Matrix Factorization for Movie Recommendation Systems

Nipun Batra

IIT Gandhinagar

August 2, 2025

 The Problem: Why do we need recommendation systems?

- The Problem: Why do we need recommendation systems?
- Matrix View: How ratings become a mathematical problem

- The Problem: Why do we need recommendation systems?
 - **Matrix View**: How ratings become a mathematical problem
- · Key Insight: Matrix factorization as the solution

- The Problem: Why do we need recommendation systems?
- Matrix View: How ratings become a mathematical problem
- Key Insight: Matrix factorization as the solution
- Step-by-Step: Building intuition with examples

- The Problem: Why do we need recommendation systems?
- Matrix View: How ratings become a mathematical problem
- Key Insight: Matrix factorization as the solution
- Step-by-Step: Building intuition with examples
- Algorithms: ALS vs Gradient Descent

- The Problem: Why do we need recommendation systems?
- Matrix View: How ratings become a mathematical problem
- · Key Insight: Matrix factorization as the solution
- Step-by-Step: Building intuition with examples
- · Algorithms: ALS vs Gradient Descent
- Practice: Hands-on understanding

Real-World Scenario:

 Netflix: 200M+ users, 15K+ titles

- Netflix: 200M+ users, 15K+ titles
- Amazon: 300M+ users, millions of products

- Netflix: 200M+ users, 15K+ titles
- Amazon: 300M+ users, millions of products
- Spotify: 400M+ users, 70M+ songs

- Netflix: 200M+ users, 15K+ titles
- Amazon: 300M+ users, millions of products
- Spotify: 400M+ users, 70M+ songs
- Most ratings are missing!

- Netflix: 200M+ users, 15K+ titles
- Amazon: 300M+ users, millions of products
- Spotify: 400M+ users, 70M+ songs
- Most ratings are missing!

Real-World Scenario:

- Netflix: 200M+ users, 15K+ titles
- Amazon: 300M+ users, millions of products
- Spotify: 400M+ users, 70M+ songs
- Most ratings are missing!

Think About It:

 You've rated 100 movies out of 15,000

Real-World Scenario:

- Netflix: 200M+ users, 15K+ titles
- Amazon: 300M+ users, millions of products
- Spotify: 400M+ users, 70M+ songs
- Most ratings are missing!

Think About It:

- You've rated 100 movies out of 15,000
- Your friend has similar but different tastes

Real-World Scenario:

- Netflix: 200M+ users, 15K+ titles
- Amazon: 300M+ users, millions of products
- Spotify: 400M+ users, 70M+ songs
- Most ratings are missing!

Think About It:

- You've rated 100 movies out of 15,000
- Your friend has similar but different tastes
- · How do we predict what

Real-World Scenario:

- Netflix: 200M+ users, 15K+ titles
- Amazon: 300M+ users, millions of products
- Spotify: 400M+ users, 70M+ songs
- Most ratings are missing!

Think About It:

- You've rated 100 movies out of 15,000
- Your friend has similar but different tastes
- · How do we predict what

Sparse Rating Matrix

Quick Question

If Netflix has 200 million users and 15,000 movies, how many possible ratings exist?

Quick Question

If Netflix has 200 million users and 15,000 movies, how many possible ratings exist?

Answer: $200 \times 10^6 \times 15 \times 10^3 = 3 \times 10^{12}$ possible ratings!

Quick Question

If Netflix has 200 million users and 15,000 movies, how many possible ratings exist?

Answer: $200 \times 10^6 \times 15 \times 10^3 = 3 \times 10^{12}$ possible ratings!

But typical users rate only 20-100 movies. What percentage of the matrix is filled?

Quick Question

If Netflix has 200 million users and 15,000 movies, how many possible ratings exist?

Answer: $200 \times 10^6 \times 15 \times 10^3 = 3 \times 10^{12}$ possible ratings!

But typical users rate only 20-100 movies. What

percentage of the matrix is filled?

Answer: $\frac{100}{15000} = 0.67\%$ - extremely sparse!

$$\mathbf{A} = \begin{bmatrix} a_{11} & ? & a_{13} & ? & \cdots \\ ? & a_{22} & ? & a_{24} & \cdots \\ a_{31} & ? & ? & a_{34} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

The Rating Matrix $A \in \mathbb{R}^{N \times M}$:

$$\mathbf{A} = \begin{bmatrix} a_{11} & ? & a_{13} & ? & \cdots \\ ? & a_{22} & ? & a_{24} & \cdots \\ a_{31} & ? & ? & a_{34} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

• **Rows**: Users *u*₁, *u*₂, . . . , *u*_N

$$\mathbf{A} = \begin{bmatrix} a_{11} & ? & a_{13} & ? & \cdots \\ ? & a_{22} & ? & a_{24} & \cdots \\ a_{31} & ? & ? & a_{34} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

- Rows: Users u₁, u₂, ..., u_N
- **Columns**: Movies $m_1, m_2, ..., m_M$

$$\mathbf{A} = \begin{bmatrix} a_{11} & ? & a_{13} & ? & \cdots \\ ? & a_{22} & ? & a_{24} & \cdots \\ a_{31} & ? & ? & a_{34} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

- Rows: Users u_1, u_2, \ldots, u_N
- Columns: Movies m₁, m₂, ..., m_M
- **Entries**: $a_{ij} \in \{1, 2, 3, 4, 5\}$ (when observed)

$$\mathbf{A} = \begin{bmatrix} a_{11} & ? & a_{13} & ? & \cdots \\ ? & a_{22} & ? & a_{24} & \cdots \\ a_{31} & ? & ? & a_{34} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

- Rows: Users u₁, u₂, ..., u_N
- Columns: Movies m₁, m₂, ..., m_M
- **Entries**: $a_{ij} \in \{1, 2, 3, 4, 5\}$ (when observed)
- Challenge: Predict missing entries?

$$\mathbf{A} = \begin{bmatrix} a_{11} & ? & a_{13} & ? & \cdots \\ ? & a_{22} & ? & a_{24} & \cdots \\ a_{31} & ? & ? & a_{34} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

- Rows: Users u_1, u_2, \ldots, u_N
- Columns: Movies m₁, m₂, ..., m_M
- **Entries**: $a_{ij} \in \{1, 2, 3, 4, 5\}$ (when observed)
- Challenge: Predict missing entries?
- **Notation**: $\Omega = \{(i,j) : a_{ij} \text{ is observed}\}$

Let's work with a small, concrete example:

Let's work with a small, concrete example:

User	Sholay	Swades	Batman	Interstellar	Shawshank
Alice	5	4	2	3	2
Bob	?	5	1	4	?
Carol	4	?	1	5	?

Let's work with a small, concrete example:

User	Sholay	Swades	Batman	Interstellar	Shawshanl
Alice	5	4	2	3	2
Bob	?	5	1	4	?
Carol	4	?	1	5	?

Observations:

Alice loves Bollywood films (Sholay, Swades)

Let's work with a small, concrete example:

User	Sholay	Swades	Batman	Interstellar	Shawshanl
Alice	5	4	2	3	2
Bob	?	5	1	4	?
Carol	4	?	1	5	?

Observations:

- Alice loves Bollywood films (Sholay, Swades)
- Carol enjoys Sci-Fi (Interstellar)

Let's work with a small, concrete example:

User	Sholay	Swades	Batman	Interstellar	Shawshank
Alice	5	4	2	3	2
Bob	?	5	1	4	?
Carol	4	?	1	5	?

Observations:

- Alice loves Bollywood films (Sholay, Swades)
- Carol enjoys Sci-Fi (Interstellar)
- Can we predict Bob's rating for Sholay?

Let's work with a small, concrete example:

User	Sholay	Swades	Batman	Interstellar	Shawshanl
Alice	5	4	2	3	2
Bob	?	5	1	4	?
Carol	4	?	1	5	?

Observations:

- Alice loves Bollywood films (Sholay, Swades)
- Carol enjoys Sci-Fi (Interstellar)
- · Can we predict Bob's rating for Sholay?
- Can we predict Carol's rating for Swades?

Before We Dive In: A Simple Question

Why do you like the movies you like?

Why do you like the movies you like?

Why do you like the movies you like? Maybe because of:

Why do you like the movies you like?

Maybe because of:

 Genre (Action, Romance, Comedy)

Why do you like the movies you like?

- Genre (Action, Romance, Comedy)
- Star cast (Shah Rukh Khan, Tom Cruise)

Why do you like the movies you like?

- Genre (Action, Romance, Comedy)
- Star cast (Shah Rukh Khan, Tom Cruise)
- Director (Christopher Nolan, Rajkumar Hirani)

Why do you like the movies you like?

- Genre (Action, Romance, Comedy)
- Star cast (Shah Rukh Khan, Tom Cruise)
- Director (Christopher Nolan, Rajkumar Hirani)
- Language (Hindi, English, Tamil)

Why do you like the movies you like?

- Genre (Action, Romance, Comedy)
- Star cast (Shah Rukh Khan, Tom Cruise)
- Director (Christopher Nolan, Rajkumar Hirani)
- Language (Hindi, English, Tamil)
- Era (90s classics, modern CGI)

Why do you like the movies you like?

Maybe because of:

Key Insight:

- Genre (Action, Romance, Comedy)
- Star cast (Shah Rukh Khan, Tom Cruise)
- Director (Christopher Nolan, Rajkumar Hirani)
- Language (Hindi, English, Tamil)
- Era (90s classics, modern CGI)

Why do you like the movies you like?

Maybe because of:

- Genre (Action, Romance, Comedy)
- Star cast (Shah Rukh Khan, Tom Cruise)
- Director (Christopher Nolan, Rajkumar Hirani)
- Language (Hindi, English, Tamil)
- Era (90s classics, modern CGI)

Key Insight:

 Your taste = combination of preferences

Why do you like the movies you like?

Maybe because of:

- Genre (Action, Romance, Comedy)
- Star cast (Shah Rukh Khan, Tom Cruise)
- Director (Christopher Nolan, Rajkumar Hirani)
- Language (Hindi, English, Tamil)
- Era (90s classics, modern CGI)

Key Insight:

- Your taste = combination of preferences
- Movie appeal = combination of features

Why do you like the movies you like?

Maybe because of:

- Genre (Action, Romance, Comedy)
- Star cast (Shah Rukh Khan, Tom Cruise)
- Director (Christopher Nolan, Rajkumar Hirani)
- Language (Hindi, English, Tamil)
- Era (90s classics, modern CGI)

Key Insight:

- Your taste = combination of preferences
- Movie appeal = combination of features
- But we don't know these explicitly!

Hypothesis: User preferences and movie characteristics can be captured by a small number of **latent features**.

Hypothesis: User preferences and movie characteristics can be captured by a small number of **latent features**.

Hypothesis: User preferences and movie characteristics can be captured by a small number of latent features. **Intuition:** Think of latent features

as "hidden DNA" of movies and users!

Hypothesis: User preferences and movie characteristics can be captured by a small number of latent features.
Intuition: Think of latent features as "hidden DNA" of movies and users!

For Movies:

Bollywood vs Hollywood

Hypothesis: User preferences and movie characteristics can be captured by a small number of latent features.
Intuition: Think of latent features as "hidden DNA" of movies and users!

- · Bollywood vs Hollywood
- Action vs Drama

Hypothesis: User preferences and movie characteristics can be captured by a small number of latent features.
Intuition: Think of latent features as "hidden DNA" of movies and users!

- Bollywood vs Hollywood
- Action vs Drama
- Comedy vs Serious

Hypothesis: User preferences and movie characteristics can be captured by a small number of latent features.
Intuition: Think of latent features as "hidden DNA" of movies and users!

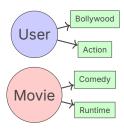
- · Bollywood vs Hollywood
- Action vs Drama
- Comedy vs Serious
- Runtime (Short vs Long)

Hypothesis: User preferences and movie characteristics can be captured by a small number of latent features.
Intuition: Think of latent features as "hidden DNA" of movies and users!

- Bollywood vs Hollywood
- Action vs Drama
- Comedy vs Serious
- Runtime (Short vs Long)
- Year (Classic vs Modern)

Hypothesis: User preferences and movie characteristics can be captured by a small number of **latent features**.

Intuition: Think of latent features as "hidden DNA" of movies and users!



Latent Features

- · Bollywood vs Hollywood
- Action vs Drama
- Comedy vs Serious
- Runtime (Short vs Long)
- Year (Classic vs Modern)

Step 1: Define Movie Features Explicitly

Let's manually define features for our 5 movies:

Step 1: Define Movie Features Explicitly

Let's manually define features for our 5 movies:

Movie	Bollywood	Sci-Fi	Drama
Sholay	0.95	0.10	0.85
Swades	1.00	0.20	0.90
Batman	0.05	0.80	0.30
Interstellar	0.05	0.95	0.70
Shawshank	0.05	0.15	0.95

Step 1: Define Movie Features Explicitly

Let's manually define features for our 5 movies:

Movie	Bollywood	Sci-Fi	Drama
Sholay	0.95	0.10	0.85
Swades	1.00	0.20	0.90
Batman	0.05	0.80	0.30
Interstellar	0.05	0.95	0.70
Shawshank	0.05	0.15	0.95

Movie Feature Matrix $\mathbf{H} \in \mathbb{R}^{3 \times 5}$:

$$\mathbf{H} = \begin{bmatrix} 0.95 & 1.00 & 0.05 & 0.05 & 0.05 \\ 0.10 & 0.20 & 0.80 & 0.95 & 0.15 \\ 0.85 & 0.90 & 0.30 & 0.70 & 0.95 \end{bmatrix}$$

User Feature Matrix $\mathbf{W} \in \mathbb{R}^{3 \times 3}$ represents user preferences:

User Feature Matrix $\mathbf{W} \in \mathbb{R}^{3 \times 3}$ represents user preferences:

$$\mathbf{W} = \begin{bmatrix} w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23} \\ w_{31} & w_{32} & w_{33} \end{bmatrix}$$

User Feature Matrix $\mathbf{W} \in \mathbb{R}^{3 \times 3}$ represents user preferences:

$$\mathbf{W} = \begin{bmatrix} w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23} \\ w_{31} & w_{32} & w_{33} \end{bmatrix}$$

Where row *i* represents user *i*'s affinity for:

w_{i1}: Bollywood preference

User Feature Matrix $\mathbf{W} \in \mathbb{R}^{3 \times 3}$ represents user preferences:

$$\mathbf{W} = \begin{bmatrix} w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23} \\ w_{31} & w_{32} & w_{33} \end{bmatrix}$$

Where row *i* represents user *i*'s affinity for:

- w_{i1}: Bollywood preference
- w_{i2}: Sci-Fi preference

User Feature Matrix $\mathbf{W} \in \mathbb{R}^{3 \times 3}$ represents user preferences:

$$\mathbf{W} = \begin{bmatrix} w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23} \\ w_{31} & w_{32} & w_{33} \end{bmatrix}$$

Where row *i* represents user *i*'s affinity for:

- w_{i1}: Bollywood preference
- w_{i2}: Sci-Fi preference
- w_{i3}: Drama preference

User Feature Matrix $\mathbf{W} \in \mathbb{R}^{3 \times 3}$ represents user preferences:

$$\mathbf{W} = \begin{bmatrix} w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23} \\ w_{31} & w_{32} & w_{33} \end{bmatrix}$$

Where row *i* represents user *i*'s affinity for:

- w_{i1}: Bollywood preference
- w_{i2}: Sci-Fi preference
- w_{i3}: Drama preference

User Feature Matrix $\mathbf{W} \in \mathbb{R}^{3 \times 3}$ represents user preferences:

$$\mathbf{W} = \begin{bmatrix} w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23} \\ w_{31} & w_{32} & w_{33} \end{bmatrix}$$

Where row *i* represents user *i*'s affinity for:

- w_{i1}: Bollywood preference
- w_{i2}: Sci-Fi preference
- w_{i3}: Drama preference

Key Question: How do we learn these w_{ij} values from observed ratings?

Core Hypothesis: Rating = User preferences · Movie features

Core Hypothesis: Rating = User preferences · Movie features

$$a_{ij} \approx \mathbf{w}_i^\mathsf{T} \mathbf{h}_j = \sum_{k=1}^r w_{ik} h_{kj}$$

Core Hypothesis: Rating = User preferences · Movie features

$$a_{ij} \approx \mathbf{w}_i^\mathsf{T} \mathbf{h}_j = \sum_{k=1}^r w_{ik} h_{kj}$$

In Matrix Form:

$$\mathbf{A} \approx \mathbf{WH}$$

Core Hypothesis: Rating = User preferences · Movie features

$$a_{ij} \approx \mathbf{w}_i^\mathsf{T} \mathbf{h}_j = \sum_{k=1}^r w_{ik} h_{kj}$$

In Matrix Form:

$$\mathbf{A} \approx \mathbf{WH}$$

$$\mathbf{A}_{3\times5} = \begin{bmatrix} 5 & 4 & 2 & 3 & 2 \\ ? & 5 & 1 & 4 & ? \\ 4 & ? & 1 & 5 & ? \end{bmatrix} \approx$$

$$\begin{bmatrix} \mathbf{W}_{11} & \mathbf{W}_{12} & \mathbf{W}_{13} \\ \mathbf{W}_{21} & \mathbf{W}_{22} & \mathbf{W}_{23} \\ \mathbf{W}_{31} & \mathbf{W}_{32} & \mathbf{W}_{33} \end{bmatrix} \begin{bmatrix} 0.95 & 1.00 & 0.05 & 0.05 & 0.05 \\ 0.10 & 0.20 & 0.80 & 0.95 & 0.15 \\ 0.85 & 0.90 & 0.30 & 0.70 & 0.95 \end{bmatrix} =$$

$$\mathbf{W}_{3\times3}\mathbf{H}_{3\times5}$$

Step 4: Understanding the Calculation

Let's think step by step...

Let's think step by step...

Let's think step by step...
Alice's Profile:

Let's think step by step... Alice's Profile:

• How much does she like Bollywood? w_{11}

Let's think step by step...

Alice's Profile:

- How much does she like Bollywood? w_{11}
- How much does she like Action? w₁₂

Let's think step by step... Alice's Profile:

- How much does she like Bollywood? w_{11}
- How much does she like Action? w₁₂
- How much does she like Comedy? w_{13}

Let's think step by step...

Alice's Profile:

- How much does she like Bollywood? w_{11}
- How much does she like Action? w₁₂
- How much does she like Comedy? w_{13}

Let's think step by step... Alice's Profile:

- How much does she like Bollywood? w₁₁
- How much does she like Action? w₁₂
- How much does she like Comedy? w₁₃

Sholay's DNA:

 Bollywood-ness: 0.95 (very high!)

Let's think step by step... Alice's Profile:

- How much does she like Bollywood? w₁₁
- How much does she like Action? w₁₂
- How much does she like Comedy? w₁₃

- Bollywood-ness: 0.95 (very high!)
- Action-ness: 0.10 (low)

Let's think step by step... Alice's Profile:

- How much does she like Bollywood? w_{11}
- How much does she like Action? w₁₂
- How much does she like Comedy? w₁₃

- Bollywood-ness: 0.95 (very high!)
- Action-ness: 0.10 (low)
- Comedy-ness: 0.85 (high)

Let's think step by step... Alice's Profile:

- How much does she like Bollywood? w_{11}
- How much does she like Action? w₁₂
- How much does she like Comedy? w₁₃

- Bollywood-ness: 0.95 (very high!)
- Action-ness: 0.10 (low)
- Comedy-ness: 0.85 (high)

Let's think step by step... Alice's Profile:

- How much does she like Bollywood? w_{11}
- How much does she like Action? w₁₂
- How much does she like Comedy? w_{13}

Sholay's DNA:

- Bollywood-ness: 0.95 (very high!)
- Action-ness: 0.10 (low)
- Comedy-ness: 0.85 (high)

The Magic Formula:

Alice's rating = Alice's preferences · Sholay's features

Let's compute Alice's predicted rating for Sholay:

Let's compute Alice's predicted rating for Sholay: Alice's preferences: $\mathbf{w}_1 = [w_{11}, w_{12}, w_{13}]$ Sholay's features: $\mathbf{h}_1 = [0.95, 0.10, 0.85]^T$

Let's compute Alice's predicted rating for Sholay: Alice's preferences: $\mathbf{w}_1 = [w_{11}, w_{12}, w_{13}]$ Sholay's features: $\mathbf{h}_1 = [0.95, 0.10, 0.85]^T$

$$\hat{\mathbf{a}}_{11} = \mathbf{w}_1^T \mathbf{h}_1$$

$$= \mathbf{w}_{11} \cdot 0.95 + \mathbf{w}_{12} \cdot 0.10 + \mathbf{w}_{13} \cdot 0.85$$
(2)

Let's compute Alice's predicted rating for Sholay: Alice's preferences: $\mathbf{w}_1 = [w_{11}, w_{12}, w_{13}]$ Sholay's features: $\mathbf{h}_1 = [0.95, 0.10, 0.85]^T$

$$\hat{\boldsymbol{a}}_{11} = \mathbf{w}_1^T \mathbf{h}_1$$

$$= \mathbf{w}_{11} \cdot 0.95 + \mathbf{w}_{12} \cdot 0.10 + \mathbf{w}_{13} \cdot 0.85$$
(2)

Goal: Find w_{11}, w_{12}, w_{13} such that $\hat{a}_{11} \approx 5$ (Alice's actual rating)

Dimension Check

Dimension Check

If we have *N* users, *M* movies, and *r* latent features:

1. What are the dimensions of A?

Dimension Check

- 1. What are the dimensions of A?
- 2. What are the dimensions of W?

Dimension Check

- 1. What are the dimensions of A?
- 2. What are the dimensions of W?
- 3. What are the dimensions of H?

Dimension Check

- 1. What are the dimensions of A?
- 2. What are the dimensions of W?
- 3. What are the dimensions of H?
- 4. How many parameters do we need to learn?

Dimension Check

- 1. What are the dimensions of A?
- 2. What are the dimensions of W?
- 3. What are the dimensions of H?
- 4. How many parameters do we need to learn?

Dimension Check

If we have *N* users, *M* movies, and *r* latent features:

- 1. What are the dimensions of A?
- 2. What are the dimensions of W?
- 3. What are the dimensions of H?
- 4. How many parameters do we need to learn?

Answers:

1. $\mathbf{A} \in \mathbb{R}^{N \times M}$

Dimension Check

If we have *N* users, *M* movies, and *r* latent features:

- 1. What are the dimensions of A?
- 2. What are the dimensions of W?
- 3. What are the dimensions of H?
- 4. How many parameters do we need to learn?

- 1. $\mathbf{A} \in \mathbb{R}^{N \times M}$
- 2. $\mathbf{W} \in \mathbb{R}^{N \times r}$

Dimension Check

If we have *N* users, *M* movies, and *r* latent features:

- 1. What are the dimensions of A?
- 2. What are the dimensions of W?
- 3. What are the dimensions of H?
- 4. How many parameters do we need to learn?

- 1. $\mathbf{A} \in \mathbb{R}^{N \times M}$
- **2.** $\mathbf{W} \in \mathbb{R}^{N \times r}$
- 3. $\mathbf{H} \in \mathbb{R}^{r \times M}$

Dimension Check

If we have *N* users, *M* movies, and *r* latent features:

- 1. What are the dimensions of A?
- 2. What are the dimensions of W?
- 3. What are the dimensions of H?
- 4. How many parameters do we need to learn?

- 1. $\mathbf{A} \in \mathbb{R}^{N \times M}$
- **2.** $\mathbf{W} \in \mathbb{R}^{N \times r}$
- 3. $\mathbf{H} \in \mathbb{R}^{r \times M}$
- 4. Total parameters: Nr + rM = r(N + M)

Dimension Check

If we have *N* users, *M* movies, and *r* latent features:

- 1. What are the dimensions of A?
- 2. What are the dimensions of W?
- 3. What are the dimensions of H?
- 4. How many parameters do we need to learn?

- 1. $\mathbf{A} \in \mathbb{R}^{N \times M}$
- **2.** $\mathbf{W} \in \mathbb{R}^{N \times r}$
- 3. $\mathbf{H} \in \mathbb{R}^{r \times M}$
- 4. Total parameters: Nr + rM = r(N + M)

Dimension Check

If we have *N* users, *M* movies, and *r* latent features:

- 1. What are the dimensions of A?
- 2. What are the dimensions of W?
- 3. What are the dimensions of H?
- 4. How many parameters do we need to learn?

Answers:

- 1. $\mathbf{A} \in \mathbb{R}^{N \times M}$
- **2.** $\mathbf{W} \in \mathbb{R}^{N \times r}$
- 3. $\mathbf{H} \in \mathbb{R}^{r \times M}$
- 4. Total parameters: Nr + rM = r(N + M)

Key Insight: If $r \ll \min(N, M)$, we have huge param-

Objective: Minimize prediction error on observed ratings only

Objective: Minimize prediction error on observed ratings only

$$\text{minimize}_{\mathbf{W},\mathbf{H}} \sum_{(i,j) \in \Omega} (\mathbf{a}_{ij} - \mathbf{w}_i^\mathsf{T} \mathbf{h}_j)^2$$

Objective: Minimize prediction error on observed ratings only

$$\text{minimize}_{\mathbf{W},\mathbf{H}} \sum_{(i,j) \in \Omega} (\mathbf{a}_{ij} - \mathbf{w}_i^\mathsf{T} \mathbf{h}_j)^2$$

In Matrix Notation:

$$\mathrm{minimize}_{\mathbf{W},\mathbf{H}} \, \| \textit{P}_{\Omega}(\mathbf{A} - \mathbf{W}\mathbf{H}) \|_{\textit{F}}^2$$

Objective: Minimize prediction error on observed ratings only

$$\text{minimize}_{\mathbf{W},\mathbf{H}} \sum_{(i,j) \in \Omega} (\mathbf{a}_{ij} - \mathbf{w}_i^\mathsf{T} \mathbf{h}_j)^2$$

In Matrix Notation:

$$\operatorname{minimize}_{\mathbf{W},\mathbf{H}} \| P_{\Omega}(\mathbf{A} - \mathbf{W}\mathbf{H}) \|_F^2$$

Where:

• $P_{\Omega}(\cdot)$: projection onto observed entries

Objective: Minimize prediction error on observed ratings only

$$\text{minimize}_{\mathbf{W},\mathbf{H}} \sum_{(i,j) \in \Omega} (\mathbf{a}_{ij} - \mathbf{w}_i^\mathsf{T} \mathbf{h}_j)^2$$

In Matrix Notation:

$$\operatorname{minimize}_{\mathbf{W},\mathbf{H}} \| P_{\Omega}(\mathbf{A} - \mathbf{W}\mathbf{H}) \|_F^2$$

Where:

- $P_{\Omega}(\cdot)$: projection onto observed entries
- $\|\cdot\|_F$: Frobenius norm

Objective: Minimize prediction error on observed ratings only

$$\text{minimize}_{\mathbf{W},\mathbf{H}} \sum_{(i,j) \in \Omega} (\mathbf{a}_{ij} - \mathbf{w}_i^\mathsf{T} \mathbf{h}_j)^2$$

In Matrix Notation:

$$\boxed{\text{minimize}_{\mathbf{W},\mathbf{H}} \| P_{\Omega}(\mathbf{A} - \mathbf{W}\mathbf{H}) \|_F^2}$$

Where:

- $P_{\Omega}(\cdot)$: projection onto observed entries
- $\|\cdot\|_F$: Frobenius norm
- Ω : set of observed (i,j) pairs

Why This is Challenging

Problem Characteristics:

• Non-convex: Multiple local minima exist

Why This is Challenging

Problem Characteristics:

- Non-convex: Multiple local minima exist
- · Bilinear: Linear in W when H fixed, and vice versa

Why This is Challenging

Problem Characteristics:

- Non-convex: Multiple local minima exist
- · Bilinear: Linear in W when H fixed, and vice versa
- Large-scale: Millions of users and items

Why This is Challenging

Problem Characteristics:

- Non-convex: Multiple local minima exist
- Bilinear: Linear in W when H fixed, and vice versa
- Large-scale: Millions of users and items
- Sparse: Only 0.1-1% of entries observed

Why This is Challenging

Problem Characteristics:

- Non-convex: Multiple local minima exist
- Bilinear: Linear in W when H fixed, and vice versa
- Large-scale: Millions of users and items
- Sparse: Only 0.1-1% of entries observed

Why This is Challenging

Problem Characteristics:

- Non-convex: Multiple local minima exist
- Bilinear: Linear in W when H fixed, and vice versa
- Large-scale: Millions of users and items
- Sparse: Only 0.1-1% of entries observed

Key Insight: While non-convex jointly, it's convex in each matrix individually!

Alternating Least Squares Strategy:

1. Initialize: $\mathbf{W}^{(0)}$ and $\mathbf{H}^{(0)}$ randomly

- 1. Initialize: $\mathbf{W}^{(0)}$ and $\mathbf{H}^{(0)}$ randomly
- 2. Repeat until convergence:

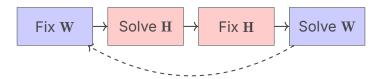
- 1. Initialize: $\mathbf{W}^{(0)}$ and $\mathbf{H}^{(0)}$ randomly
- 2. Repeat until convergence:
 - 1) Fix H, solve for W: Each row independently

- 1. Initialize: $\mathbf{W}^{(0)}$ and $\mathbf{H}^{(0)}$ randomly
- 2. Repeat until convergence:
 - 1) Fix H, solve for W: Each row independently
 - 2) Fix W, solve for H: Each column independently

- 1. Initialize: $\mathbf{W}^{(0)}$ and $\mathbf{H}^{(0)}$ randomly
- 2. Repeat until convergence:
 - 1) Fix H, solve for W: Each row independently
 - 2) Fix W, solve for H: Each column independently
- 3. Each subproblem is a standard least squares problem!

- 1. Initialize: $\mathbf{W}^{(0)}$ and $\mathbf{H}^{(0)}$ randomly
- 2. Repeat until convergence:
 - 1) Fix H, solve for W: Each row independently
 - 2) Fix W, solve for H: Each column independently
- 3. Each subproblem is a standard least squares problem!

- 1. Initialize: $\mathbf{W}^{(0)}$ and $\mathbf{H}^{(0)}$ randomly
- 2. Repeat until convergence:
 - 1) Fix H, solve for W: Each row independently
 - 2) Fix W, solve for H: Each column independently
- 3. Each subproblem is a standard least squares problem!



Fix H, solve for each user i independently:

Fix H, solve for each user i independently:

$$\text{minimize}_{\mathbf{w}_i} \sum_{j:(i,j) \in \Omega} (\alpha_{ij} - \mathbf{w}_i^T \mathbf{h}_j)^2$$

Fix H, solve for each user i independently:

$$\operatorname{minimize}_{\mathbf{w}_{i}} \sum_{j:(i,j)\in\Omega} (\mathbf{\alpha}_{ij} - \mathbf{w}_{i}^{\mathsf{T}} \mathbf{h}_{j})^{2}$$

Matrix Form for User i: Let $\Omega_i = \{j : (i,j) \in \Omega\}$ (movies rated by user i)

Fix H, solve for each user i independently:

$$\text{minimize}_{\mathbf{w}_i} \sum_{j:(i,j) \in \Omega} (\alpha_{ij} - \mathbf{w}_i^T \mathbf{h}_j)^2$$

Matrix Form for User i: Let $\Omega_i = \{j : (i,j) \in \Omega\}$ (movies rated by user i)

$$\mathbf{y}_{i} = [a_{i,j_{1}}, a_{i,j_{2}}, \dots, a_{i,j_{|\Omega_{i}|}}]^{T}$$
 (3)

$$\mathbf{X}_i = \left[\mathbf{h}_{j_1}, \mathbf{h}_{j_2}, \dots, \mathbf{h}_{j_{|\Omega_i|}}\right]^T \tag{4}$$

Fix H, solve for each user i independently:

$$\mathrm{minimize}_{\mathbf{w}_i} \sum_{j:(i,j) \in \Omega} (\alpha_{ij} - \mathbf{w}_i^T \mathbf{h}_j)^2$$

Matrix Form for User i: Let $\Omega_i = \{j : (i,j) \in \Omega\}$ (movies rated by user i)

$$\mathbf{y}_{i} = [a_{i,j_{1}}, a_{i,j_{2}}, \dots, a_{i,j_{|\Omega_{i}|}}]^{T}$$
 (3)

$$\mathbf{X}_i = [\mathbf{h}_{j_1}, \mathbf{h}_{j_2}, \dots, \mathbf{h}_{j_{|\Omega_i|}}]^T \tag{4}$$

Least Squares Solution:

$$\mathbf{w}_i^* = (\mathbf{X}_i^\mathsf{T} \mathbf{X}_i)^{-1} \mathbf{X}_i^\mathsf{T} \mathbf{y}_i$$

ALS Step 1: Concrete Example

Update Alice's preferences (w₁):

Alice rated: Sholay(5), Swades(4), Batman(2), Interstellar(3), Shawshank(2)

ALS Step 1: Concrete Example

Update Alice's preferences (w_1):

Alice rated: Sholay(5), Swades(4), Batman(2), Interstellar(3), Shawshank(2)

$$\mathbf{y}_1 = \begin{bmatrix} 5\\4\\2\\3\\2 \end{bmatrix} \tag{5}$$

$$\mathbf{X}_{1} = \begin{bmatrix} 0.95 & 0.10 & 0.85 \\ 1.00 & 0.20 & 0.90 \\ 0.05 & 0.80 & 0.30 \\ 0.05 & 0.95 & 0.70 \\ 0.05 & 0.15 & 0.95 \end{bmatrix}$$
 (6)

ALS Step 1: Concrete Example

Update Alice's preferences (w_1) :

Alice rated: Sholay(5), Swades(4), Batman(2), Interstellar(3), Shawshank(2)

$$\mathbf{y}_1 = \begin{bmatrix} 5\\4\\2\\3\\2 \end{bmatrix} \tag{5}$$

$$\mathbf{X}_1 = \begin{bmatrix} 0.95 & 0.10 & 0.85 \\ 1.00 & 0.20 & 0.90 \\ 0.05 & 0.80 & 0.30 \\ 0.05 & 0.95 & 0.70 \\ 0.05 & 0.15 & 0.95 \end{bmatrix}$$

Solution: $\mathbf{w}_1^* = (\mathbf{X}_1^T \mathbf{X}_1)^{-1} \mathbf{X}_1^T \mathbf{y}_1$ This gives us Alice's feature preferences!

(6)

Fix W, solve for each movie j independently:

Fix W, solve for each movie j independently:

$$\text{minimize}_{\mathbf{h}_j} \sum_{i:(i,j) \in \Omega} (\alpha_{ij} - \mathbf{w}_i^T \mathbf{h}_j)^2$$

Fix W, solve for each movie j independently:

$$\mathrm{minimize}_{\mathbf{h}_j} \sum_{i:(i,j) \in \Omega} (\alpha_{ij} - \mathbf{w}_i^T \mathbf{h}_j)^2$$

Matrix Form for Movie j: Let $\Omega_j = \{i : (i,j) \in \Omega\}$ (users who rated movie j)

Fix W, solve for each movie j independently:

$$\text{minimize}_{\mathbf{h}_j} \sum_{i:(i,j) \in \Omega} (\boldsymbol{\alpha}_{ij} - \mathbf{w}_i^T \mathbf{h}_j)^2$$

Matrix Form for Movie j: Let $\Omega_j = \{i : (i,j) \in \Omega\}$ (users who rated movie j)

$$\mathbf{y}_{j} = [a_{i_{1},j}, a_{i_{2},j}, \dots, a_{i_{|\Omega_{i}|},j}]^{T}$$
 (7)

$$\mathbf{X}_{j} = \left[\mathbf{w}_{i_1}, \mathbf{w}_{i_2}, \dots, \mathbf{w}_{i_{|\Omega_{j}|}}\right]^{T} \tag{8}$$

Fix W, solve for each movie j independently:

$$\text{minimize}_{\mathbf{h}_j} \sum_{i:(i,j) \in \Omega} (\boldsymbol{\alpha}_{ij} - \mathbf{w}_i^T \mathbf{h}_j)^2$$

Matrix Form for Movie j: Let $\Omega_j = \{i : (i,j) \in \Omega\}$ (users who rated movie j)

$$\mathbf{y}_{j} = [a_{i_{1},j}, a_{i_{2},j}, \dots, a_{i_{|\Omega_{i}|},j}]^{T}$$
 (7)

$$\mathbf{X}_{j} = [\mathbf{w}_{i_1}, \mathbf{w}_{i_2}, \dots, \mathbf{w}_{i_{|\Omega_j|}}]^T$$
(8)

Least Squares Solution:

$$\mathbf{h}_{j}^{*} = (\mathbf{X}_{j}^{\mathsf{T}} \mathbf{X}_{j})^{-1} \mathbf{X}_{j}^{\mathsf{T}} \mathbf{y}_{j}$$

Algorithm 1: [

H] **Input:** Rating matrix **A**, rank *r*, max iterations *T*

1. Initialize: $\mathbf{W}^{(0)} \in \mathbb{R}^{N \times r}$, $\mathbf{H}^{(0)} \in \mathbb{R}^{r \times M}$ randomly

Output: $\mathbf{W}(T) = \mathbf{H}(T)$

Algorithm 2: [

H] **Input:** Rating matrix **A**, rank *r*, max iterations *T*

- 1. Initialize: $\mathbf{W}^{(0)} \in \mathbb{R}^{N \times r}$, $\mathbf{H}^{(0)} \in \mathbb{R}^{r \times M}$ randomly
- 2. For t = 1, 2, ..., T:

Algorithm 3: [

H] **Input:** Rating matrix **A**, rank *r*, max iterations *T*

- 1. Initialize: $\mathbf{W}^{(0)} \in \mathbb{R}^{N \times r}$, $\mathbf{H}^{(0)} \in \mathbb{R}^{r \times M}$ randomly
- **2.** For t = 1, 2, ..., T:
 - 1) **Update Users:** For each user i = 1, ..., N:

$$\mathbf{w}_i^{(t)} = (\mathbf{X}_i^\mathsf{T} \mathbf{X}_i)^{-1} \mathbf{X}_i^\mathsf{T} \mathbf{y}_i$$

Output: $\mathbf{W}^{(T)}$ $\mathbf{H}^{(T)}$

Algorithm 4: [

H] **Input:** Rating matrix **A**, rank *r*, max iterations *T*

- 1. Initialize: $\mathbf{W}^{(0)} \in \mathbb{R}^{N \times r}$, $\mathbf{H}^{(0)} \in \mathbb{R}^{r \times M}$ randomly
- 2. For t = 1, 2, ..., T:
 - 1) **Update Users:** For each user i = 1, ..., N:

$$\mathbf{w}_i^{(t)} = (\mathbf{X}_i^\mathsf{T} \mathbf{X}_i)^{-1} \mathbf{X}_i^\mathsf{T} \mathbf{y}_i$$

2) **Update Movies:** For each movie j = 1, ..., M:

$$\mathbf{h}_{j}^{(t)} = (\mathbf{X}_{j}^{\mathsf{T}} \mathbf{X}_{j})^{-1} \mathbf{X}_{j}^{\mathsf{T}} \mathbf{y}_{j}$$

Output: $\mathbf{W}(T)$ $\mathbf{H}(T)$

21/35

Algorithm 5: [

H] **Input:** Rating matrix **A**, rank *r*, max iterations *T*

- 1. Initialize: $\mathbf{W}^{(0)} \in \mathbb{R}^{N \times r}$, $\mathbf{H}^{(0)} \in \mathbb{R}^{r \times M}$ randomly
- 2. For t = 1, 2, ..., T:
 - 1) **Update Users:** For each user i = 1, ..., N:

$$\mathbf{w}_i^{(t)} = (\mathbf{X}_i^\mathsf{T} \mathbf{X}_i)^{-1} \mathbf{X}_i^\mathsf{T} \mathbf{y}_i$$

2) **Update Movies:** For each movie j = 1, ..., M:

$$\mathbf{h}_{i}^{(t)} = (\mathbf{X}_{i}^{\mathsf{T}} \mathbf{X}_{j})^{-1} \mathbf{X}_{i}^{\mathsf{T}} \mathbf{y}_{j}$$

3. Check Convergence: Stop if $\|\mathbf{W}^{(t)}\mathbf{H}^{(t)} - \mathbf{W}^{(t-1)}\mathbf{H}^{(t-1)}\|_F < \epsilon$

Output: $\mathbf{W}(T) = \mathbf{H}(T)$

Gradient Descent Approach

Simultaneous Updates: Update both $\mathbf W$ and $\mathbf H$ together

Gradient Descent Approach

Simultaneous Updates: Update both W and H together **Objective Function:**

$$L(\mathbf{W}, \mathbf{H}) = \sum_{(i,j) \in \Omega} (\alpha_{ij} - \mathbf{w}_i^T \mathbf{h}_j)^2$$

Gradient Descent Approach

Simultaneous Updates: Update both W and H together **Objective Function:**

$$L(\mathbf{W}, \mathbf{H}) = \sum_{(i,j) \in \Omega} (\alpha_{ij} - \mathbf{w}_i^T \mathbf{h}_j)^2$$

Gradients:

$$\frac{\partial L}{\partial \mathbf{w}_i} = -2 \sum_{j:(i,j) \in \Omega} (\boldsymbol{\alpha}_{ij} - \mathbf{w}_i^T \mathbf{h}_j) \mathbf{h}_j$$
 (9)

$$\frac{\partial L}{\partial \mathbf{h}_{j}} = -2 \sum_{i:(i,j) \in \Omega} (\boldsymbol{\alpha}_{ij} - \mathbf{w}_{i}^{\mathsf{T}} \mathbf{h}_{j}) \mathbf{w}_{i}$$
 (10)

Imagine you're learning someone's taste in movies...

Imagine you're learning someone's taste in movies...

Imagine you're learning someone's taste in movies...
Your Process:

Imagine you're learning someone's taste in movies...

Your Process:

Make a guess about their rating

Imagine you're learning someone's taste in movies...

Your Process:

- Make a guess about their rating
- 2. See their actual rating

Imagine you're learning someone's taste in movies...

Your Process:

- Make a guess about their rating
- 2. See their actual rating
- Adjust your understanding

Imagine you're learning someone's taste in movies...

Your Process:

- Make a guess about their rating
- 2. See their actual rating
- Adjust your understanding
- 4. Repeat for next movie

Imagine you're learning someone's taste in movies...

Your Process:

SGD does exactly this!

- Make a guess about their rating
- 2. See their actual rating
- Adjust your understanding
- 4. Repeat for next movie

Imagine you're learning someone's taste in movies...

Your Process:

SGD does exactly this!

- Make a guess about their rating
- 2. See their actual rating
- Adjust your understanding
- 4. Repeat for next movie

One rating at a time

Imagine you're learning someone's taste in movies...

Your Process:

- Make a guess about their rating
- 2. See their actual rating
- Adjust your understanding
- 4. Repeat for next movie

SGD does exactly this!

- One rating at a time
- · Small adjustments

Imagine you're learning someone's taste in movies...

Your Process:

- Make a guess about their rating
- 2. See their actual rating
- Adjust your understanding
- 4. Repeat for next movie

SGD does exactly this!

- One rating at a time
- Small adjustments
- Gradually improves

For each observed rating $(i,j) \in \Omega$:

1. **Predict:** $\hat{a}_{ij} = \mathbf{w}_i^\mathsf{T} \mathbf{h}_j$

- 1. Predict: $\hat{a}_{ij} = \mathbf{w}_i^T \mathbf{h}_j$
- 2. Compute Error: $e_{ij} = a_{ij} \hat{a}_{ij}$

- 1. Predict: $\hat{a}_{ij} = \mathbf{w}_i^T \mathbf{h}_j$
- 2. Compute Error: $e_{ij} = a_{ij} \hat{a}_{ij}$
- 3. Update:

$$\mathbf{w}_i \leftarrow \mathbf{w}_i + \alpha \cdot \mathbf{e}_{ij} \cdot \mathbf{h}_j \tag{11}$$

$$\mathbf{h}_{j} \leftarrow \mathbf{h}_{j} + \alpha \cdot \mathbf{e}_{ij} \cdot \mathbf{w}_{i}$$
 (12)

- 1. Predict: $\hat{a}_{ij} = \mathbf{w}_i^T \mathbf{h}_j$
- 2. Compute Error: $e_{ij} = a_{ij} \hat{a}_{ij}$
- 3. Update:

$$\mathbf{w}_i \leftarrow \mathbf{w}_i + \alpha \cdot \mathbf{e}_{ij} \cdot \mathbf{h}_j \tag{11}$$

$$\mathbf{h}_{j} \leftarrow \mathbf{h}_{j} + \alpha \cdot \mathbf{e}_{ij} \cdot \mathbf{w}_{i}$$
 (12)

For each observed rating $(i,j) \in \Omega$:

- 1. **Predict:** $\hat{a}_{ij} = \mathbf{w}_i^T \mathbf{h}_j$
- 2. Compute Error: $e_{ij} = a_{ij} \hat{a}_{ij}$
- 3. Update:

$$\mathbf{w}_i \leftarrow \mathbf{w}_i + \alpha \cdot \mathbf{e}_{ij} \cdot \mathbf{h}_i \tag{11}$$

$$\mathbf{h}_{j} \leftarrow \mathbf{h}_{j} + \alpha \cdot \mathbf{e}_{ij} \cdot \mathbf{w}_{i}$$
 (12)

Intuition:

• If $e_{ij} > 0$: Predicted rating too low \rightarrow Increase similarity

For each observed rating $(i,j) \in \Omega$:

- 1. Predict: $\hat{a}_{ij} = \mathbf{w}_i^T \mathbf{h}_j$
- 2. Compute Error: $e_{ij} = a_{ij} \hat{a}_{ij}$
- 3. Update:

$$\mathbf{w}_i \leftarrow \mathbf{w}_i + \alpha \cdot \mathbf{e}_{ii} \cdot \mathbf{h}_i \tag{11}$$

$$\mathbf{h}_{j} \leftarrow \mathbf{h}_{j} + \alpha \cdot \mathbf{e}_{ij} \cdot \mathbf{w}_{i}$$
 (12)

Intuition:

- If $e_{ij} > 0$: Predicted rating too low \rightarrow Increase similarity
- If e_{ij} < 0: Predicted rating too high → Decrease similarity

For each observed rating $(i,j) \in \Omega$:

- 1. **Predict:** $\hat{a}_{ij} = \mathbf{w}_i^T \mathbf{h}_j$
- 2. Compute Error: $e_{ij} = a_{ij} \hat{a}_{ij}$
- 3. Update:

$$\mathbf{w}_i \leftarrow \mathbf{w}_i + \alpha \cdot \mathbf{e}_{ij} \cdot \mathbf{h}_i \tag{11}$$

$$\mathbf{h}_{j} \leftarrow \mathbf{h}_{j} + \alpha \cdot \mathbf{e}_{ij} \cdot \mathbf{w}_{i}$$
 (12)

Intuition:

- If $e_{ij} > 0$: Predicted rating too low \rightarrow Increase similarity
- If e_{ij} < 0: Predicted rating too high → Decrease similarity
- Learning rate α controls step size

SGD: Step-by-Step Example

Example: Alice rates Sholay as 5, but we predict 3.2

SGD: Step-by-Step Example

Example: Alice rates Sholay as 5, but we predict 3.2

Current:
$$\mathbf{w}_1 = [0.4, 0.2, 0.3], \quad \mathbf{h}_1 = [0.95, 0.10, 0.85]$$
 (13)
Prediction: $\hat{a}_{11} = 0.4 \times 0.95 + 0.2 \times 0.10 + 0.3 \times 0.85 = 0.655$ (14)
Error: $e_{11} = 5 - 0.655 = 4.345$ (15)

SGD: Step-by-Step Example

Example: Alice rates Sholay as 5, but we predict 3.2

Current:
$$\mathbf{w}_1 = [0.4, 0.2, 0.3], \quad \mathbf{h}_1 = [0.95, 0.10, 0.85]$$
 (13)
Prediction: $\hat{a}_{11} = 0.4 \times 0.95 + 0.2 \times 0.10 + 0.3 \times 0.85 = 0.655$ (14)
Error: $e_{11} = 5 - 0.655 = 4.345$ (15)

Updates with $\alpha = 0.01$:

redates with
$$\alpha = 0.01$$
:

$$\mathbf{w}_1 \leftarrow [0.4, 0.2, 0.3] + 0.01 \times 4.345 \times [0.95, 0.10, 0.85] \qquad \text{(16)}$$

$$= [0.4413, 0.2043, 0.3369] \qquad \text{(17)}$$

$$\mathbf{h}_1 \leftarrow [0.95, 0.10, 0.85] + 0.01 \times 4.345 \times [0.4, 0.2, 0.3] \qquad \text{(18)}$$

$$= [0.9674, 0.1087, 0.8631] \qquad \text{(19)}$$

Quick Check

Quick Check

A user gives a rating of 2 to a movie, but our model predicts 4.5.

1. What is the error e_{ij} ?

Quick Check

- 1. What is the error e_{ij} ?
- 2. Should we increase or decrease the user-movie similarity?

Quick Check

- 1. What is the error e_{ij} ?
- 2. Should we increase or decrease the user-movie similarity?
- 3. If $\alpha = 0.1$, $\mathbf{w}_i = [0.8, 0.3]$, $\mathbf{h}_j = [0.6, 0.9]$, what are the updates?

Quick Check

- 1. What is the error e_{ij} ?
- 2. Should we increase or decrease the user-movie similarity?
- 3. If $\alpha = 0.1$, $\mathbf{w}_i = [0.8, 0.3]$, $\mathbf{h}_j = [0.6, 0.9]$, what are the updates?

Quick Check

A user gives a rating of 2 to a movie, but our model predicts 4.5.

- 1. What is the error e_{ij} ?
- Should we increase or decrease the user-movie similarity?
- 3. If $\alpha = 0.1$, $\mathbf{w}_i = [0.8, 0.3]$, $\mathbf{h}_j = [0.6, 0.9]$, what are the updates?

1.
$$e_{ij} = 2 - 4.5 = -2.5$$

Quick Check

A user gives a rating of 2 to a movie, but our model predicts 4.5.

- 1. What is the error e_{ij} ?
- Should we increase or decrease the user-movie similarity?
- 3. If $\alpha = 0.1$, $\mathbf{w}_i = [0.8, 0.3]$, $\mathbf{h}_j = [0.6, 0.9]$, what are the updates?

- 1. $e_{ij} = 2 4.5 = -2.5$
- 2. Decrease similarity (negative error)

Quick Check

A user gives a rating of 2 to a movie, but our model predicts 4.5.

- 1. What is the error e_{ij} ?
- Should we increase or decrease the user-movie similarity?
- 3. If $\alpha = 0.1$, $\mathbf{w}_i = [0.8, 0.3]$, $\mathbf{h}_j = [0.6, 0.9]$, what are the updates?

- 1. $e_{ij} = 2 4.5 = -2.5$
- 2. Decrease similarity (negative error)
- 3. $\mathbf{w}_i \leftarrow [0.8, 0.3] + 0.1 \times (-2.5) \times [0.6, 0.9] = [0.65, 0.075]$

Quick Check

A user gives a rating of 2 to a movie, but our model predicts 4.5.

- 1. What is the error e_{ij} ?
- Should we increase or decrease the user-movie similarity?
- 3. If $\alpha = 0.1$, $\mathbf{w}_i = [0.8, 0.3]$, $\mathbf{h}_j = [0.6, 0.9]$, what are the updates?

- 1. $e_{ii} = 2 4.5 = -2.5$
- 2. Decrease similarity (negative error)
- 3. $\mathbf{w}_i \leftarrow [0.8, 0.3] + 0.1 \times (-2.5) \times [0.6, 0.9] = [0.65, 0.075]$
- **4.** $\mathbf{h}_i \leftarrow [0.6, 0.9] + 0.1 \times (-2.5) \times [0.8, 0.3] = [0.4, 0.825]$

ALS vs SGD: Head-to-Head Comparison

Aspect	ALS	SGD
Updates	Alternating	Simultaneous
Convergence	Faster, more stable	Slower, can oscillate
Parallelization	Excellent	Limited
Memory	Higher	Lower
Implementation	Complex	Simple
Hyperparameters	Few (rank r)	Many (α , schedule)
Scalability	Very good	Good

ALS vs SGD: Head-to-Head Comparison

Aspect	ALS	SGD		
Updates	Alternating	Simultaneous		
Convergence	Faster, more stable	Slower, can oscillate		
Parallelization	Excellent	Limited		
Memory	Higher	Lower		
Implementation	Complex	Simple		
Hyperparameters	Few (rank r)	Many (α , schedule)		
Scalability	Very good	Good		
Wile on to I loo Wile of O				

When to Use Which?

ALS: Large-scale, production systems (Spark, distributed)

ALS vs SGD: Head-to-Head Comparison

Aspect	ALS	SGD
Updates	Alternating	Simultaneous
Convergence	Faster, more stable	Slower, can oscillate
Parallelization	Excellent	Limited
Memory	Higher	Lower
Implementation	Complex	Simple
Hyperparameters	Few (rank r)	Many (α , schedule)
Scalability	Very good	Good

When to Use Which?

ALS: Large-scale, production systems (Spark, distributed)

Regularization: Prevent overfitting

$$\text{minimize}_{\mathbf{W},\mathbf{H}} \sum_{(i,j) \in \Omega} (\boldsymbol{\alpha}_{ij} - \mathbf{w}_i^\mathsf{T} \mathbf{h}_j)^2 + \lambda (\|\mathbf{W}\|_F^2 + \|\mathbf{H}\|_F^2)$$

Regularization: Prevent overfitting

$$\text{minimize}_{\mathbf{W},\mathbf{H}} \sum_{(i,j) \in \Omega} (\boldsymbol{\alpha}_{ij} - \mathbf{w}_i^\mathsf{T} \mathbf{h}_j)^2 + \lambda (\|\mathbf{W}\|_F^2 + \|\mathbf{H}\|_F^2)$$

Bias Terms: Account for global, user, and item biases

$$\hat{\mathbf{a}}_{ij} = \mu + \mathbf{b}_i + \mathbf{b}_j + \mathbf{w}_i^\mathsf{T} \mathbf{h}_j$$

Regularization: Prevent overfitting

$$\text{minimize}_{\mathbf{W},\mathbf{H}} \sum_{(i,j) \in \Omega} (\boldsymbol{\alpha}_{ij} - \mathbf{w}_i^\mathsf{T} \mathbf{h}_j)^2 + \lambda (\|\mathbf{W}\|_F^2 + \|\mathbf{H}\|_F^2)$$

Bias Terms: Account for global, user, and item biases

$$\hat{\mathbf{a}}_{ij} = \mu + \mathbf{b}_i + \mathbf{b}_j + \mathbf{w}_i^\mathsf{T} \mathbf{h}_j$$

Implicit Feedback: Binary observations (clicks, views)

Confidence: $c_{ij} = 1 + \alpha \cdot \text{frequency}_{ij}$

Regularization: Prevent overfitting

$$\text{minimize}_{\mathbf{W},\mathbf{H}} \sum_{(i,j) \in \Omega} (\boldsymbol{\alpha}_{ij} - \mathbf{w}_i^\mathsf{T} \mathbf{h}_j)^2 + \lambda (\|\mathbf{W}\|_F^2 + \|\mathbf{H}\|_F^2)$$

Bias Terms: Account for global, user, and item biases

$$\hat{\mathbf{a}}_{ij} = \mu + \mathbf{b}_i + \mathbf{b}_j + \mathbf{w}_i^\mathsf{T} \mathbf{h}_j$$

Implicit Feedback: Binary observations (clicks, views)

Confidence: $c_{ij} = 1 + \alpha \cdot \text{frequency}_{ij}$

Cold Start Problem: New users/items with no ratings

· Content-based features

Regularization: Prevent overfitting

$$\text{minimize}_{\mathbf{W},\mathbf{H}} \sum_{(i,j) \in \Omega} (\boldsymbol{\alpha}_{ij} - \mathbf{w}_i^\mathsf{T} \mathbf{h}_j)^2 + \lambda (\|\mathbf{W}\|_F^2 + \|\mathbf{H}\|_F^2)$$

Bias Terms: Account for global, user, and item biases

$$\hat{\mathbf{a}}_{ij} = \mu + \mathbf{b}_i + \mathbf{b}_j + \mathbf{w}_i^\mathsf{T} \mathbf{h}_j$$

Implicit Feedback: Binary observations (clicks, views)

Confidence: $c_{ij} = 1 + \alpha \cdot \text{frequency}_{ij}$

Cold Start Problem: New users/items with no ratings

- Content-based features
- Demographic information

Regularization: Prevent overfitting

$$\text{minimize}_{\mathbf{W},\mathbf{H}} \sum_{(i,j) \in \Omega} (\alpha_{ij} - \mathbf{w}_i^T \mathbf{h}_j)^2 + \lambda (\|\mathbf{W}\|_F^2 + \|\mathbf{H}\|_F^2)$$

Bias Terms: Account for global, user, and item biases

$$\hat{\mathbf{a}}_{ij} = \mu + \mathbf{b}_i + \mathbf{b}_j + \mathbf{w}_i^\mathsf{T} \mathbf{h}_j$$

Implicit Feedback: Binary observations (clicks, views)

Confidence: $c_{ij} = 1 + \alpha \cdot \text{frequency}_{ij}$

Cold Start Problem: New users/items with no ratings

- · Content-based features
- Demographic information
- Hybrid approaches

Let's Build Intuition: Small Example

Our 3×3 rating matrix:

$$\mathbf{A} = \begin{bmatrix} 5 & ? & 2 \\ 4 & 4 & ? \\ ? & 5 & 1 \end{bmatrix}$$

Let's Build Intuition: Small Example

Our 3×3 rating matrix:

$$\mathbf{A} = \begin{bmatrix} 5 & ? & 2 \\ 4 & 4 & ? \\ ? & 5 & 1 \end{bmatrix}$$

Goal: Find $\mathbf{W} \in \mathbb{R}^{3 \times 2}$ and $\mathbf{H} \in \mathbb{R}^{2 \times 3}$ such that:

$$\mathbf{A} \approx \mathbf{WH} = \begin{bmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \\ w_{31} & w_{32} \end{bmatrix} \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \end{bmatrix}$$

Let's Build Intuition: Small Example

Our 3×3 rating matrix:

$$\mathbf{A} = \begin{bmatrix} 5 & ? & 2 \\ 4 & 4 & ? \\ ? & 5 & 1 \end{bmatrix}$$

Goal: Find $\mathbf{W} \in \mathbb{R}^{3 \times 2}$ and $\mathbf{H} \in \mathbb{R}^{2 \times 3}$ such that:

$$\mathbf{A} \approx \mathbf{WH} = \begin{bmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \\ w_{31} & w_{32} \end{bmatrix} \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \end{bmatrix}$$

Constraint: Only minimize error on observed entries!

Step-by-Step ALS Solution

Iteration 1: Initialize randomly

$$\mathbf{W}^{(0)} = \begin{bmatrix} 0.5 & 0.3 \\ 0.4 & 0.6 \\ 0.2 & 0.8 \end{bmatrix}, \quad \mathbf{H}^{(0)} = \begin{bmatrix} 1.0 & 0.5 & 0.2 \\ 0.3 & 1.2 & 0.8 \end{bmatrix}$$

Step-by-Step ALS Solution

Iteration 1: Initialize randomly

$$\mathbf{W}^{(0)} = \begin{bmatrix} 0.5 & 0.3 \\ 0.4 & 0.6 \\ 0.2 & 0.8 \end{bmatrix}, \quad \mathbf{H}^{(0)} = \begin{bmatrix} 1.0 & 0.5 & 0.2 \\ 0.3 & 1.2 & 0.8 \end{bmatrix}$$

Update User 1: Only use observed ratings (positions 1,3)

$$\mathbf{y}_1 = [5, 2]^T$$
 (20)

$$\mathbf{X}_1 = \begin{bmatrix} 1.0 & 0.3 \\ 0.2 & 0.8 \end{bmatrix}$$
 (columns 1,3 of $\mathbf{H}^{(0)T}$) (21)

Step-by-Step ALS Solution

Iteration 1: Initialize randomly

$$\mathbf{W}^{(0)} = \begin{bmatrix} 0.5 & 0.3 \\ 0.4 & 0.6 \\ 0.2 & 0.8 \end{bmatrix}, \quad \mathbf{H}^{(0)} = \begin{bmatrix} 1.0 & 0.5 & 0.2 \\ 0.3 & 1.2 & 0.8 \end{bmatrix}$$

Update User 1: Only use observed ratings (positions 1,3)

$$\mathbf{y}_1 = [5, 2]^T$$
 (20)

$$\mathbf{X}_1 = \begin{bmatrix} 1.0 & 0.3 \\ 0.2 & 0.8 \end{bmatrix}$$
 (columns 1,3 of $\mathbf{H}^{(0)T}$) (21)

Solve: $\mathbf{w}_1^{(1)} = (\mathbf{X}_1^T \mathbf{X}_1)^{-1} \mathbf{X}_1^T \mathbf{y}_1$ Continue for all users and movies...

Master Check

You're Netflix's lead ML engineer. You have:

200M users, 15K movies

Master Check

- 200M users, 15K movies
- 20B ratings (0.67% filled)

Master Check

- 200M users, 15K movies
- 20B ratings (0.67% filled)
- Need real-time recommendations

Master Check

- 200M users, 15K movies
- 20B ratings (0.67% filled)
- Need real-time recommendations
- New users/movies arrive daily

Master Check

- 200M users, 15K movies
- 20B ratings (0.67% filled)
- Need real-time recommendations
- New users/movies arrive daily

Master Check

You're Netflix's lead ML engineer. You have:

- · 200M users, 15K movies
- 20B ratings (0.67% filled)
- Need real-time recommendations
- New users/movies arrive daily

Design your recommendation system:

1. Which algorithm: ALS or SGD? Why?

Master Check

You're Netflix's lead ML engineer. You have:

- · 200M users, 15K movies
- 20B ratings (0.67% filled)
- Need real-time recommendations
- New users/movies arrive daily

- 1. Which algorithm: ALS or SGD? Why?
- 2. What rank r would you choose?

Master Check

You're Netflix's lead ML engineer. You have:

- · 200M users, 15K movies
- 20B ratings (0.67% filled)
- Need real-time recommendations
- New users/movies arrive daily

- 1. Which algorithm: ALS or SGD? Why?
- 2. What rank r would you choose?
- 3. How to handle new users?

Master Check

You're Netflix's lead ML engineer. You have:

- · 200M users, 15K movies
- 20B ratings (0.67% filled)
- Need real-time recommendations
- New users/movies arrive daily

- 1. Which algorithm: ALS or SGD? Why?
- 2. What rank r would you choose?
- 3. How to handle new users?
- 4. How to handle the scale?

Master Check

You're Netflix's lead ML engineer. You have:

- · 200M users, 15K movies
- 20B ratings (0.67% filled)
- Need real-time recommendations
- New users/movies arrive daily

- 1. Which algorithm: ALS or SGD? Why?
- 2. What rank r would you choose?
- 3. How to handle new users?
- 4. How to handle the scale?

Master Check

You're Netflix's lead ML engineer. You have:

- · 200M users, 15K movies
- 20B ratings (0.67% filled)
- Need real-time recommendations
- New users/movies arrive daily

Design your recommendation system:

- 1. Which algorithm: ALS or SGD? Why?
- 2. What rank r would you choose?
- 3. How to handle new users?
- 4. How to handle the scale?

Master Check

You're Netflix's lead ML engineer. You have:

- · 200M users, 15K movies
- 20B ratings (0.67% filled)
- Need real-time recommendations
- New users/movies arrive daily

Design your recommendation system:

- 1. Which algorithm: ALS or SGD? Why?
- 2. What rank r would you choose?
- 3. How to handle new users?
- 4. How to handle the scale?

Master Check

You're Netflix's lead ML engineer. You have:

- · 200M users, 15K movies
- 20B ratings (0.67% filled)
- Need real-time recommendations
- New users/movies arrive daily

Design your recommendation system:

- 1. Which algorithm: ALS or SGD? Why?
- 2. What rank r would you choose?
- 3. How to handle new users?
- 4. How to handle the scale?

Master Check

You're Netflix's lead ML engineer. You have:

- · 200M users, 15K movies
- 20B ratings (0.67% filled)
- Need real-time recommendations
- New users/movies arrive daily

Design your recommendation system:

- 1. Which algorithm: ALS or SGD? Why?
- 2. What rank r would you choose?
- 3. How to handle new users?
- 4. How to handle the scale?

 Sparsity ⇒ Factorization: Sparse rating matrices can be approximated by low-rank factorizations

- Sparsity ⇒ Factorization: Sparse rating matrices can be approximated by low-rank factorizations
- 2. **Latent Features**: Users and items are characterized by latent factors (not manually defined!)

- Sparsity ⇒ Factorization: Sparse rating matrices can be approximated by low-rank factorizations
- Latent Features: Users and items are characterized by latent factors (not manually defined!)
- Bilinear Problem: Non-convex jointly, but convex individually → Alternating optimization works well

- Sparsity ⇒ Factorization: Sparse rating matrices can be approximated by low-rank factorizations
- Latent Features: Users and items are characterized by latent factors (not manually defined!)
- Bilinear Problem: Non-convex jointly, but convex individually → Alternating optimization works well
- Scale Matters: Algorithm choice depends on data size and computational constraints

- Sparsity ⇒ Factorization: Sparse rating matrices can be approximated by low-rank factorizations
- Latent Features: Users and items are characterized by latent factors (not manually defined!)
- Bilinear Problem: Non-convex jointly, but convex individually → Alternating optimization works well
- Scale Matters: Algorithm choice depends on data size and computational constraints
- Real-World Complexity: Regularization, bias terms, cold start, implicit feedback all matter

- Sparsity ⇒ Factorization: Sparse rating matrices can be approximated by low-rank factorizations
- Latent Features: Users and items are characterized by latent factors (not manually defined!)
- 3. **Bilinear Problem**: Non-convex jointly, but convex individually → Alternating optimization works well
- Scale Matters: Algorithm choice depends on data size and computational constraints
- Real-World Complexity: Regularization, bias terms, cold start, implicit feedback all matter

- Sparsity ⇒ Factorization: Sparse rating matrices can be approximated by low-rank factorizations
- Latent Features: Users and items are characterized by latent factors (not manually defined!)
- 3. **Bilinear Problem**: Non-convex jointly, but convex individually → Alternating optimization works well
- Scale Matters: Algorithm choice depends on data size and computational constraints
- Real-World Complexity: Regularization, bias terms, cold start, implicit feedback all matter

The Mathematical Beauty:

Collaborative Filtering = Matrix Factorization = Dimensionality I

Beyond Basic Matrix Factorization:

 Non-negative Matrix Factorization (NMF): Interpretable factors

- Non-negative Matrix Factorization (NMF): Interpretable factors
- Deep Matrix Factorization: Neural networks for non-linear patterns

- Non-negative Matrix Factorization (NMF): Interpretable factors
- Deep Matrix Factorization: Neural networks for non-linear patterns
- Factorization Machines: Handle multi-way interactions

- Non-negative Matrix Factorization (NMF): Interpretable factors
- Deep Matrix Factorization: Neural networks for non-linear patterns
- Factorization Machines: Handle multi-way interactions
- Variational Autoencoders: Probabilistic approach to recommendations

- Non-negative Matrix Factorization (NMF): Interpretable factors
- Deep Matrix Factorization: Neural networks for non-linear patterns
- Factorization Machines: Handle multi-way interactions
- Variational Autoencoders: Probabilistic approach to recommendations
- Graph Neural Networks: Leverage user-item interaction graphs

- Non-negative Matrix Factorization (NMF): Interpretable factors
- Deep Matrix Factorization: Neural networks for non-linear patterns
- Factorization Machines: Handle multi-way interactions
- Variational Autoencoders: Probabilistic approach to recommendations
- Graph Neural Networks: Leverage user-item interaction graphs
- Multi-armed Bandits: Exploration vs exploitation in recommendations

- Non-negative Matrix Factorization (NMF): Interpretable factors
- Deep Matrix Factorization: Neural networks for non-linear patterns
- Factorization Machines: Handle multi-way interactions
- Variational Autoencoders: Probabilistic approach to recommendations
- Graph Neural Networks: Leverage user-item interaction graphs
- Multi-armed Bandits: Exploration vs exploitation in recommendations

Beyond Basic Matrix Factorization:

- Non-negative Matrix Factorization (NMF): Interpretable factors
- Deep Matrix Factorization: Neural networks for non-linear patterns
- Factorization Machines: Handle multi-way interactions
- Variational Autoencoders: Probabilistic approach to recommendations
- Graph Neural Networks: Leverage user-item interaction graphs
- Multi-armed Bandits: Exploration vs exploitation in recommendations

Applications Beyond Movies:

E-commerce (Amazon, eBay)

Extensions and Advanced Topics

Beyond Basic Matrix Factorization:

- Non-negative Matrix Factorization (NMF): Interpretable factors
- Deep Matrix Factorization: Neural networks for non-linear patterns
- Factorization Machines: Handle multi-way interactions
- Variational Autoencoders: Probabilistic approach to recommendations
- Graph Neural Networks: Leverage user-item interaction graphs
- Multi-armed Bandits: Exploration vs exploitation in recommendations

Applications Beyond Movies:

- E-commerce (Amazon, eBay)
- Music streaming (Spotify, Apple Music)

Extensions and Advanced Topics

Beyond Basic Matrix Factorization:

- Non-negative Matrix Factorization (NMF): Interpretable factors
- Deep Matrix Factorization: Neural networks for non-linear patterns
- Factorization Machines: Handle multi-way interactions
- Variational Autoencoders: Probabilistic approach to recommendations
- Graph Neural Networks: Leverage user-item interaction graphs
- Multi-armed Bandits: Exploration vs exploitation in recommendations

Applications Beyond Movies:

- E-commerce (Amazon, eBay)
- Music streaming (Spotify, Apple Music)

Extensions and Advanced Topics

Beyond Basic Matrix Factorization:

- Non-negative Matrix Factorization (NMF): Interpretable factors
- Deep Matrix Factorization: Neural networks for non-linear patterns
- Factorization Machines: Handle multi-way interactions
- Variational Autoencoders: Probabilistic approach to recommendations
- Graph Neural Networks: Leverage user-item interaction graphs
- Multi-armed Bandits: Exploration vs exploitation in recommendations

Applications Beyond Movies:

- E-commerce (Amazon, eBay)
- Music streaming (Spotify, Apple Music)

Mastery Test

Mastery Test

True or False? Explain your reasoning:

Matrix factorization can only work with explicit ratings

Mastery Test

- Matrix factorization can only work with explicit ratings
- 2. ALS always converges to the global optimum

Mastery Test

- Matrix factorization can only work with explicit ratings
- 2. ALS always converges to the global optimum
- A rank-1 factorization means all users have identical preferences

Mastery Test

- Matrix factorization can only work with explicit ratings
- 2. ALS always converges to the global optimum
- A rank-1 factorization means all users have identical preferences
- 4. Adding regularization always improves recommendations

Mastery Test

- Matrix factorization can only work with explicit ratings
- 2. ALS always converges to the global optimum
- A rank-1 factorization means all users have identical preferences
- Adding regularization always improves recommendations
- 5. SGD is better than ALS for all applications

Mastery Test

- Matrix factorization can only work with explicit ratings
- 2. ALS always converges to the global optimum
- A rank-1 factorization means all users have identical preferences
- Adding regularization always improves recommendations
- 5. SGD is better than ALS for all applications

Mastery Test

True or False? Explain your reasoning:

- Matrix factorization can only work with explicit ratings
- 2. ALS always converges to the global optimum
- 3. A rank-1 factorization means all users have identical preferences
- 4. Adding regularization always improves recommendations
- 5. SGD is better than ALS for all applications

Answers:

Mastery Test

True or False? Explain your reasoning:

- Matrix factorization can only work with explicit ratings
- 2. ALS always converges to the global optimum
- 3. A rank-1 factorization means all users have identical preferences
- 4. Adding regularization always improves recommendations
- 5. SGD is better than ALS for all applications

Answers:

Mastery Test

True or False? Explain your reasoning:

- Matrix factorization can only work with explicit ratings
- 2. ALS always converges to the global optimum
- 3. A rank-1 factorization means all users have identical preferences
- 4. Adding regularization always improves recommendations
- 5. SGD is better than ALS for all applications

Answers:

Mastery Test

True or False? Explain your reasoning:

- Matrix factorization can only work with explicit ratings
- 2. ALS always converges to the global optimum
- 3. A rank-1 factorization means all users have identical preferences
- 4. Adding regularization always improves recommendations
- 5. SGD is better than ALS for all applications

Answers:

Mastery Test

True or False? Explain your reasoning:

- Matrix factorization can only work with explicit ratings
- 2. ALS always converges to the global optimum
- 3. A rank-1 factorization means all users have identical preferences
- 4. Adding regularization always improves recommendations
- 5. SGD is better than ALS for all applications

Answers:

Questions?

Thank you for your attention!

Next: Deep learning approaches to recommendation systems