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Classification Technique
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0.0
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Aim: Probability(Tomatoes | Radius) ? or
More generally, P(y = 1|X = x)? ‘
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ldea: Use Linear Regression
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P(X = Orange|Radius) = 0y + 61 x Radius

Generally,
Py =1]x) = X0
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ldea: Use Linear Regression

Prediction:

If 6o + 61 x Radius > 0.5 — Orange
Else — Tomato

Problem:

Range of X8 is (—o0, o0)

ButP(y =1]...) € [0,1]
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ldea: Use Linear Regression
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Linear regression for classification gives a poor
prediction!
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Ideal boundary
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- Have a decision function similar to the above (but not
so sharp and discontinuous)
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Ideal boundary

Hl Deccision Boundary
Oranges
Hl Tomatoes

0.0 0.5
Radius

- Have a decision function similar to the above (but not
so sharp and discontinuous)

- Aim: use linear regression still!
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ldea: Use Linear Regression

Logistic Regression

Hll Deccision Boundary

Oranges
= mm == B Tomatoes
B Sigmoid
0.0 0.5 1.0
Radius

Question. Can we still use Linear Regression?
Answer. Yes! Transform y — [0,1]
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Logistic / Sigmoid Function

y € (_OO)OO)
¢ = Sigmoid / Logistic Function (o)
¢(y) € [0,1]
N 1
o(2) = 1+e2
1.0
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Logistic / Sigmoid Function
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Logistic / Sigmoid Function
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Logistic / Sigmoid Function

Question. Could you use some other transformation (¢)
of y s.t.

¢(y) € [0,1]
Yes! But Logistic Regression works.
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Logistic / Sigmoid Function

1
14 e-X0

Q. Write X6 in a more convenient form (as P(y = 1|X),
P(y = 0X))

Py =1[X) = 0(X0) =
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Logistic / Sigmoid Function

1
14 e-X0

Q. Write X6 in a more convenient form (as P(y = 1|X),
P(y = 0X))

P(y = 1|X) = 0(X8) =

1 e*XG
P(y:O|X):1_P(y:1|X):1_1+e_X9:1+e_xg

15/62



Logistic / Sigmoid Function

1
14 e-X0

Q. Write X6 in a more convenient form (as P(y = 1|X),
P(y = 0X))

P(y = 1|X) = 0(X8) =

1 e*XG
Ply = 01X) = 1 - Py = 1}X) = 1 — -

l1+e X0 14eX6

Py = 11X)

P(y = 1|1X) X6
1—P(y =1|X)

"'1—P(y:1|X):e — X0 =log
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Odds (Used in betting)

P(win)
P(loss)

Here,

_Ply=1)
O“B_Pw:m

log-odds = log % = X0

16/62



Logistic Regression

Q. What is decision boundary for Logistic Regression?
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Logistic Regression

Q. What is decision boundary for Logistic Regression?
Decision Boundary: P(y = 1|X) = P(y = 0|X)

1 o 67X9
or 1+e—X0 ™ 14e—X0
oreX? —1

orX0 =0
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Learning Parameters

Could we use cost function as:

yi = o(X6)

Answer: No (Non-Convex)
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Learning Parameters

Could we use cost function as:

yi = o(X6)

Answer: No (Non-Convex)
Why? Squared loss + sigmoid creates non-convex
surface:

- Sigmoid o(z) = 1+e ——z iIs non-linear
- Composition (¢(X68) — y)? has multiple local minima
- No guarantee gradient descent finds global optimum

- This is why we need cross-entropy loss instead!
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Cost function convexity
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Cost function convexity

RMSE contour plot
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Cost function convexity

RMSE contour plot

10 18.0 RMSE surface plot
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Learning Parameters

Likelihood = P(D|¢)

P(y|X,8) =TT, P(vilx;, 0)
wherey = 0 or 1
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Learning Parameters

Likelihood = P(D|6)
n 1 Vi 1 1=y
(v|X,0) HP yilxi, 0) = r{{HexT@} {l_mxfe}

[Above: Similar to P(D|0) for Linear Regression;
Difference Bernoulli instead of Gaussian]

—log P(y|X, 8) = Negative Log Likelihood = Cost function will be
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Aside on Bernoulli Likelihood

- Assume you have a coin and flip it ten times and get
(HHTTTHHTTT).
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Aside on Bernoulli Likelihood

- Assume you have a coin and flip it ten times and get
(HHTTTHHTTT).

- What is p(H)?

- We might think it to be: 4/10 = 0.4. But why?

- Answer 1: Probability defined as a measure of long
running frequencies

- Answer 2: What is likelihood of seeing the above
sequence when the p(Head)=6?

- ldea find MLE estimate for 0
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Aside on Bernoulli Likelihood

- p(Hy=60andp(T)=1-16
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Aside on Bernoulli Likelihood

- p(Hy=60andp(T)=1-16
- What is the PMF for first observation P(D, = x|6),
where x = 0 for Tails and x = 1 for Heads?

« P(Dy = x|0) = 6*(1 — 6)(1~%)

- Verify the above: if x = 0 (Tails), P(D; = x|0) =1 -0
and if x = 1 (Heads), P(D; = x|0) = 6

- What is P(Dy,Ds, ..., Dn|0)?

- P(Dy,Ds, ...,Dp|6) = P(D1|6)P(Ds|6)...P(Dy|0)

- P(Dy,Ds,...,Dp|0) = 6™ (1 — )t

- Log-likelihood = LL(0) = nplog(8) + ntlog(l — 6)
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Aside on Bernoulli Likelihood

- p(Hy=60andp(T)=1-16

- What is the PMF for first observation P(D, = x|6),
where x = 0 for Tails and x = 1 for Heads?

- P(D; = x|0) = 0%(1 — )1

- Verify the above: if x = 0 (Tails), P(D; = x|0) =1 — 6
and if x = 1 (Heads), P(D; = x|0) = 6

- Whatis P(Dy, Do, ...,Dp|6)?

« P(Dy,Dq,...,Dpn|0) = P(D1]0)P(D5|6)...P(Dn|6)

« P(Dy,Dq,...,Dp|0) = 6™ (1 — 0)™

- Log-likelihood = LL(0) = nplog(8) + ntlog(l — 6)

OLL(O) _ np ne =
. 90 —0:>?+m—0:>9MLE—

Np
Np+nt
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Learning Parameters

n

J(9) = —log{g {HelxiT(;}yi{l - Hel)(fg}l_Yi}

N
J(0) = —{ S yilog(op(x3)) + (1 — v log(1 — Ue(Xi))}

i=1
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Learning Parameters

n
Yi 1 1=y
o I ) O )
11 1+e*x9 1+e "’

i=1

N
= —{ > Yilog(ap(xi) + (1 — yi) log(1 — Ue(Xi))}
i—1

This cost function is called cross-entropy.
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Learning Parameters

n
Yi 1 1=y
o I ) O )
11 1+e*x9 1+e "’

i=1

N
= —{ > Yilog(ap(xi) + (1 — yi) log(1 — Ue(Xi))}
i—1

This cost function is called cross-entropy.
Why?
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Interpretation of Cross-Entropy Cost Function

What is the interpretation of the cost function?
Let us try to write the cost function for a single example:
J(0) = —yilogy; — (1 —y;) log(1 - ¥;)

First, assume y; is O, then if y; is 0, the loss is O; but, if y;
is 1, the loss tends towards infinity!

Cost when y
ot

=
S ]
o

0.5 1.0
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Notebook: logits-usage
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Interpretation of Cross-Entropy Cost Function
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Interpretation of Cross-Entropy Cost Function

What is the interpretation of the cost function?

J(0) = —yilogy;i — (1 — yj) log(1 — y;)
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Interpretation of Cross-Entropy Cost Function

What is the interpretation of the cost function?

J(0) = —yilogy;i — (1 — yj) log(1 — y;)

Now, assume y; is 1, then if y; is O, the loss is huge; but, if
yiis 1, the loss is zero!

Cost wheny = 1
ot

o
S
o

0.5 1.0
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Cost function convexity
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Cost function convexity

Cross-entropy contour plot
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Cost function convexity

Cross-entropy contour plot

10 Cross-entropy surface plot
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Learning Parameters

N
agéf) _ _;ej{ > viog(euti) + (1 - yiog(1 - UQ(XI,))}

N
-3 [ st + 10 2 g1 — et
J

=1
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Learning Parameters

Z[ D Jogon(x) + <1—y,>§9/og< ()

i=1

N
:_Z[ Yi iag(x)Jr LV a(l—de(xz))

— UQ(X,') 891' 1-— U@(X,) 801
Aside:
0 o 1 —zy—2 0 _z
0203 = gz1rez - —UteT) T +ter)

T Jre:—Z)Z - (1 +1e—2> <1 Jer_ez—2> - U(z){ 1 i zj_l +1e—2}
=0(2)(1 - 0o(2))
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Learning Parameters

Resuming from (1)
N

oJ(9) Yi , L-y; o

3= 2 (a1 96700 1= gy a1 205

N
_ yioo(Xi) N oY o en -2 (1 o(x;
- _E UG(XI) (1_09(X1)>80j(xle>+1_O_e(Xi) (1 JQ(XI))aej(l UH(XI))

32/62



Learning Parameters

aJ(0)
6

=N [oo(x) - yi] X

Now, just use Gradient Descent!
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Logistic Regression with feature transformation

Oranges

L ]

~ HEl Tomatoes
v v g0
Wee *

o s ®

—2
T T 1
—2.5 0.0 2.5
Ty

What happens if you apply logistic regression on the
above data?
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Logistic Regression with feature transformation

Oranges Predict oranges
Hl Tomatoes Predict tomatoes
D ®
é\] 0 . .’..:
Wee *
o« ®
—9 -

—2.5 0.0 2.5
X1

Linear boundary will not be accurate here. What is the
technical name of the problem?
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Logistic Regression with feature transformation

Oranges Predict oranges
Hl Tomatoes Predict tomatoes
D ®
é\] 0 . .’..:
Wee *
o« ®
—9 -

—2.5 0.0 2.5
X1

Linear boundary will not be accurate here. What is the
technical name of the problem? Bias!
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Logistic Regression with feature transformation

1

Po(X) X2
s=| " o] k| ew

Pk—1(X) :

XKfl
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Logistic Regression with feature transformation

Oranges Predict oranges
Hl Tomatoes Predict tomatoes
U 3
[l °*e o
8 0 .*Q.:..
s e
__2 -

T T
—-2.5 0.0 2.5
T

Using x?, x3 as additional features, we are able to learn a
more accurate classifier.
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Logistic Regression with feature transformation

How would you expect the probability contours look like?
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Logistic Regression with feature transformation

How would you expect the probability contours look like?

2_

—2.5 0.0
T

CPOEOOEOO
O DLW Y000
(@] oI 0T ElINId: N [an)
SR EJIO—LH0S
P(Tomatoes)
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Multi-Class Prediction

’g e

S 4 o I setosa

s o¢ o I versicolor

T . | e S o

E 3% o L virginica
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% 2 L T T
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sepal length (cm)

39/62



Multi-Class Prediction

’g e

S 4 o I setosa

s o¢ o I versicolor

T . e S o

E 3% o L virginica

1w

% 2 L T T
6 8

sepal length (cm)

How would you learn a classifier? Or, how would you
expect the classifier to learn decision boundaries?
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Multi-Class Prediction
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Ey e I setosa
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£ 3 o L virginica

g ) ° t T F
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sepal length (cm)
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Multi-Class Prediction

B

Ey e I setosa

= e I versicolor

<

£ 3 o L virginica

g ) ° t T F

n I T T
4 6 8

sepal length (cm)

1. Use one-vs.-all on Binary Logistic Regression
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Multi-Class Prediction

=

Ey e I setosa

= e I versicolor

g Rape

£ 3 o I virginica

g ) ° t T F

n I T T
4 6 8

sepal length (cm)

1. Use one-vs.-all on Binary Logistic Regression
2. Use one-vs.-one on Binary Logistic Regression
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Multi-Class Prediction

B

Ey e I setosa

= e I versicolor

<

£ 3 o L virginica

g ) ° t T F

n I T T
4 6 8

sepal length (cm)

1. Use one-vs.-all on Binary Logistic Regression
2. Use one-vs.-one on Binary Logistic Regression

3. Extend Binary Logistic Regression to Multi-Class
Logistic Regression
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Multi-Class Prediction

/E? .
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e wepe
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1. Learn P(setosa (class 1)) = F(X6,)
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Multi-Class Prediction

4 o L. setosa
= o L versicolor
e wepe
g3 o I virginica
= o ¥ ¥ 57
g2lae

4 6 8
sepal length (cm)

1. Learn P(setosa (class 1)) = F(X6,)
2. P(versicolor (class 2)) = F(X6)
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Multi-Class Prediction

/E? .

£y o L. setosa

= o L versicolor

e wepe

g3 o I virginica

= o ¥ ¥ 57

2 21 NSNS

n I T T
4 6 8

sepal length (cm)

1. Learn P(setosa (class 1)) = F(X6,)
2. P(versicolor (class 2)) = F(X6,)

3. P(virginica (class 3)) = F(X63)

4. Goal: Learn 6;vi € {1,2,3}
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Multi-Class Prediction

/E? .

£y o L. setosa

= o L versicolor

e wepe

g3 o I virginica

= o ¥ ¥ 57

2 21 NSNS

n I T T
4 6 8

sepal length (cm)

Learn P(setosa (class 1)) = F(X6;)
P(versicolor (class 2)) = F(X8,)
P(virginica (class 3)) = F(X63)
Goal: Learn Vi € {1,2, 3}
Question: What could be an F?

g B~ WD
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Multi-Class Prediction

’é\ .

Ly o L setosa

= o I versicolor

= X

=3 o I virginica

—_ o

% 9 o M o

12} r T T
4 6 8

sepal length (cm)
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Multi-Class Prediction

’é\ .

Ly o L setosa

= o I versicolor

= X

=3 o I virginica

—_ o

% 9 o M o

12} r T T
4 6 8

sepal length (cm)

1. Question: What could be an F?

2. Property: 327 | F(X6;) =1

3. Also F(z) € [0,1]

4. Also, F(z) has squashing proprties: R — [0, 1]
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Softmax

F(z;) refers to probability of class i
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Softmax for Multi-Class Logistic Regression

k ={1,...,k}classes

0= | 6105 -0,

.
P(y:k|Xa0):fgxek
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Softmax for Multi-Class Logistic Regression

For K = 2 classes,

eX6x
Ply=k|X. ) = ———
(v =k|X,0) SK exo,
e)(eo
P(y = 01X.6) = xa +gxor
X0, X0,
P(y = 1|X,0) = — o - €

eX0o 1 eX01 — X601 (] 4 eX(o—01)}
N 1
Tlre o
= Sigmoid!
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Multi-Class Logistic Regression Cost

Assume our prediction and ground t
classes for ith point is:

0.1 %
yi= 08| = |y?
0.1 v

0 i
yi=|1| = |y}
0 y?

meaning the true class is Class #2

ruth for the three

|
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Multi-Class Logistic Regression Cost

Assume our prediction and ground truth for the three
classes for ith point is:

0.1 %
yi= 08| = |y?
0.1 v
0w
yi=|1| = |y}
of

meaning the true class is Class #2
Let us calculate — >7;_, yXlog y
= —(0 x log(0.1) + 1 x log(0.8) + 0 x log(0.1))
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Multi-Class Logistic Regression Cost

Assume our prediction and ground truth for the three
classes for ith point is:

0.1 %

yi= 08| = |y?

0.1 v
o v
yi=|1| = |y}
0 7

meaning the true class is Class #2

Let us calculate — >7;_, yXlog y

= —(0 x log(0.1) + 1 x log(0.8) + 0 x log(0.1))
Tends to zero
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Multi-Class Logistic Regression Cost

Assume our prediction and ground truth for the three
classes for it point is:
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Multi-Class Logistic Regression Cost

Assume our prediction and ground truth for the three
classes for it point is:
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Multi-Class Logistic Regression

Cost

Assume our prediction and ground truth for the three

classes for it point is:

0.3 %
yi= (04| = |y?

0.3

1T
yi= 1] = fg
0 i

meaning the true class is Class #2
Let us calculate — Y%_, yKlog y

|

= —(0 x log(0.1) + 1 x log(0.4) + 0 x log(0.1))
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Multi-Class Logistic Regression Cost

Assume our prediction and ground truth for the three
classes for it point is:

0.3 %
yi= (04| = |y}
0.3 3

-

meaning the true class is Class #2

Let us calculate — Y%_, yKlog y
= —(0 x log(0.1) + 1 x log(0.4) 4+ 0 x log(0.1))
High number! Huge penalty for misclassification!
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Multi-Class Logistic Regression Cost

For 2 class we had:

N
J(9) = —{ S yilog(op(x3)) + (1 — v log(1 — Ue(Xi))}
i=1
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Multi-Class Logistic Regression Cost

For 2 class we had:
N
—~{ S vitostonte)) + (1 - yitog1 ~ ouix) |
i=1

More generally,

{ Zy, log(¥7) + (1 — ;) log(1 — y,)}

{ Zy, log(¥7) + (1 — ;) log(1 — y,)}

Extend to K-class:
N K
{35 vron}
i=1 k=1
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Multi-Class Logistic Regression Cost

Now:

U S 1=k~ P = kixi.0)}]

i=1
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Hessian Matrix

The Hessian matrix of f(.) with respect to 6, written V2f(6)
or simply as H, is the d x d matrix of partial derivatives,

ro%f(6) 9%f(9) 9*f(0) 7
89% 001002 " *° 00100n
9°f(6) 9%f(6) 9°f(0)
002001 80% *t 00200n

Vef(6) =

() 0%(6)  0%(6)
960001 900005 007
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Newton's Algorithm

The most basic second-order optimization algorithm is
Newton’s algorithm, which consists of updates of the
form,

k1 = Ok — Higk

where g is the gradient at step k. This algorithm is
derived by making a second-order Taylor series
approximation of f(6) around 6y:

fquad(8) = F(0k) + 9i (0 — 6k) + %(9 — ) TH (6 — 6k)

differentiating and equating to zero to solve for 6.
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Learning Parameters

Now assume:

ao(Xi) — Vi X],: =X"(0p(X) — ¥)

0=3 o

i=1

i = og(Xj)

Let H represent the Hessian of J()

= X diag(og(x;)(1 — o9(x))))X
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lteratively reweighted least squares (IRLS)

For binary logistic regression, recall that the gradient and
Hessian of the negative log-likelihood are given by:

g0 =X"(mk - y)
Hy = X' S X
Sk = diag(mik(1 — mik), - . ., Tk (1 — k)
Tik = SigM(x;fk)

The Newton update at iteraion k + 1 for this model is as
follows:

Oks1 = Ok —H 'gg = Ok + (XS X)X (y — mk)

= (XTSIX) T HXTSkX) Ok +-XT (y—m)] = (XTSiX) X [SkXO+y — k]
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Regularized Logistic Regression

Unregularised:

N
() = ~{ Y- yiton(o) + (1 - yi)loe(1 = ()}

L2 Regularization:
J(0) = J1(0) + 1070
L1 Regularization:

J(O) = J1(0) + A6
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The Problem: Imbalanced Data

- Class Imbalance: When one class has significantly
more samples than others
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The Problem: Imbalanced Data

- Class Imbalance: When one class has significantly
more samples than others
- Examples:

Medical diagnosis: 99% healthy, 1% disease
Fraud detection: 99.9% legitimate, 0.1% fraud
Email spam: 90% legitimate, 10% spam

- Problem: Standard logistic regression biased toward
majority class

- Naive approach fails: Predicting all samples as
majority class

55/62



Impact on Model Performance

With 99% class 0, 1% class 1:

- Naive classifier: Always predict class 0 - 99%
accuracy!
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Impact on Model Performance

With 99% class 0, 1% class 1:

- Naive classifier: Always predict class 0 - 99%
accuracy!

- But: 0% recall for class 1 (complete failure)

- Standard metrics misleading:

Accuracy = 99% (looks great, but useless)
Precision for class 1 = undefined (no predictions)
Recall for class 1 = 0% (misses all positive cases)

- Need: Better evaluation metrics and techniques

56/62



Solution 1: Weighted Loss Function

Modify the cost function to penalize minority class
errors more:

Z wi |ilog(o(87x)) + (1 - y;)log(1 — #(6"x;)

- Class weights: w; = wyify; =0, w;=w, ify; =1
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Solution 1: Weighted Loss Function

Modify the cost function to penalize minority class
errors more:

N
J(0) = =" w; |yilog(e(07x) + (1 - i) log(1 — (8" xi))
i=1

- Class weights: w; = wyify; =0, w;=w, ify; =1
- Common choice: w; = N—? (inverse frequency)
- Effect: Forces model to pay attention to minority class

- Implementation: Available in most ML libraries
(sklearn: class_weight="balanced")
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Solution 2: Threshold Adjustment

- Standard: Predict class 1if P(y = 1|x) > 0.5
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Solution 2: Threshold Adjustment

- Standard: Predict class 1if P(y = 1|x) > 0.5

- Imbalanced: Predict class 1if P(y = 1|x) > 7 where
7<0.5

- Threshold selection:

Plot precision-recall curve or ROC curve
Choose 7 that optimizes F1-score or business metric
Cross-validation to avoid overfitting

- Trade-off: Lower threshold - higher recall, lower
precision

58/62



Solution 3: Resampling Techniques

Modify the training data distribution:

- Undersampling: Remove samples from majority class
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Solution 3: Resampling Techniques

Modify the training data distribution:

- Undersampling: Remove samples from majority class
Pro: Faster training, balanced classes
Con: Loss of information, smaller dataset

- Oversampling: Duplicate samples from minority class
Pro: No information loss
Con: Risk of overfitting, larger dataset

- SMOTE: Generate synthetic minority examples

Creates new samples between existing minority samples
More sophisticated than simple duplication

59/62



Evaluation Metrics for Imbalanced Data

- Don't use accuracy alone!
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Evaluation Metrics for Imbalanced Data

- Don't use accuracy alone!

- Precision: ;55 (of predicted positives, how many
correct?)

- Recall/Sensitivity: 577y (of actual positives, how
many found?)

- . 2xPrecisionxRecall i
- F1-Score: =5 5 recar (hAarmonic mean)

- ROC-AUC: Area under ROC curve
(threshold-independent)

- PR-AUC: Area under precision-recall curve (better for
imbalanced data)
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Pop Quiz: Logistic Regression

1. Why can't we use linear regression for classification
problems?
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Pop Quiz: Logistic Regression

1. Why can't we use linear regression for classification
problems?

2. What is the key difference between sigmoid and
softmax functions?

3. Why do we use cross-entropy loss instead of squared
error?

4. How does regularization help in logistic regression?
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Key Takeaways

- Probabilistic Model: Outputs probabilities via sigmoid
function
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Key Takeaways

- Probabilistic Model: Outputs probabilities via sigmoid
function

- Linear Decision Boundary: Creates linear separation
in feature space

- Maximum Likelihood: Optimized using
gradient-based methods

- Cross-Entropy Loss: Appropriate for classification
problems

- No Closed Form: Requires iterative optimization
(gradient descent)

- Regularization: L1/L2 help prevent overfitting
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