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Introduction and
Motivation



What is Lasso Regression?

Definition: LASSO

Least Absolute Shrinkage and Selection Operator

Key Points: Key Properties

• Uses L1 penalty (absolute values) instead of L2 penalty
• Leads to sparse solutions (many coefficients become

exactly zero)
• Performs automatic feature selection
• Popular for high-dimensional problems
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Mathematical
Formulation



Problem: Why Not Just Use Ridge?

Important: Limitation of Ridge Regression

Ridge regression shrinks coefficients but never makes them
exactly zero

Example: High-Dimensional Problem

• 1000 features, only 50 are truly relevant
• Ridge gives tiny but non-zero coefficients for irrelevant

features
• Model is not interpretable
• Need automatic feature selection!
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Lasso Objective Function

Definition: Constrained Form

θopt = arg min
θ

∥(y − Xθ)∥22 subject to ∥θ∥1 ≤ s

Theorem: Penalized Form (Using Lagrangian Duality)

Constrained form is equivalent to:

θopt = arg min
θ

∥(y − Xθ)∥22 + λ∥θ∥1︸ ︷︷ ︸
Lasso Objective

L1 Norm (Manhattan Distance)

∥θ∥1 = |θ1|+ |θ2|+ · · ·+ |θd| =
d∑

j=1

|θj|
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The Challenge: Non-Differentiability

Important: Problem

The L1 norm ∥θ∥1 =
∑

j |θj| is not differentiable at θj = 0

Cannot Use Standard Calculus

∂

∂θ

[
∥(y − Xθ)∥22 + λ∥θ∥1

]
= 0

This fails because ∂|θj|
∂θj

is undefined at θj = 0

Key Points: Solution Approaches

• Coordinate Descent: Optimize one coefficient at a time
• Subgradient Methods: Generalize derivatives to

non-smooth functions

6 / 37



Why Lasso Gives Sparsity



Sparsity: The Key Question

Important: Central Question

Why does Lasso produce sparse solutions while Ridge
doesn’t?

Key Points: Two Perspectives

• Geometric: Shape of constraint regions
• Algorithmic: Behavior of optimization algorithms

Example: Preview

We’ll see why Lp norms with p < 2 promote sparsity
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L2 Norm: Ridge Constraint
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Key Points: L2 Properties

• Shape: Perfect circle
• Constraint: θ20 + θ21 ≤ c
• Boundary: Smooth

everywhere
• Intersection: Rarely on axes
• Result: No sparsity

Important: Key Issue

Ridge shrinks coefficients but
never makes them exactly zero
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L1 Norm: Lasso Constraint
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Key Points: L1 Properties

• Shape: Diamond/rhombus
• Constraint: |θ0|+ |θ1| ≤ c
• Corners: Sharp at axes
• Intersection: High probability

on axes
• Result: Automatic sparsity!

Theorem: Sparsity Mechanism

Sharp corners at axes ⇒ solutions
with θ0 = 0 or θ1 = 0
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Lp Norm: Even More Sparsity (p < 1)
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Key Points: Lp Properties (p < 1)

• Shape: Highly concave
• Constraint: (|θ0|p + |θ1|p)1/p ≤ c
• Corners: Ultra-sharp at axes
• Sparsity: Extremely high
• Problem: Non-convex!

Important: Trade-off

Better sparsity but computational diffi-
culty (non-convex optimization)
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Sparsity Progression: L2 → L1 → Lp

Theorem: Key Insight

As p decreases from 2 to 1 to p < 1:

• Constraint regions become more pointed at axes
• Probability of intersection at axes increases
• Sparsity increases
• Optimization difficulty increases

Example: Why p = 1 is Special

• Still promotes sparsity (sharp corners)
• Remains convex (unlike p < 1) and Computationally tractable
• Perfect balance of sparsity and solvability
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L2 vs L1: Gradient Behavior

Key Points: L2 Penalty:
f(θ) = 1

2θ
2
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Gradient: df
dθ = θ

Shrinks proportionally to cur-
rent value

Key Points: L1 Penalty:
f(θ) = |θ|
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Subgradient: sign(θ) = ±1

Constant push toward zero
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L2 vs L1: Gradient Behavior

Example: Example: Start at θ = 5

L2: 5 → 2.5 → 1.25 → 0.625 → . . . (never exactly zero)
L1: 5 → 4.5 → 4.0 → 3.5 → . . . → 0 (reaches zero in finite
steps)
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Geometric Interpretation



Sample Dataset for Demonstration

Example: True Function

We’ll demonstrate Lasso on a simple linear relationship: y =
4x + 7
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Sample data from y = 4x + 7 with noise 14 / 37



Geometric Interpretation: L1 vs L2 Constraints
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Key Points: Key Insight

Diamond corners ⇒ exact zeros! Circle ⇒ no sparsity.
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Regularization Effects



Effect of λ on Solution Path

Important: Regularization Parameter

λ controls fit vs sparsity trade-off
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λ = 1.0 - Moderate
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λ = 1.25 - Higher
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Increasing Regularization Strength
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λ = 1.5 - Strong
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λ = 2.0 - Very strong

Key Points: Observation

As λ increases → more coefficients become exactly zero (au-
tomatic feature selection)
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Lasso Regularization Path
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Key Points: Key Observations

• Coefficients shrink to zero as λ increases
• Natural feature selection ordering
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Feature Selection
Properties



Lasso for Automatic Feature Selection

Definition: Automatic Feature Selection

Lasso performs regression and feature selection simultane-
ously by setting irrelevant coefficients to exactly zero

Key Points: Key Advantages

• Sparsity: Many coefficients → exactly zero
• Interpretability: Understand which features matter
• Efficiency: Fewer parameters, faster prediction
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Subgradient Methods



What is a Subgradient?
A subgradient generalizes the concept of gradient to convex but
non-differentiable functions

Example: Classic Example

For f(x) = |x|:

• f′(x) = 1 when x > 0

• f′(x) = −1 when x < 0

• f′(0) is undefined, but subgradient ∈ [−1, 1]

Important: Why Important for Lasso?

The L1 penalty |θj| is non-differentiable at θj = 0
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Subgradient: Visual Intuition

Non-differentiable function at x0

Important: Task

Find the ”derivative”
of f(x) at the non-
differentiable point x = x0

Construction

Find differentiable g(x) such
that:

• g(x0) = f(x0)
• g(x) ≤ f(x) for all x

21 / 37



Subgradient of |x| at x = 0

Supporting lines with slopes in
[−1, 1]

Subgradient Set

For f(x) = |x| at x = 0:

∂f(0) = [−1, 1]

Key Points: Key Insight

Multiple supporting lines ⇒ set of
valid subgradients

Important: Lasso Connection

This subgradient concept is ex-
actly what we need for the L1
penalty term!
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Coordinate Descent
Algorithm



Introduction to Coordinate Descent

Definition: Coordinate Descent

Optimization method: minimize one coordinate at a time

Key Points: Key Idea

• Hard: optimize all coordinates together
• Easy: optimize one coordinate at a time
• Perfect for non-differentiable Lasso!

Algorithm Overview

min
θ

f(θ) becomes min
θj

f(θ1, . . . , θj−1, θj, θj+1, . . . , θd)
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Coordinate Descent Properties

Key Points: Advantages

• No step-size: Exact 1D minimization
• Convergence: Guaranteed for convex Lasso
• Efficient: Closed-form updates

Selection Strategies

Cyclic, Random, or Greedy coordinate selection

Important: Process

Cycle through coordinates, optimizing one at a time until
convergence
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Worked Example



Coordinate Descent Example Setup

Learn y = θ0 + θ1x using coordinate descent on the dataset
below

x y
1 1
2 2
3 3

Setup

• Initial parameters: (θ0, θ1) = (2, 3)

• MSE = 14+3θ20+14θ21−12θ0−28θ1+12θ0θ1
3

• Using standard least squares (no regularization for
simplicity)
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Coordinate Descent Iterations

Iteration 1:
INIT: θ0 = 2 and θ1 = 3

Fix θ1 = 3, optimize θ0:
∂ MSE
∂θ0

= 6θ0 + 24 = 0
θ0 = −4

Iteration 2:
INIT: θ0 = −4 and θ1 = 3

Fix θ0 = −4, optimize θ1:
θ1 = 2.7
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After 2 iterations
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Visual Coordinate
Descent



Coordinate Descent: Setup

Example: Problem

Minimize

f(θ0, θ1) = (θ0 − 2)2 + (θ1 − 1)2

starting from (0, 3)
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Coordinate Descent: Step 1
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Coordinate Descent: Step 2
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Failure of Coordinate
Descent



Mathematical Derivation



Lasso Coordinate Descent: Setup

Lasso Objective

Minimize
n∑

i=1

(yi − ŷi)
2 + λ

d∑
j=0

|θj|

Key Points: Key Definitions

• ρj =
∑n

i=1 xij(yi − ŷ(−j)
i ) (partial residual correlation)

• zj =
∑n

i=1 x2ij (feature norm squared)
• ŷ(−j)

i = prediction without j-th feature
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Lasso Coordinate Descent: Setup

Coordinate Update Rule

Fix all θk for k ̸= j, minimize w.r.t. θj:

min
θj

n∑
i=1

(yi − ŷ(−j)
i − θjxij)

2 + λ|θj|
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Subgradient Analysis

Subgradient of Lasso Objective w.r.t. θj

∂

∂θj
(Lasso) = −2ρj + 2θjzj + λ

∂

∂θj
|θj|

Theorem: Subgradient of |θj|

∂

∂θj
|θj| =


+1 if θj > 0

[−1,+1] if θj = 0

−1 if θj < 0

32 / 37



Soft-Thresholding Solution

Theorem: Complete Lasso Update Rule

θj =


ρj+λ/2

zj
if ρj < −λ/2

0 if |ρj| ≤ λ/2
ρj−λ/2

zj
if ρj > λ/2

Important: Sparsity Mechanism

If correlation |ρj| ≤ λ/2 is weak, set θj = 0!

Key Points: Soft-Thresholding Properties

• Shrinkage: Coefficients pulled toward zero
• Selection: Small coefficients → exactly zero
• Smooth: Continuous shrinkage + selection
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Lasso vs Ridge
Comparison



Lasso vs Ridge: Key Differences
Property Ridge (L2) Lasso (L1)
Penalty

∑
θ2j

∑
|θj|

Sparsity Never exactly zero Can be exactly zero
Feature Selection No Yes
Differentiable Yes No (at θj = 0)
Solution Method Closed form Coordinate descent
Constraint Shape Circle Diamond
Best for Multicollinearity Feature selection

Key Points: When to Use Each

Lasso: High-dimensional data, need interpretable model, expect
few relevant features
Ridge: All features somewhat relevant, multicollinearity issues,
want stable solution
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Summary and
Applications



Lasso Regression: Summary

Theorem: Three-Part Understanding

Visual: L1 diamond constraint → sparsity at sharp corners
Algorithmic: Coordinate descent + soft-thresholding → ex-
act zeros
Mathematical: Subgradients handle non-differentiability el-
egantly

Key Points: Key Advantages

• Regression + feature selection simultaneously
• Sparse, interpretable models
• Handles high-dimensional data well
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Lasso Regression: Summary

Key Points: Limitations

• Arbitrary selection among correlated features
• May underperform when all features are relevant
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Applications and Extensions

Example: Real-World Applications

• Genomics: 20,000+ genes → identify disease markers
• Text Mining: 100k+ words → sentiment analysis features
• Signal Processing: Sparse signal reconstruction
• Finance: Risk factor selection from hundreds of indicators
• Marketing: Customer segmentation with key attributes

Key Points: Extensions

• Elastic Net: Combines L1 + L2 penalties
• Group Lasso: Selects groups of related features
• Fused Lasso: Enforces smoothness in ordered features
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