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Classification Technique
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Classification Technique

1.0 Oranges
Hl Tomatoes
0.5
0.0
0.0 0.5

Radius

Aim: Probability(Tomatoes | Radius) ? or
More generally, P(y =1|X = x)?‘
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|dea: Use Linear Regression

Oranges
Il Tomatoes

T
0.0 0.5 1.0
Radius

P(X = Orange|Radius) = 6y + 01 x Radius

Generally,
P(y =1]x) = X0



|dea: Use Linear Regression

Prediction:

If 6y + 01 x Radius > 0.5 — Orange
Else — Tomato

Problem:

Range of X0 is (—o0, 00)

But P(y=1]...) € ]0,1]
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|dea: Use Linear Regression

Oranges
Il Tomatoes
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|dea: Use Linear Regression

Oranges
1.0 Hl Tomatoes

0.5
0.0 J_ :
0 1 2
Radius

Linear regression for classification gives a poor prediction!
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|deal boundary

Il Deccision Boundary
Oranges
Hl Tomatoes

0.0 0.5
Radius

« Have a decision function similar to the above (but not so
sharp and discontinuous)

« Aim: use linear regression still!



|dea: Use Linear Regression

Logistic Regression

Hl Dccision Boundary

Oranges
= wm == B Tomatoes
B Sigmoid
0.0 0.5 1.0
Radius

Question. Can we still use Linear Regression?
Answer. Yes! Transform y — [0, 1]
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Logistic/Sigmoid function



Logistic / Sigmoid Function

)A/e (—O0,00)
¢ = Sigmoid / Logistic Function (o)
¢(¥) € [0,1]

1.0
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Logistic / Sigmoid Function

Z — OO
o(z) =1
Z— —O0
o(z) =0
z=0
o(z)=0.5

12 /62



Logistic / Sigmoid Function

Question. Could you use some other transformation (¢) of ¥ s.t.

¢(y) € [0,1]

Yes! But Logistic Regression works.
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Logistic / Sigmoid Function

1
14 e X0

Q. Write X0 in a more convenient form (as P(y = 1|X),
Ply = 0[X))

Py =1|X) = o(X0) =
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Logistic / Sigmoid Function

1
P(y =1|X) = 0(X6) = 14 X0
Q. Write X0 in a more convenient form (as P(y = 1|X),
P(y = 0[X))
1 e X0

Ply=0X)=1-Ply=1[X)=1-

1+e X0 14eX6

P(y=1]X) X0

. Ply = 1|X)
C1-Py=1]X)

X0 =lopg ——M—~
- 1Py =1X)
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Odds (Used in betting)

P(win)
P(loss)
Here,
_ Ply=1)
Odds = Ply=0)

log-odds = log ggy;ég = X0

16 /62



Logistic Regression

Q. What is decision boundary for Logistic Regression?
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Logistic Regression

Q. What is decision boundary for Logistic Regression?
Decision Boundary: P(y = 1|X) = P(y = 0|X)

1 o e—XG
OF 11 X6 = 1{e X0
or X0 =1

or X0 =0
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Learning Parameters

Could we use cost function as:

5/,' = O'(XG)

Answer: No (Non-Convex)

Why? Squared loss + sigmoid creates non-convex surface:

« Sigmoid o(z) = is non-linear

1
Tte?
- Composition (o(X8) — y)? has multiple local minima
« No guarantee gradient descent finds global optimum

« This is why we need cross-entropy loss instead!

19/62



Deriving Cost Function

via Maximum Likelihood
Estimation



Cost function convexity

RMSE contour plot
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Learning Parameters

Likelihood = P(D|0)

P(y1X,0) =TTy P(yilxi, 0)
wherey =0 or 1
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Learning Parameters

Likelihood = P(D|0)

Py X,0) = HPy,yx,, _H{l}%’{l_lm}l—w

1+e_X9 1+e

[Above: Similar to P(D|f) for Linear Regression;

Difference Bernoulli instead of Gaussian]

—log P(y|X, 8) = Negative Log Likelihood = Cost function will be minir
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Aside on Bernoulli Likelihood

« Assume you have a coin and flip it ten times and get (H, H,
T, T, T,HHTTT).

« What is p(H)?
« We might think it to be: 4/10 = 0.4. But why?

Answer 1: Probability defined as a measure of long running
frequencies

Answer 2: What is likelihood of seeing the above sequence
when the p(Head)=67

Idea find MLE estimate for 6
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Aside on Bernoulli Likelihood

p(H)y=0and p(T)=1-16

« What is the PMF for first observation P(D; = x|6), where x
= 0 for Tails and x = 1 for Heads?

- P(D; = x|6) = 6*(1 — 6)(0—>)

« Verify the above: if x = 0 (Tails), P(D; = x|f) =1 — 0 and if
x = 1 (Heads), P(D; = x|6) = 6

« What is P(D;, Ds, ..., D,|0)?

« P(Dy, Dy, ..., Dy|0) = P(Dy|0)P(D26)...P(Dy|0)

« P(Dy, Do, ..., Dyl0) = 07 (1 — )

« Log-likelihood = LL(0) = nplog(#) + nlog(l — )

L 9LL®)

— np ng __ . np
00 0 0 + 1-60 — 0 Omie = np+n:
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Cross Entropy Cost
Function



Learning Parameters

J(6) = —log { f[ {l_i_i—xfe}yi{l _ Hiﬂfe}lyl}

i=1

N
J(0) = —{ Zy,- log(og(xi)) + (1 — yi) log(1 — ag(x,-))}
i=1

This cost function is called cross-entropy.
Why?
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Interpretation of Cross-Entropy Cost Function

What is the interpretation of the cost function?
Let us try to write the cost function for a single example:
J(0) = —yilogyi — (1 — yi) log(1 — ¥)
First, assume y; is 0, then if y; is 0, the loss is O; but, if y;is 1,
the loss tends towards infinity!

Cost when y = 0
=) e

=)

2

0.5 1.0
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Notebook: logits-usage
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Interpretation of Cross-Entropy Cost Function

What is the interpretation of the cost function?

J(0) = —yilog yi — (1 — yi) log(1 — ¥)
Now, assume y; is 1, then if y; is 0, the loss is huge; but, if y; is

1, the loss is zero!

Cost when y = 1
S SN

o

2

0.5 1.0
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Cost function convexity

Cross-entropy contour plot
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Learning Parameters

8J( { Zy,/Og (og(x7)) + (1 — yi)log(1 — UG(XI))}

N

S z; [y, ~log(og(xi)) + (1 — y,-)aaajlog(l — U@(Xi)):|
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Learning Parameters

N
8;(0?) =— Z: [Yiaaej log(oa(x;)) + (1 — )/i)(%/og(l - UG(X"))}

i=1

N
o ,21: |:0-9(XI') 879109()(') * 1 —op(xi) 391'(1 ‘79(X/))}

Aside:

-
aZU C Oz1+e?

e’ 1 e’ (2) 1+e? 1
- = =o0(z —
(14 e2)2 1+ez)\1+e2 1oz 11ez

=0(z)(1 —0o(2)

0
= —(1 + e_z)_2872(1 + e—Z)
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Learning Parameters

Resuming from (1)
N

aJo) yi 0 l-yi O .
35 =2 |rata ) st~ o)

N
= yi76(2%) —op(X; i X; L/ —op(x; i —og(x;
- z; { g (1—o4( '))aej( ,9)+1_00(Xl_)(1 o '))aej(l o ,))]

N ) ;
- Z {y,-(l —op(xi))x— (1 — y;)ae(XM}
N

=) |:(yi = Yio9(x;) — o6(x;) + y,-O'g(Xi)))J,::|

i=1

= Z [Ua(xi) - y/'] X,

i=1
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Learning Parameters

= iy [o0() — il

Now, just use Gradient Descent!
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Logistic Regression with feature transformation

Oranges
L]
. Il Tomatoes
8 v}  ege
W *
e ®

-2

—2.5 0.0 2.5
x

What happens if you apply logistic regression on the above data?
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Logistic Regression with feature transformation

Oranges Predict oranges
Hl Tomatoes Predict tomatoes
D4 ®
S 0 1 L .’..:
Woee *
pegr O
_9 4

—2.5 0.0 2.5
T

Linear boundary will not be accurate here. What is the technical
name of the problem? Bias!
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Logistic Regression with feature transformation

1
do(x) :2
d(x) = ¢1:(X) =| 8 |€eRrX
PK-1 (X) :
K1
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Logistic Regression with feature transformation

Oranges Predict oranges
Hl Tomatoes Predict tomatoes
U 3
] ®e" o
8 07 0*?30.
e @
_9 -

T T
—-2.5 0.0 2.5
T

Using x3, X3 as additional features, we are able to learn a more
accurate classifier.
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Logistic Regression with feature transformation

How would you expect the probability contours look like?
1.100

2_

=
o=
5
S

ONHEROYCO U

P(Tomatoes)

SOcoo0000
ONWHEROY]
OO ~JO— W00
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Multi-Class Prediction

/é\ e

S 4 o I setosa

= o¢ o I versicolor

3 o8 > g8°©

E 3% o L virginica

I o

g 2 * ; .
6 8

sepal length (cm)

How would you learn a classifier? Or, how would you expect the
classifier to learn decision boundaries?
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Multi-Class Prediction

B

E g o I setosa

= e 1. versicolor

g BePe

£ 37 e I virginica

% 5 ° t L P 1

190] T I
4 6 8

sepal length (cm)

1. Use one-vs.-all on Binary Logistic Regression

2. Use one-vs.-one on Binary Logistic Regression

3. Extend Binary Logistic Regression to Multi-Class Logistic
Regression
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Multi-Class Prediction

E

g o [ setosa

= o I versicolor

g3 o L. virginica

g 5 ° ‘. T oF

2] T T T
4 6 8

sepal length (cm)

Learn P(setosa (class 1)) = F(X6,)
P(versicolor (class 2)) = F(X62)
P(virginica (class 3)) = F(X85)
Goal: Learn 6¥Vi€ {1,2,3}
Question: What could be an F7?

SAREE T
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Multi-Class Prediction

’E\ .

Ly o [ setosa

= o L versicolor

= wewe

g3 o I virginica

= o X ¥ F 7

221 488

n I T T
4 6 8

sepal length (cm)

. Question: What could be an F?

. Property: 3% | F(X0,) =1

. Also F(z) € [0,1]

. Also, F(z) has squashing proprties: R [0, 1]

B W N =
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Softmax

Ze R4
eZ[

d :
Doy €

Z]:(Z,') =1

F(z) refers to probability of class i

F(Z,') =

43/
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Softmax for Multi-Class Logistic Regression

k={1,..., k}classes

0= 610 -0,

0
Ply =KX 0) = 55,
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Softmax for Multi-Class Logistic Regression

For K = 2 classes,

X0«
Zf:l X0«

eXbo
P(y =0|X,0) = X0y 1 X0r

eXo1 eXo1

T X0 4 XO1 T XOi[] 4 X(0—01))
!
14X

= Sigmoid!

P(y = k| X,0) =

P(y =1|X,0)
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Multi-Class Logistic Regression Cost

Assume our prediction and ground truth for the three classes for

it" point is:
0.1 ¥
yi= 08| = |y
0.1 v}
0] [
o

meaning the true class is Class #2
3 N
Let us calculate — > "}_, y¥log y¥

= —(0 x log(0.1) + 1 x log(0.8) + 0 x log(0.1))

Tends to zero
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Multi-Class Logistic Regression Cost

Assume our prediction and ground truth for the three classes for

it" point is:
0.3 v
vi= 04| = |y
0.3 %
0] [y}
yvi=|1| = |y
of W

meaning the true class is Class #2

Let us calculate — >73_, y¥log y¥
= —(0 x log(0.1) + 1 x log(0.4) + 0 x log(0.1))

High number! Huge penalty for misclassification!
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Multi-Class Logistic Regression Cost

For 2 class we had:
N

10) = —{ 3 yilog(op(x)) + (1 — yi) log(1 - Ue(Xi))}
=1

More generally,

N
J(0) = —{ > yilog(9) + (1 — yi) log(1 — yi)}
i=1

N
6) = ~{ 3 yious) + (1= v os(1 - 5
i=1

Extend to K-class:

50 =~ iﬁmogm}

i=1 k=1
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Multi-Class Logistic Regression Cost
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Hessian Matrix

The Hessian matrix of f(.) with respect to 6, written V4f(0) or
simply as H, is the d x d matrix of partial derivatives,

ro2f(0) 0%f0) 9%f(0) T
80% 001002 * " 90100,
82f(9) 82f(9) 82f(9)
00200, 89% C 00200,

Vo) =

92f0) 92F0)  0%A0)
| 96,00, 90,00, " 962 |
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Newton's Algorithm

The most basic second-order optimization algorithm is Newton's
algorithm, which consists of updates of the form,

Opr1 = Ok — Higy

where gy is the gradient at step k. This algorithm is derived by
making a second-order Taylor series approximation of f(0)
around 0y:

Fausa0) = 1104) + 81(0 — ) + 3 (0 — 0 TEL(0 — )

differentiating and equating to zero to solve for 6.
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Learning Parameters

Now assume:
N .
0 =3 [outx) X = X (20 - )
i=1
T = UG(XI)

Let H represent the Hessian of J(6)

N
H= 2 g(0) = 2 {“Q(X") _y"}a’:

i=1

= XTdiag(ag(X;)(l —0p(x1)))X

= Z [09 xi) %, (‘)Hy' } 209 (xi) (1 = ag(xi))xix]
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|teratively reweighted least squares (IRLS)

For binary logistic regression, recall that the gradient and
Hessian of the negative log-likelihood are given by:

g(0)k = X" (mk — y)
H, = X'S5X
Sk = diag(mix(1 — m1k), -, Tpi(1 — Tpi))
ik = sigm(xify)
The Newton update at iteraion k + 1 for this model is as follows:
Op1 = Ok —H 'ge = 0k + (XTSX) ' X (y — )

= (XTSX) T (XTSX) 0 XT (y=mk)] = (XTS6X) T XT[SXOt-y—4]
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Regularized Logistic Regression

Unregularised:

N
7(0) = —{ 3 yilog(op(x)) + (1 — yi) log(1 — Ue(Xi))}
=1

L2 Regularization:
JO) = J1(0) + \07H
L1 Regularization:

J(0) = 1(0) + A6
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Class Imbalance Handling



The Problem: Imbalanced Data

- Class Imbalance: When one class has significantly more
samples than others
- Examples:
Medical diagnosis: 99% healthy, 1% disease
Fraud detection: 99.9% legitimate, 0.1% fraud
Email spam: 90% legitimate, 10% spam
- Problem: Standard logistic regression biased toward majority
class
- Naive approach fails: Predicting all samples as majority
class
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Impact on Model Performance

With 99% class 0, 1% class 1:

- Naive classifier: Always predict class 0 — 99% accuracy!
« But: 0% recall for class 1 (complete failure)

- Standard metrics misleading:

Accuracy = 99% (looks great, but useless)
Precision for class 1 = undefined (no predictions)
Recall for class 1 = 0% (misses all positive cases)

- Need: Better evaluation metrics and techniques
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Solution 1: Weighted Loss Function

Modify the cost function to penalize minority class errors
more:

JO) == wi [y,- log(a(0"x;)) + (1 — ;) log(1 — (6" x;))
i=1

« Class weights: w;=wp if y;=0, wi=wy if y;=1

- Common choice: w; = %—(1’ (inverse frequency)

- Effect: Forces model to pay attention to minority class

- Implementation: Available in most ML libraries (sklearn:
class_weight='balanced')
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Solution 2: Threshold Adjustment

- Standard: Predict class 1 if P(y = 1|x) > 0.5

- Imbalanced: Predict class 1 if P(y = 1|x) > 7 where 7 < 0.5
« Threshold selection:

Plot precision-recall curve or ROC curve
Choose 7 that optimizes Fl-score or business metric
Cross-validation to avoid overfitting

« Trade-off: Lower threshold — higher recall, lower precision
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Solution 3: Resampling Techniques

Modify the training data distribution:

- Undersampling: Remove samples from majority class

Pro: Faster training, balanced classes
Con: Loss of information, smaller dataset

« Oversampling: Duplicate samples from minority class
Pro: No information loss
Con: Risk of overfitting, larger dataset

- SMOTE: Generate synthetic minority examples

Creates new samples between existing minority samples
More sophisticated than simple duplication
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Evaluation Metrics for Imbalanced Data

- Don’t use accuracy alone!

 Precision: %3 (of predicted positives, how many
correct?)
- Recall /Sensitivity: %, (of actual positives, how many

found?)

. 2XxPrecision x Recall
F1-Score: Precision+Recall

- ROC-AUC: Area under ROC curve (threshold-independent)

« PR-AUC: Area under precision-recall curve (better for
imbalanced data)

(harmonic mean)
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Practice and Review



Pop Quiz: Logistic Regression

1. Why can't we use linear regression for classification problems?

2. What is the key difference between sigmoid and softmax
functions?

3. Why do we use cross-entropy loss instead of squared error?

4. How does regularization help in logistic regression?
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Key Takeaways

« Probabilistic Model: Outputs probabilities via sigmoid
function

« Linear Decision Boundary: Creates linear separation in
feature space

- Maximum Likelihood: Optimized using gradient-based
methods

« Cross-Entropy Loss: Appropriate for classification problems

- No Closed Form: Requires iterative optimization (gradient
descent)

- Regularization: L1/L2 help prevent overfitting
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