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Parametric vs Non-Parametric Models

ber of parameters are
less)

Parametric Non-Parametric
Parameter Number of parame- | Number of parame-
ters is fixed w.r.t | ters grows w.r.t. to
dataset size an increase in dataset
size
Speed Quicker (as the num- | Longer (as number of

parameters are less)

Assumptions

Strong  Assumptions
(like linearity in Linear
Regression)

Very few (sometimes

no) assumptions

Examples

Linear Regression

KNN, Decision Tree
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Lazy vs Eager Strategies

Lazy Eager
Train Time | 0 #0
Test Long (due to compar- | Quick (as  only
ison with train data) | “parameters” are
involved)
Memory Store/Memorise en- | Store only learnt pa-
tire data rameters
Utility Useful for online set-
tings
Examples KNN Linear Regression,
Decision Tree
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Important Considerations

e What are the features that will be considered for data

similarity?
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Important Considerations

e What are the features that will be considered for data
similarity?

e What is the distance metric that will be used to calculate
data similarity?

e What is the aggregation function that is going to be used?

e What are the number of neighbors that you are going to
take into consideration?

e What is the computational complexity of the algorithm that
you are implementing?
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Distance Metrics and Considerations



Important Considerations: Distance Metric

The Distance Metric acts as a measure of similarity between the
points.
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Important Considerations: Distance Metric

The Distance Metric acts as a measure of similarity between the
points.

Manhattan Distance
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Important Considerations: Value of K

Choosing the correct value of K'is difficult.
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Important Considerations: Value of K

Choosing the correct value of K'is difficult.

Low values of K will result in each point having a very high

influence on the final output = noise will influence the result

High values of K will result in smoother decision boundaries
— lower variance but also higher bias
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Aggregating data

There are different ways to go about aggregating the data from
the K nearest neighbors.

e Median
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Aggregating data

There are different ways to go about aggregating the data from
the K nearest neighbors.

e Median
e Mean
e Mode
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KNN Algorithm and Implementation



KNN Algorithm

e Keep the entire dataset: (x,y)
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1. Find the k-closest data point(s) x*
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KNN Algorithm

e Keep the entire dataset: (x,y)
e For a query vector q:

1. Find the k-closest data point(s) x*
2. Predict y*
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Challenges and Extensions



Curse of Dimensionality

With an increase in the number of dimensions:
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Curse of Dimensionality

With an increase in the number of dimensions:

1. the distance between points starts to increase

1.6 1

1.4+

Mean distance between two points

2.5 5.0 7.5 10.0 12.5 15.0 17.5
Number of dimensions (d)

For a unifromly random dataset
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Curse of Dimensionality

With an increase in the number of dimensions:

1. the distance between points starts to increase
2. the variation in distances between points starts to decrease

102 4

101 4

Ratio of max to min distances

2.5 5.0 7.5 10.0 12.5 15.0 17.5
Number of dimensions (d)

For a unifromly random dataset
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Curse of Dimensionality

With an increase in the number of dimensions:

1. the distance between points starts to increase

Due to this, distance metrics lose their efficacy as a similarity
metric.
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Approximate Nearest Neighbors

Doing an exhaustive search over all the points is time consuming,

especially if you have a large number of data points.

Example of a big dataset
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Approximate Nearest Neighbors

Doing an exhaustive search over all the points is time consuming,
especially if you have a large number of data points.

If you are willing to sacrifice accuracy there are algorithms that can

give you improvements that go into orders of magnitude.

Such techniques include:

e Locality sensitive hashing
e Vector approximation files

e Greedy search in proximity neighborhood graphs
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Locality sensitive hashing

Normal hash functions H(x) try to keep the collision of points
across bins uniform.

Elements LSH Table Hash Table
° L(x)| Collisions |[H(x)| Collisions
° o HKX)

° ° L | 1(®®® 1 (e 0@
o, - |2 ° 2 lescoe
°, 3 |leoe0eee0e|| 3 (00000

4 ® 4 |00
® o 0 5 lee® 5| @
)

Example of a big dataset
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Locality sensitive hashing

Normal hash functions H(x) try to keep the collision of points

across bins uniform.

A locality sensitive hash (LSH) function L(x) would be designed

such that similar values are mapped to similar bins.

Elements
® o HX
e o0 Iy
®e -
®e
® . 0
°

Example of a big dataset

LSH Table Hash Table
L(x)| Collisions |[H(x)| Collisions
1 |le®e® 1 e @@
2 (] 2 |® LX)
3 o000 00®|| 3 (00000
4 ° 4 @0
5 |ee® 5 [




Locality sensitive hashing

A locality sensitive hash (LSH) function L(x) would be designed
such that similar values are mapped to similar bins.

For such cases, all elements in a bin would be given the same label,
which again can be decided on the basis of different aggregation

methods
Elements LSH Table Hash Table
° L(x)| Collisions |[H(x)| Collisions
o o HX 1 [eee® 1 e 0@
L ° L(x)

°, - |2 ° 2 |e °
o, 3 eceeeee|| 3 (00000

4 ° 4 @0

® o o 5 |ee® 5| @

)

Example of a big dataset
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Elements

g H(x)
e ® o Iy
®e -
)
2® o o

LSH Table Hash Table
L(x)| Collisions |[H(x)| Collisions
1 000 1 |0 @0
2 L X 2 |00 @
3 000000 3 |00000
4 |e@ ) 4 |@o
5 |0® 5 )




Practice and Summary



Pop Quiz: KNN Concepts

1. What happens to KNN performance as k approaches n (total
data points)?
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Pop Quiz: KNN Concepts

1. What happens to KNN performance as k approaches n (total
data points)?

2. Why is feature scaling important for KNN?

3. In which scenarios would you prefer KNN over parametric
methods?

4. What is the time complexity of finding k nearest neighbors
naively?
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Key Takeaways

e Non-parametric: KNN makes no assumptions about data
distribution
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Key Takeaways

e Non-parametric: KNN makes no assumptions about data
distribution

e Lazy Learning: No training phase, computation happens at
prediction time

e Choice of k: Small kK — high variance, large k — high bias
e Distance Metrics: Choice affects performance significantly

e Curse of Dimensionality: Performance degrades in high
dimensions

e Scalability: Approximate methods needed for large datasets
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