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Setup



Linear Regression

• Output is continuous in nature.

• Examples of linear systems:

• F = ma

• v = u + at
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Task at hand

• TASK: Predict Weight = f(height)

Height Weight

3 29

4 35

5 39

2 20

6 41

7 ?

8 ?

1 ?

The first part of the dataset is the training points. The latter ones

are testing points.
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Scatter Plot
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Matrix representation of the expression

• weight1 ≈ θ0 + θ1 · height1

• weight2 ≈ θ0 + θ1 · height2
• weightN ≈ θ0 + θ1 · heightN

weighti ≈ θ0 + θ1 · heighti
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Matrix representation of the expression


weight1

weight2

. . .

weightN

 =


1 height1

1 height2

. . . . . .

1 heightN


[
θ0

θ1

]

ŷn×1 = Xn×dθd×1

• θ0 - Bias Term/Intercept Term

• θ1 - Slope
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Extension to multiple dimensions

In the previous example y = f(x), where x is one-dimensional.

Examples in multiple dimensions.

One example is to predict the water demand of the IITGN campus

Demand = f(# occupants, Temperature)

Demand = Base Demand + K1 * # occupants + K2 * Temperature
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Intuition

We hope to:

• Learn f : Demand = f (#occupants,Temperature)

• From training dataset

• To predict the condition for the testing set
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Linear Relationship

We have

• xi =

[
Temperaturei

#Occupantsi

]

• Estimated demand for i th sample is
ˆdemandi = θ0 + θ1Temperaturei + θ2Occupantsi

• ˆdemandi = x ′Ti θ

• where θ =

θ0θ1
θ2


• and x ′i =

 1

Temperaturei

#Occupantsi

 =

[
1

xi

]
• Notice the transpose in the equation! This is because xi is a

column vector
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We can expect the following

• Demand increases, if # occupants increases, then θ2 is likely

to be positive

• Demand increases, if temperature increases, then θ1 is likely

to be positive

• Base demand is independent of the temperature and the #

occupants, but, likely positive, thus θ0 is likely positive.
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Normal Equation



Generalized Linear Regression Format

• Assuming N samples for training

• # Features = M


ŷ1

ŷ2
...

ŷN


N×1

=


1 x1,1 x1,2 . . . x1,M

1 x2,1 x2,2 . . . x2,M
...

...
... . . .

...

1 xN,1 xN,2 . . . xN,M


N×(M+1)


θ0

θ1
...

θM


(M+1)×1

Ŷ = Xθ
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ŷN


N×1

=


1 x1,1 x1,2 . . . x1,M

1 x2,1 x2,2 . . . x2,M
...

...
... . . .

...

1 xN,1 xN,2 . . . xN,M


N×(M+1)


θ0

θ1
...

θM


(M+1)×1
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Relationships between feature and target variables

• There could be different θ0, θ1 . . . θM . Each of them can

represents a relationship.

• Given multiples values of θ0, θ1 . . . θM how to choose which is

the best?

• Let us consider an example in 2d
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Relationships between feature and target variables

Out of the three fits, which one do we choose?

0 2 4

0

5

x

y

ŷ = 0 + 1x
ŷ = 2 + 1x
ŷ = −2 + 2x
Train data
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Relationships between feature and target variables

We have ŷ = 2 + 1x as one relationship.

0 2 4

0

2

4

6

x

y

ŷ = 2 + 1x
Train Data
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Relationships between feature and target variables

How far is our estimated ŷ from ground truth y?

0 2 4

0

2

4

6

ϵ1

ϵ2

ϵ3

ϵ4

x

y

ŷ = 2 + 1x
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Error terms

• yi = ŷi + ϵi where ϵi ∼ N (0, σ2)

• Critical Assumption: ϵi are independent and identically

distributed (i.i.d.)

• yi denotes the ground truth for i th sample

• ŷi denotes the prediction for i th sample, where ŷi = x⊤i θ

• ϵi denotes the error/residual for i th sample

• θ0, θ1: The parameters of the linear regression

• ϵi = yi − ŷi

• ϵi = yi − (θ0 + xi · θ1)
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• ϵi denotes the error/residual for i th sample

• θ0, θ1: The parameters of the linear regression

• ϵi = yi − ŷi
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Good fit

• |ϵ1|, |ϵ2|, |ϵ3|, ... should be small.

• minimize ϵ21 + ϵ22 + · · ·+ ϵ2N - L2 Norm

• minimize |ϵ1|+ |ϵ2|+ · · ·+ |ϵn| - L1 Norm
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Normal Equation

Y = Xθ + ϵ

To Learn: θ

Objective: minimize ϵ21 + ϵ22 + · · ·+ ϵ2N
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Normal Equation

ϵ =


ϵ1

ϵ2
...

ϵN



Objective: Minimize ϵT ϵ
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Normal Equation

ϵ =
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Derivation of Normal Equation

ϵ = y − Xθ

ϵ⊤ϵ = (y − Xθ)⊤(y − Xθ)

= y⊤y − 2y⊤Xθ + θ⊤X⊤Xθ

This is what we wish to minimize

20 / 68



Minimizing the objective function

∂ϵ⊤ϵ

∂θ
= 0

• ∂
∂θy

⊤y = 0

• ∂
∂θ (−2y⊤Xθ) = −2X⊤y

• ∂
∂θ (θ

⊤X⊤Xθ) = 2X⊤Xθ

Substitute the values in the top equation
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Normal Equation derivation

0 = −2X⊤y + 2X⊤Xθ

X⊤y = X⊤Xθ

θ̂OLS = (X⊤X)−1X⊤y

22 / 68



Worked out example

x y

0 0

1 1

2 2

3 3

Given the data above, find θ0 and θ1.
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Scatter Plot

0 1 2 3

0

1

2

3

x

y
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Worked out example

X =


1 0

1 1

1 2

1 3



X⊤ =

[
1 1 1 1

0 1 2 3

]

X⊤X =

[
4 6

6 14

]

Given the data above, find θ0 and θ1.
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Worked out example

(X⊤X)−1 =
1

20

[
14 −6

−6 4

]

X⊤y =

[
1 1 1 1

0 1 2 3

]
0

1

2

3

 =

[
6

14

]
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Worked out example

θ = (XTX )−1(XT y)

[
θ0

θ1

]
=

1

20

[
14 −6

−6 4

][
6

14

]
=

[
0

1

]
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Scatter Plot

0 1 2 3 4 5

0

1

2

3

4

5

x

y

Fit (ŷ = x)
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Effect of outlier

x y

1 1

2 2

3 3

4 0

Compute the θ0 and θ1.
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Scatter Plot

1 2 3 4

0

1

2

3

Outlier

x

y
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Worked out example

X =


1 1

1 2

1 3

1 4



XT =

[
1 1 1 1

1 2 3 4

]

XTX =

[
4 10

10 30

]

Given the data above, find θ0 and θ1.
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Worked out example

(X⊤X)−1 =
1

20

[
30 −10

−10 4

]

X⊤y =

[
6

14

]
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Worked out example

θ = (X⊤X)−1(X⊤y)

[
θ0

θ1

]
=

[
2

(−1/5)

]
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Scatter Plot

1 2 3 4 5

0

1

2

3

Outlier

x

y

Fit (ŷ = 2− x/5)

34 / 68



Basis Expansion



Variable Transformation

Transform the data, by including the higher power terms in the

feature space.

t s

0 0

1 6

3 24

4 36

The above table represents the data before transformation
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Variable Transformation

Add the higher degree features to the previous table

t t2 s

0 0 0

1 1 6

3 9 24

4 16 36

The above table represents the data after transformation

Now, we can write ŝ = f (t, t2)

Other transformations: log(x), x1 × x2
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A big caveat: Linear in what?!1

1. ŝ = θ0 + θ1 ∗ t is linear

2. Is ŝ = θ0 + θ1 ∗ t + θ2 ∗ t2 linear?

3. Is ŝ = θ0 + θ1 ∗ t + θ2 ∗ t2 + θ3 ∗ cos(t3) linear?
4. Is ŝ = θ0 + θ1 ∗ t + eθ2 ∗ t linear?

5. All except #4 are linear models!

6. Linear refers to the relationship between the parameters that

you are estimating (θ) and the outcome

1https://stats.stackexchange.com/questions/8689/

what-does-linear-stand-for-in-linear-regression
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3. Is ŝ = θ0 + θ1 ∗ t + θ2 ∗ t2 + θ3 ∗ cos(t3) linear?
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Basis Functions

• Linear regression only refers to linear in the parameters

• We can perform an arbitrary nonlinear transformation ϕ(x) of

the inputs x and then linearly combine the components of this

transformation.

• ϕ : RD → RK is called the basis function
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Basis Functions

Some examples of basis functions:

• Polynomial basis: ϕ(x) = {1, x , x2, x3, . . . }

• Fourier basis: ϕ(x) = {1, sin(x), cos(x), sin(2x), cos(2x), . . . }
• Gaussian basis: ϕ(x) = {1, exp(− (x−µ1)2

2σ2 ), exp(− (x−µ2)2

2σ2 ), . . . }
• Sigmoid basis: ϕ(x) = {1, σ(x − µ1), σ(x − µ2), . . . } where

σ(x) = 1
1+e−x
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Geometric Interpretation



Linear Combination of Vectors

Let v1, v2, v3, . . . , vi be vectors in RD , where D denotes the

dimensions.

A linear combination of v1, v2, v3, . . . , vi is of the following form

α1v1 + α2v2 + α3v3 + · · ·+ αivi

where α1, α2, α3, . . . , αi ∈ R

40 / 68
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Span of vectors

Let v1, v2, . . . , vi be vectors in IRD , with D dimensions.

The span of v1, v2, . . . , vi is denoted by SPAN{v1, v2, . . . , vi}

{α1v1 + α2v2 + · · ·+ αivi | α1, α2, . . . , αi ∈ IR}

It is the set of all vectors that can be generated by linear

combinations of v1, v2, . . . , vi .

If we stack the vectors v1, v2, . . . , vi as columns of a matrix V ,

then the span of v1, v2, . . . , vi is given as Vα where α ∈ IRi

41 / 68
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Example

Find the span of (

[
1

3

]
,

[
2

1

]
)

−2 0 2 4
−2

−1

0

1

2

3

4

v1

v2
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Example

−2 0 2 4
−2

−1

0

1

2

3

4

v1

v2

v3

v4

We have v3 = v1 + v2

We have v4 = v1 − v2
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Example

Simulating the above example in python using different values of

α1 and α2

−2 0 2
−3

−2

−1

0

1

2

3

Span((v1, v2)) ∈ R2
44 / 68



Example

Find the span of (
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4
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Can we obtain a point (x, y) s.t. x = 3y?

No

Span of the above set is along the line y = 2x
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−3
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−1

0

1

2
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Example

Find the span of (

11
1

 ,

 2

−2

2

)

x

0.0
0.5

1.0
1.5

2.0 y−2.0
−1.5

−1.0
−0.5

0.0
0.5

1.0

z

0.0

0.5

1.0

1.5

2.0

Origin

X1 = [1, 1, 1]

X2 = [2,−2, 2]

The span is the plane z = x or x3 = x1
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Example

Find the span of (
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Geometric Interpretation

Consider X and y as follows.

X =

 1 2

1 −2

1 2

 , y =

 8.8957

0.6130

1.7761


• We are trying to learn θ for ŷ = Xθ such that ||y − ŷ||2 is

minimised

• Consider the two columns of X. Can we write Xθ as the span

of (

11
1

 ,

 2

−2

2

)?
• We wish to find ŷ such that

argmin
ŷ∈SPAN{x̄1,x̄2,...,x̄D}

||y − ŷ||2
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Geometric Interpretation

Span of (

11
1

 ,

 2

−2

2

)

x

0
2

4
6

8
10 y−4

−2
0

2
4

z

0

2

4

6

8

10

Origin

X1 = [1, 1, 1]

X2 = [2,−2, 2]

y = [8.8957, 0.613, 1.7761]
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Geometric Interpretation

x

0
2

4
6

8
10 y−4

−2
0

2
4

z

0

2

4

6

8

10

Origin

X1 = [1, 1, 1]

X2 = [2,−2, 2]

y = [8.8957, 0.613, 1.7761]

ŷ = [5.3359, 0.613, 5.3359]

• We seek a ŷ in the span of the columns of X such that it is

closest to y
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Geometric Interpretation

x

0
2

4
6

8
10 y−4

−2
0

2
4

z

0

2

4

6

8

10

Origin

X1 = [1, 1, 1]

X2 = [2,−2, 2]

y = [8.8957, 0.613, 1.7761]

ŷ = [5.3359, 0.613, 5.3359]

y − ŷ = [3.5598, 0.0,−3.5598]

• This happens when y − ŷ ⊥ xj∀j or x⊤j (y − ŷ) = 0

• X⊤(y − Xθ) = 0

• X⊤y = X⊤Xθ or θ̂ = (X⊤X)−1X⊤y
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Regularization



The Problem: Overfitting

• Linear regression can overfit with:

• Too many features relative to data points

• Highly correlated features (multicollinearity)

• Noisy data with complex models

• Solution: Add penalty term to control model complexity

• This prevents coefficients from becoming too large
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Ridge Regression (L2 Regularization)

Objective Function:

J(θ) = MSE + λ

n∑
j=1

θ2j

• λ ≥ 0 is the regularization parameter

• Larger λ → more regularization → simpler model

• Effect: Shrinks coefficients toward zero

• Closed-form solution: θ = (X⊤X+ λI)−1X⊤y

• Note: (X⊤X+ λI) is always invertible for λ > 0
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Lasso Regression (L1 Regularization)

Objective Function:

J(θ) =
1

2m

m∑
i=1

(hθ(x(i))−y (i))2+λ
∑n

j=1 |θj |

• Uses absolute value penalty instead of squared penalty

• Key Property: Can set coefficients exactly to zero

• Automatic Feature Selection: Eliminates irrelevant features

• No closed-form solution → requires iterative optimization

• Use Case: When you suspect many features are irrelevant
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Ridge vs Lasso: Geometric Intuition

• Ridge (L2): Constraint region is a circle

• Smooth boundary → coefficients shrink smoothly

• Rarely sets coefficients exactly to zero

• Lasso (L1): Constraint region is a diamond

• Sharp corners at axes → coefficients can become exactly zero

• Performs automatic feature selection

• Elastic Net: Combines both penalties

J(θ) = MSE + λ1

∑
|θj |+ λ2

∑
θ2j
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Choosing Regularization Parameter λ

• λ = 0: No regularization (standard linear regression)

• λ very small: Minimal regularization

• λ very large: Heavy regularization (underfitting)

• Selection Methods:

• Cross-validation (most common)

• Information criteria (AIC, BIC)

• Validation curves

• Critical Insight: λ controls bias-variance tradeoff
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Dummy Variables and

Multicollinearity



Multi-collinearity

There can be situations where inverse of XTX is not computable.

This condition arises when the |XTX | = 0.

X =

1 1 2

1 2 4

1 3 6

 (1)

The matrix X is not full rank.
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Multi-collinearity

It arises when one or more predictor variables/features in X can be

expressed as a linear combination of others

How to tackle it?

• Regularize

• Drop variables

• Avoid dummy variable trap
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Dummy variables

Say Pollution in Delhi = P

P = θ0 + θ1*#Vehicles + θ1* Wind speed + θ3 * Wind Direction

But, wind direction is a categorical variable.

It is denoted as follows {N:0, E:1, W:2, S:3 }

Can we use the direct encoding?

Then this implies that S>W>E>N
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Dummy Variables

N-1 Variable encoding

Is it N? Is it E? Is it W?

N 1 0 0

E 0 1 0

W 0 0 1

S 0 0 0
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Dummy Variables

Which is better N variable encoding or N-1 variable encoding?

The N-1 variable encoding is better because the N variable

encoding can cause multi-collinearity.

Is it S = 1 - (Is it N + Is it W + Is it E)
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Binary Encoding

N 00

E 01

W 10

S 11

W and S are related by one bit.

This introduces dependencies between them, and this can cause

confusion in classifiers.
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Interpreting Dummy variables

Gender height

F . . .

F . . .

F . . .

M . . .

M . . .

Encoding

Is Female height

1 . . .

1 . . .

1 . . .

0 . . .

0 . . .
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Interpreting Dummy Variables

Is Female height

1 5

1 5.2

1 5.4

0 5.8

0 6

heighti = θ0 + θ1 * (Is Female) + ϵi

We get θ0 = 5.9 and θ1 = -0.7

θ0 = Avg height of Male = 5.9

θ0+ θ1 is chosen based (equal to) on 5, 5.2, 5.4 (for three records).

θ1 is chosen based on 5-5.9, 5.2-5.9, 5.4-5.9 θ1 = Avg. female

height (5+5.2+5.4)/3 - Avg. male height(5.9)
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Interpreting Dummy Variables

Alternatively, instead of a 0/1 coding scheme, we could create a

dummy variable

xi =

{
1 if i th person is female

−1 if i th person is male

yi = θ0 + θ1xi + ϵi =

{
θ0 + θ1 + ϵi if i th person is female

θ0 − θ1 + ϵi if i th person is male.

Now, θ0 can be interpreted as average person height. θ1 as the

amount that female height is above average and male height is

below average.
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Practice and Review



Pop Quiz: Linear Regression

1. What is the geometric interpretation of least squares?

2. When does the normal equation have a unique solution?

3. How do polynomial features help with non-linear relationships?

4. What are the assumptions behind linear regression?
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Critical Assumptions of Linear Regression

Before using linear regression, verify these assumptions:

• Linearity: Relationship between x and y is linear

• Independence: Observations are independent of each other

• Homoscedasticity: Error variance is constant across all

values of x

• Normality: Errors are normally distributed (for inference)

• No Multicollinearity: Features are not highly correlated

Violation Consequences:

• Biased coefficient estimates

• Invalid confidence intervals

• Poor prediction performance
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Key Takeaways

• Linear Model: Assumes linear relationship between features

and target

• Least Squares: Minimizes sum of squared residuals

• Normal Equation: Closed-form solution when X⊤X is

invertible

• Geometric View: Projection onto column space of design

matrix

• Feature Engineering: Basis expansion enables non-linear

modeling

• Foundation: Building block for more complex models
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