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PARAMETRIC NON -PARAMETRIC

# PARAM S GROWS
# PARAMS FIXED

WRT DATASET SIZE
WRT DATASET SIZE

LESSER ASSUMPTIONS
MAKE ASSUMPTIONS

( LIKE FUNCTIONAL FORM)

USUALLY SLOWER
USUALLY QUICKER

Eg : LONCAR MODELS , Eg : KNN, DTs
sum ( withSvm ( LINEAR

,
POLYNOMIAL) RBF)





Parametric vs Non-Parametric Models

Parametric Non-Parametric

Parameter Number of parame-

ters is fixed w.r.t

dataset size

Number of parame-

ters grows w.r.t. to

an increase in dataset

size

Speed Quicker (as the num-

ber of parameters are

less)

Longer (as number of

parameters are less)

Assumptions Strong Assumptions

(like linearity in Linear

Regression)

Very few (sometimes

no) assumptions

Examples Linear Regression KNN, Decision Tree
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Lazy vs Eager Strategies

Lazy Eager

Train Time 0 ̸= 0

Test Long (due to compar-

ison with train data)

Quick (as only

“parameters” are

involved)

Memory Store/Memorise en-

tire data

Store only learnt pa-

rameters

Utility Useful for online set-

tings

Examples KNN Linear Regression,

Decision Tree
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Important Considerations

• What are the features that will be considered for data

similarity?

• What is the distance metric that will be used to calculate

data similarity?

• What is the aggregation function that is going to be used?

• What are the number of neighbors that you are going to

take into consideration?

• What is the computational complexity of the algorithm that

you are implementing?
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Distance Metrics and Considerations



Important Considerations: Distance Metric

The Distance Metric acts as a measure of similarity between the

points.
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Important Considerations: Distance Metric

The Distance Metric acts as a measure of similarity between the
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Important Considerations: Distance Metric

The Distance Metric acts as a measure of similarity between the

points.

Manhattan Distance
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Important Considerations: Value of K

Choosing the correct value of K is difficult.

Low values of K will result in each point having a very high

influence on the final output =⇒ noise will influence the result

High values of K will result in smoother decision boundaries

=⇒ lower variance but also higher bias
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Important Considerations: Value of K
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Important Considerations: Value of K
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Aggregating data

There are different ways to go about aggregating the data from

the K nearest neighbors.

• Median

• Mean

• Mode
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KNN Algorithm and Implementation



KNN Algorithm

• Keep the entire dataset: (x , y)

• For a query vector q:

1. Find the k-closest data point(s) x∗

2. Predict y∗
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Challenges and Extensions



Curse of Dimensionality

With an increase in the number of dimensions:

1. the distance between points starts to increase
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Curse of Dimensionality

With an increase in the number of dimensions:

1. the distance between points starts to increase

2. the variation in distances between points starts to decrease
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Curse of Dimensionality

With an increase in the number of dimensions:

1. the distance between points starts to increase

2. the variation in distances between points starts to decrease

Due to this, distance metrics lose their efficacy as a similarity

metric.
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Approximate Nearest Neighbors

Doing an exhaustive search over all the points is time consuming,

especially if you have a large number of data points.
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Example of a big dataset
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Approximate Nearest Neighbors

Doing an exhaustive search over all the points is time consuming,

especially if you have a large number of data points.

If you are willing to sacrifice accuracy there are algorithms that can

give you improvements that go into orders of magnitude.
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Locality sensitive hashing

Normal hash functions H(x) try to keep the collision of points

across bins uniform.

Example of a big dataset
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Locality sensitive hashing

A locality sensitive hash (LSH) function L(x) would be designed

such that similar values are mapped to similar bins.

For such cases, all elements in a bin would be given the same label,

which again can be decided on the basis of different aggregation

methods

Example of a big dataset
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Practice and Summary



Pop Quiz: KNN Concepts

1. What happens to KNN performance as k approaches n (total

data points)?

2. Why is feature scaling important for KNN?

3. In which scenarios would you prefer KNN over parametric

methods?

4. What is the time complexity of finding k nearest neighbors

naively?
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Key Takeaways

• Non-parametric: KNN makes no assumptions about data

distribution

• Lazy Learning: No training phase, computation happens at

prediction time

• Choice of k : Small k → high variance, large k → high bias

• Distance Metrics: Choice affects performance significantly

• Curse of Dimensionality: Performance degrades in high

dimensions

• Scalability: Approximate methods needed for large datasets
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