Node Proportion

p(t) = Nt
N =

samples at node t
total samples

Key Points: Root Node Property

Root node always has p(root) = 1.0 (all samples start here)
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Step 4: Visual Example of Node Proportion

X1

1000 samples
Total Dataset: 1000 samples

Calculation:
p(root) = 1000

1000 = 1.0
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Step 5: Calculate Impurity Reduction ∆i(t)

Definition: Impurity Reduction Formula

∆i(t) = i(t)− NtL

Nt
i(tL)−

NtR

Nt
i(tR)

X1

i(root) = 0.5
1000 samples

X3

i(tL) = 0.3
400 samples

X2

i(tR) = 0.2
600 samples

Calculation:
∆i = 0.5− 400

1000 × 0.3− 600
1000 × 0.2

= 0.5− 0.4× 0.3− 0.6× 0.2
= 0.5− 0.12− 0.12 = 0.26
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Step 6: Contribution of X1 in Tree 1

Example: X1 Contribution in Tree 1

ContributionX1,Tree 1 = p(root)×∆i(root) = 1.0× 0.26 = 0.26

Important:

Important: This is just X1’s contribution in ONE tree. We need
to do this for ALL trees!
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Step 6b: What’s Next?

Key Points: Remaining Steps

• Calculate X1’s contribution in Tree 2, Tree 3, ..., Tree M
• Sum all contributions and divide by M (number of trees)
• This gives us the final importance score for X1

Definition:

General Pattern: Repeat this process for every feature
(X1,X2,X3,X4, ...)
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Now Let’s Calculate X3 Contribution

Important:

Example: Calculate importance of X3 in the same Tree 1

X1

X3 X2

A B A B

Focus on X3:
Calculate p(left)×∆i(left)
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X3 Step 1: Calculate Node Proportion

Definition: Node Proportion for Left Child

p(left) = Nleft
N =

samples at left node
total samples

X1

1000 samples

X3

400 samples

X2

600 samples

Calculation:
p(left) = 400

1000 = 0.4
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X3 Step 2: Calculate Impurity Reduction

X3

i(left) = 0.3
400 samples

Class A

i(ll) = 0.1
150 samples

Class B

i(lr) = 0.2
250 samples

Calculation:
∆i = 0.3− 150

400 × 0.1− 250
400 × 0.2

= 0.3− 0.375× 0.1− 0.625× 0.2
= 0.3− 0.0375− 0.125 = 0.1375
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X3 Step 3: Final Contribution

Example: X3 Contribution in Tree 1

ContributionX3,Tree 1 = p(left)×∆i(left) = 0.4× 0.1375 = 0.055

Important:

Key Insight: Root nodes typically have higher contributions since
p(root) = 1.0
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Comparison: X1 vs X3 in Tree 1

Key Points: Comparison in Tree 1

• X1 contribution: 0.26 (at root)
• X3 contribution: 0.055 (at left child)

Example:

Why the difference?

• X1: p = 1.0, ∆i = 0.26 → Higher impact
• X3: p = 0.4, ∆i = 0.1375 → Lower impact
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Step 7: Aggregate Across All Trees

Tree 1

X1 contrib: 0.26

Tree 2

X1 contrib: 0.15

Tree 3

X1 contrib: 0.31

· · · Tree M

X1 contrib: 0.22

X1 Importance
0.26+0.15+0.31+···+0.22

M

Definition: Final Formula for X1

Importance(X1) =
1

M

M∑
m=1

∑
t∈Treem

1[jt = 1] · p(t) ·∆i(t)
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Step 8: Repeat for All Features

X1 X2

X3

X4Im
po

rta
nc
e
Sc
or
e

Features

0.24
0.21

0.32

0.12

Key Points: Feature Importance Result

X3 is most important (0.32), followed by X1 (0.24), then X2

(0.21), and X4 (0.12)
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Feature Importance: General Mathematical Formula

Definition: Complete Feature Importance Formula

For any feature Xj in a Random Forest with M trees:

Importance(Xj) =
1

M

M∑
m=1

∑
t∈φm

1(jt = j) · p(t) ·∆i(t)

Important:

This formula captures everything we just learned step-by-step!
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Formula Components Explained

Key Points: Formula Components

Where:

• M = number of trees in the forest
• φm = set of all nodes in tree m
• 1(jt = j) = indicator function (1 if node t uses feature Xj, 0
otherwise)

Example:

Remaining components:

• p(t) = Nt
N = proportion of samples at node t

• ∆i(t) = impurity reduction at node t
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Feature Importance1

𝜑1 𝜑𝑀 𝜑2 

… 

Importance of variable Xj for an ensemble of M trees φm is:

Imp(Xj) =
1

M

M∑
m=1

∑
t∈φm

1(jt = j)
[
p(t)∆i(t)

]
,

where jt denotes the variable used at node t, p(t) = Nt/N and ∆i(t) is
the impurity reduction at node t:

∆i(t) = i(t)− NtL

Nt
i(tL)−

Ntr

Nt
i(tR)

1Slide Courtesy Gilles Louppe
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Computed Feature Importance

Notebook: ensemble-feature-importance.html

sepal length sepal width petal length petal width
0.0

0.1

0.2

0.3

0.4

0.5
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