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Problem Setup



Classification Technique
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Classification Technique
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Aim: Probability(Tomatoes | Radius) ? or
More generally, P(y = 1|X = x)?
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Idea: Use Linear Regression
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P(X = Orange|Radius) = θ0 + θ1 × Radius

Generally,
P(y = 1|x) = Xθ
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Idea: Use Linear Regression

Prediction:
If θ0 + θ1 × Radius > 0.5 → Orange

Else → Tomato
Problem:
Range of Xθ is (−∞,∞)
But P(y = 1| . . .) ∈ [0, 1]
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Idea: Use Linear Regression
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Idea: Use Linear Regression
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Linear regression for classification gives a poor prediction!
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Ideal boundary
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• Have a decision function similar to the above (but not so
sharp and discontinuous)

• Aim: use linear regression still!
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Idea: Use Linear Regression
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Question. Can we still use Linear Regression?
Answer. Yes! Transform ŷ → [0, 1]
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Logistic/Sigmoid function



Logistic / Sigmoid Function

ŷ ∈ (−∞,∞)
ϕ = Sigmoid / Logistic Function (σ)
ϕ(ŷ) ∈ [0, 1]

σ(z) = 1

1 + e−z
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σ
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)
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Logistic / Sigmoid Function

z → ∞
σ(z) → 1
z → −∞
σ(z) → 0
z = 0
σ(z) = 0.5
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Logistic / Sigmoid Function

Question. Could you use some other transformation (ϕ) of ŷ s.t.

ϕ(ŷ) ∈ [0, 1]

Yes! But Logistic Regression works.
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Logistic / Sigmoid Function

P(y = 1|X) = σ(Xθ) =
1

1 + e−Xθ

Q. Write Xθ in a more convenient form (as P(y = 1|X),
P(y = 0|X))
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Logistic / Sigmoid Function

P(y = 1|X) = σ(Xθ) =
1

1 + e−Xθ

Q. Write Xθ in a more convenient form (as P(y = 1|X),
P(y = 0|X))

P(y = 0|X) = 1− P(y = 1|X) = 1− 1

1 + e−Xθ
=

e−Xθ

1 + e−Xθ

∴ P(y = 1|X)
1− P(y = 1|X) = eXθ =⇒ Xθ = log P(y = 1|X)

1− P(y = 1|X)
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Odds (Used in betting)

P(win)
P(loss)

Here,

Odds = P(y = 1)

P(y = 0)

log-odds = log P(y=1)
P(y=0) = Xθ
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Logistic Regression

Q. What is decision boundary for Logistic Regression?
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Logistic Regression

Q. What is decision boundary for Logistic Regression?
Decision Boundary: P(y = 1|X) = P(y = 0|X)

or 1
1+e−Xθ = e−Xθ

1+e−Xθ

or eXθ = 1

or Xθ = 0
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Learning Parameters

Could we use cost function as:

J(θ) =
∑

(yi − ŷi)
2

ŷi = σ(Xθ)

Answer: No (Non-Convex)
Why? Squared loss + sigmoid creates non-convex surface:

• Sigmoid σ(z) = 1
1+e−z is non-linear

• Composition (σ(Xθ)− y)2 has multiple local minima
• No guarantee gradient descent finds global optimum
• This is why we need cross-entropy loss instead!
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Deriving Cost Function
via Maximum Likelihood

Estimation



Cost function convexity
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Learning Parameters

Likelihood = P(D|θ)

P(y|X, θ) =
∏n

i=1 P(yi|xi, θ)
where y = 0 or 1
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Learning Parameters

Likelihood = P(D|θ)

P(y|X, θ) =
n∏

i=1

P(yi|xi, θ) =
n∏

i=1

{ 1

1 + e−xT
i θ

}yi{
1− 1

1 + e−xT
i θ

}1−yi

[Above: Similar to P(D|θ) for Linear Regression;
Difference Bernoulli instead of Gaussian]

− log P(y|X,θ) = Negative Log Likelihood = Cost function will be minimising = J(θ)
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Aside on Bernoulli Likelihood

• Assume you have a coin and flip it ten times and get (H, H,
T, T, T, H, H, T, T, T).

• What is p(H)?
• We might think it to be: 4/10 = 0.4. But why?
• Answer 1: Probability defined as a measure of long running

frequencies
• Answer 2: What is likelihood of seeing the above sequence

when the p(Head)=θ?
• Idea find MLE estimate for θ
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Aside on Bernoulli Likelihood

• p(H) = θ and p(T) = 1− θ

• What is the PMF for first observation P(D1 = x|θ), where x
= 0 for Tails and x = 1 for Heads?

• P(D1 = x|θ) = θx(1− θ)(1−x)

• Verify the above: if x = 0 (Tails), P(D1 = x|θ) = 1− θ and if
x = 1 (Heads), P(D1 = x|θ) = θ

• What is P(D1,D2, ...,Dn|θ)?
• P(D1,D2, ...,Dn|θ) = P(D1|θ)P(D2|θ)...P(Dn|θ)
• P(D1,D2, ...,Dn|θ) = θnh(1− θ)nt

• Log-likelihood = LL(θ) = nh log(θ) + nt log(1− θ)

• ∂LL(θ)
∂θ = 0 =⇒ nh

θ + nt
1−θ = 0 =⇒ θMLE = nh

nh+nt
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Cross Entropy Cost
Function



Learning Parameters

J(θ) = − log
{ n∏

i=1

{ 1

1 + e−xT
i θ

}yi{
1− 1

1 + e−xT
i θ

}1−yi
}

J(θ) = −
{ N∑

i=1

yi log(σθ(xi)) + (1− yi) log(1− σθ(xi))

}
This cost function is called cross-entropy.
Why?
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Interpretation of Cross-Entropy Cost Function

What is the interpretation of the cost function?
Let us try to write the cost function for a single example:

J(θ) = −yi log ŷi − (1− yi) log(1− ŷi)

First, assume yi is 0, then if ŷi is 0, the loss is 0; but, if ŷi is 1,
the loss tends towards infinity!
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Notebook: logits-usage
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Interpretation of Cross-Entropy Cost Function

What is the interpretation of the cost function?

J(θ) = −yi log ŷi − (1− yi) log(1− ŷi)

Now, assume yi is 1, then if ŷi is 0, the loss is huge; but, if ŷi is
1, the loss is zero!
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Cost function convexity
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Learning Parameters

∂J(θ)
∂θj

= − ∂

∂θj

{ N∑
i=1

yilog(σθ(xi)) + (1− yi)log(1− σθ(xi))

}

= −
N∑

i=1

[
yi

∂

∂θj
log(σθ(xi)) + (1− yi)

∂

∂θj
log(1− σθ(xi))

]
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Learning Parameters

∂J(θ)
∂θj

= −
N∑

i=1

[
yi

∂

∂θj
log(σθ(xi)) + (1− yi)

∂

∂θj
log(1− σθ(xi))

]

= −
N∑

i=1

[
yi

σθ(xi)

∂

∂θj
σθ(xi) +

1− yi
1− σθ(xi)

∂

∂θj
(1− σθ(xi))

]
Aside:

∂

∂zσ(z) =
∂

∂z
1

1 + e−z = −(1 + e−z)−2 ∂

∂z(1 + e−z)

=
e−z

(1 + e−z)2
=

(
1

1 + e−z

)(
e−z

1 + e−z

)
= σ(z)

{
1 + e−z

1 + e−z−
1

1 + e−z

}
= σ(z)(1− σ(z))
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Learning Parameters
Resuming from (1)

∂J(θ)
∂θj

= −
N∑

i=1

[
yi

σθ(xi)

∂

∂θj
σθ(xi) +

1− yi
1− σθ(xi)

∂

∂θj
(1− σθ(xi))

]

= −
N∑

i=1

[
yiσθ(xi)

σθ(xi)
(1−σθ(xi))

∂

∂θj
(xiθ)+

1− yi
1− σθ(xi)

(1−σθ(xi))
∂

∂θj
(1−σθ(xi))

]

= −
N∑

i=1

[
yi(1− σθ(xi))xj

i − (1− yi)σθ(xi)xj
i

]

= −
N∑

i=1

[
(yi − yiσθ(xi)− σθ(xi) + yiσθ(xi))xj

i

]

=

N∑
i=1

[
σθ(xi)− yi

]
xj

i
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Learning Parameters

∂J(θ)
θj

=
∑N

i=1

[
σθ(xi)− yi

]
xj

i

Now, just use Gradient Descent!
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Logistic Regression with feature transformation

−2.5 0.0 2.5

x1

−2

0

2

x
2

Oranges

Tomatoes

What happens if you apply logistic regression on the above data?
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Logistic Regression with feature transformation
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Predict oranges

Predict tomatoes

Linear boundary will not be accurate here. What is the technical
name of the problem? Bias!
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Logistic Regression with feature transformation

ϕ(x) =


ϕ0(x)
ϕ1(x)

...
ϕK−1(x)

 =



1
x
x2
x3
...

xK−1


∈ RK
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Logistic Regression with feature transformation
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Using x21, x22 as additional features, we are able to learn a more
accurate classifier.

37 / 62



Logistic Regression with feature transformation

How would you expect the probability contours look like?
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Multi-Class Prediction
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I. virginica

How would you learn a classifier? Or, how would you expect the
classifier to learn decision boundaries?
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Multi-Class Prediction
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I. versicolor

I. virginica

1. Use one-vs.-all on Binary Logistic Regression
2. Use one-vs.-one on Binary Logistic Regression
3. Extend Binary Logistic Regression to Multi-Class Logistic

Regression
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Multi-Class Prediction
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I. virginica

1. Learn P(setosa (class 1)) = F(Xθ1)

2. P(versicolor (class 2)) = F(Xθ2)

3. P(virginica (class 3)) = F(Xθ3)

4. Goal: Learn θi∀i ∈ {1, 2, 3}
5. Question: What could be an F?
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Multi-Class Prediction

4 6 8

sepal length (cm)

2

3

4

se
p

al
w

id
th

(c
m

)

I. setosa

I. versicolor
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1. Question: What could be an F?

2. Property:
∑3

i=1F(Xθi) = 1

3. Also F(z) ∈ [0, 1]

4. Also, F(z) has squashing proprties: R 7→ [0, 1]
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Softmax

Z ∈ Rd

F(zi) =
ezi∑d
i=1 ezi

∴
∑

F(zi) = 1

F(zi) refers to probability of class i
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Softmax for Multi-Class Logistic Regression

k = {1, . . . , k}classes

θ =


............
θ1θ2· · ·θk
............


P(y = k|X, θ) = eXθk∑K

k=1 eXθk
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Softmax for Multi-Class Logistic Regression

For K = 2 classes,

P(y = k|X, θ) = eXθk∑K
k=1 eXθk

P(y = 0|X, θ) = eXθ0

eXθ0 + eXθ1

P(y = 1|X, θ) = eXθ1

eXθ0 + eXθ1
=

eXθ1

eXθ1{1 + eX(θ0−θ1)}

=
1

1 + e−Xθ′

= Sigmoid!
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Multi-Class Logistic Regression Cost

Assume our prediction and ground truth for the three classes for
ith point is:

ŷi =

0.10.8
0.1

 =

ŷ1i
ŷ2i
ŷ3i



yi =

01
0

 =

y1i
y2i
y3i


meaning the true class is Class #2
Let us calculate −

∑3
k=1 yk

i log ŷk
i

= −(0× log(0.1) + 1× log(0.8) + 0× log(0.1))
Tends to zero
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Multi-Class Logistic Regression Cost

Assume our prediction and ground truth for the three classes for
ith point is:

ŷi =

0.30.4
0.3

 =

ŷ1i
ŷ2i
ŷ3i



yi =

01
0

 =

y1i
y2i
y3i


meaning the true class is Class #2
Let us calculate −

∑3
k=1 yk

i log ŷk
i

= −(0× log(0.1) + 1× log(0.4) + 0× log(0.1))
High number! Huge penalty for misclassification!
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Multi-Class Logistic Regression Cost
For 2 class we had:

J(θ) = −
{ N∑

i=1

yi log(σθ(xi)) + (1− yi) log(1− σθ(xi))

}
More generally,

J(θ) = −
{ N∑

i=1

yi log(ŷi) + (1− yi) log(1− ŷi)

}

J(θ) = −
{ N∑

i=1

yi log(ŷi) + (1− yi) log(1− ŷi)

}
Extend to K-class:

J(θ) = −
{ N∑

i=1

K∑
k=1

yk
i log(ŷk

i )

}
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Multi-Class Logistic Regression Cost

Now:

∂J(θ)
∂θk

=

N∑
i=1

[
xi

{
I(yi = k)− P(yi = k|xi, θ)

}]
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Hessian Matrix

The Hessian matrix of f(.) with respect to θ, written ∇2
θf(θ) or

simply as H, is the d × d matrix of partial derivatives,

∇2
θf(θ) =


∂2f(θ)
∂θ21

∂2f(θ)
∂θ1∂θ2

. . . ∂2f(θ)
∂θ1∂θn

∂2f(θ)
∂θ2∂θ1

∂2f(θ)
∂θ22

. . . ∂2f(θ)
∂θ2∂θn

...... . . . ...
∂2f(θ)
∂θn∂θ1

∂2f(θ)
∂θn∂θ2

. . . ∂
2f(θ)
∂θ2n


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Newton’s Algorithm

The most basic second-order optimization algorithm is Newton’s
algorithm, which consists of updates of the form,

θk+1 = θk −H1
kgk

where gk is the gradient at step k. This algorithm is derived by
making a second-order Taylor series approximation of f(θ)
around θk:

fquad(θ) = f(θk) + gT
k (θ − θk) +

1

2
(θ − θk)

THk(θ − θk)

differentiating and equating to zero to solve for θk+1.
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Learning Parameters
Now assume:

g(θ) =
N∑

i=1

[
σθ(xi)− yi

]
xj

i = X⊤(σθ(X)− y)

πi = σθ(xi)

Let H represent the Hessian of J(θ)

H =
∂

∂θ
g(θ) = ∂

∂θ

N∑
i=1

[
σθ(xi)− yi

]
xj

i

=

N∑
i=1

[
∂

∂θ
σθ(xi)xj

i −
∂

∂θ
yixj

i

]
=

N∑
i=1

σθ(xi)(1− σθ(xi))xixT
i

= X⊤diag(σθ(xi)(1− σθ(xi)))X
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Iteratively reweighted least squares (IRLS)

For binary logistic regression, recall that the gradient and
Hessian of the negative log-likelihood are given by:

g(θ)k = X⊤(πk − y)

Hk = X⊤SkX

Sk = diag(π1k(1− π1k), . . . , πnk(1− πnk))

πik = sigm(xiθk)

The Newton update at iteraion k + 1 for this model is as follows:

θk+1 = θk −H−1gk = θk + (XTSkX)−1XT(y − πk)

= (XTSkX)−1[(XTSkX)θk+XT(y−πk)] = (XTSkX)−1XT[SkXθk+y−πk]
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Regularized Logistic Regression

Unregularised:

J1(θ) = −
{ N∑

i=1

yi log(σθ(xi)) + (1− yi) log(1− σθ(xi))

}
L2 Regularization:

J(θ) = J1(θ) + λθTθ

L1 Regularization:

J(θ) = J1(θ) + λ|θ|

54 / 62



Class Imbalance Handling



The Problem: Imbalanced Data

• Class Imbalance: When one class has significantly more
samples than others

• Examples:
◦ Medical diagnosis: 99% healthy, 1% disease
◦ Fraud detection: 99.9% legitimate, 0.1% fraud
◦ Email spam: 90% legitimate, 10% spam

• Problem: Standard logistic regression biased toward majority
class

• Naive approach fails: Predicting all samples as majority
class
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Impact on Model Performance

With 99% class 0, 1% class 1:

• Naive classifier: Always predict class 0 → 99% accuracy!
• But: 0% recall for class 1 (complete failure)
• Standard metrics misleading:

◦ Accuracy = 99% (looks great, but useless)
◦ Precision for class 1 = undefined (no predictions)
◦ Recall for class 1 = 0% (misses all positive cases)

• Need: Better evaluation metrics and techniques
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Solution 1: Weighted Loss Function

Modify the cost function to penalize minority class errors
more:

J(θ) = −
N∑

i=1

wi
[
yi log(σ(θ⊤xi)) + (1− yi) log(1− σ(θ⊤xi))

]

• Class weights: wi = w0 if yi = 0, wi = w1 if yi = 1

• Common choice: w1 =
N0
N1

(inverse frequency)
• Effect: Forces model to pay attention to minority class
• Implementation: Available in most ML libraries (sklearn:

class_weight='balanced')
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Solution 2: Threshold Adjustment

• Standard: Predict class 1 if P(y = 1|x) > 0.5

• Imbalanced: Predict class 1 if P(y = 1|x) > τ where τ < 0.5

• Threshold selection:
◦ Plot precision-recall curve or ROC curve
◦ Choose τ that optimizes F1-score or business metric
◦ Cross-validation to avoid overfitting

• Trade-off: Lower threshold → higher recall, lower precision
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Solution 3: Resampling Techniques

Modify the training data distribution:
• Undersampling: Remove samples from majority class

◦ Pro: Faster training, balanced classes
◦ Con: Loss of information, smaller dataset

• Oversampling: Duplicate samples from minority class
◦ Pro: No information loss
◦ Con: Risk of overfitting, larger dataset

• SMOTE: Generate synthetic minority examples
◦ Creates new samples between existing minority samples
◦ More sophisticated than simple duplication
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Evaluation Metrics for Imbalanced Data

• Don’t use accuracy alone!
• Precision: TP

TP+FP (of predicted positives, how many
correct?)

• Recall/Sensitivity: TP
TP+FN (of actual positives, how many

found?)
• F1-Score: 2×Precision×Recall

Precision+Recall (harmonic mean)
• ROC-AUC: Area under ROC curve (threshold-independent)
• PR-AUC: Area under precision-recall curve (better for

imbalanced data)
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Practice and Review



Pop Quiz: Logistic Regression

1. Why can’t we use linear regression for classification problems?
2. What is the key difference between sigmoid and softmax

functions?
3. Why do we use cross-entropy loss instead of squared error?
4. How does regularization help in logistic regression?
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Key Takeaways

• Probabilistic Model: Outputs probabilities via sigmoid
function

• Linear Decision Boundary: Creates linear separation in
feature space

• Maximum Likelihood: Optimized using gradient-based
methods

• Cross-Entropy Loss: Appropriate for classification problems
• No Closed Form: Requires iterative optimization (gradient

descent)
• Regularization: L1/L2 help prevent overfitting

62 / 62


	Problem Setup
	Logistic/Sigmoid function
	Deriving Cost Function via Maximum Likelihood Estimation
	Cross Entropy Cost Function
	Class Imbalance Handling
	Practice and Review

