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Motivation: Real-World
Application



Brick Kiln Detection from Satellite Imagery

Problem: Identify illegal brick kilns using satellite imagery

Key Points: Why This Matters

• Environmental monitoring and air quality
• Thousands of square kilometers to survey
• Manual inspection is infeasible
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The Challenge: Scale of the Problem

Dataset Scale

• Images to scan: 10,000 satellite images
• Manual inspection time: 30 seconds per image
• Total manual effort: 10,000× 30s
• That’s 83 hours of continuous work!

Can we automate this with machine learning?
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Why Not Just Use Accuracy?

Three Models to Choose From

• Model A: 95% accuracy
• Model B: 92% accuracy
• Model C: 89% accuracy

Key Points: The Problem

Accuracy doesn’t tell us about the types of errors!
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Types of Errors Matter

Example: False Positive (Type I Error)

Model says “brick kiln detected” but there isn’t one

• Wastes inspector’s time
• Reduces trust in the system

Example: False Negative (Type II Error)

Model misses an actual brick kiln

• Environmental violation goes undetected
• Defeats the purpose of monitoring
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Scenario 1: High Precision Model

Example: Conservative Classifier

Model behavior: Only flags when very confident

Results

• Flags 100 images as “has brick kiln”
• Inspector time: 100× 30s = 50 minutes

Key Points: Trade-offs

Few false alarms
Inspector time well-spent

× Might miss many kilns
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Scenario 2: High Recall Model

Example: Aggressive Classifier

Model behavior: Flags anything suspicious

Results

• Flags 2,000 images as “has brick kiln”
• Inspector time: 2,000× 30s = 16.7 hours

Key Points: Trade-offs

Catches almost all kilns
× Many false alarms
× Wastes inspector time
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Classification Metrics
Fundamentals



The Confusion Matrix

Definition: Confusion
Matrix

Predicted
Pos Neg

Ac
tu

al Pos TP FN
Neg FP TN

• TP: Correct positive
• FP: Type I error
• TN: Correct negative
• FN: Type II error

TP
True

Positive

FN
False

Negative

FP
False

Positive

TN
True

Negative

Predicted
Positive Negative

P
o
si

ti
ve

N
eg

at
iv

e

A
ct

u
a
l

9 / 78



Precision: Reliability of Positive Predictions

Definition: Precision

Precision =
TP

TP + FP

Question it answers:
Of all instances we predicted as positive,
what fraction was actually positive?
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Precision: Example

Example: Brick Kiln Detection

• Model flags 100 images as having brick kilns
• 80 actually have brick kilns (TP)
• 20 are false alarms (FP)

Precision =
80

100
= 0.80 or 80%

Key Points: Interpretation

When the model says “brick kiln detected,” it’s correct 80% of
the time
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Recall: Completeness of Detection

Definition: Recall (Sensitivity, TPR)

Recall = TP
TP + FN

Question it answers:
Of all actual positive instances,
what fraction did we correctly identify?
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Recall: Example

Example: Brick Kiln Detection

• 150 images actually contain brick kilns
• Model correctly identifies 80 (TP)
• Model misses 70 of them (FN)

Recall = 80

150
= 0.533 or 53.3%

Key Points: Interpretation

The model finds only about half of all brick kilns
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The Precision-Recall Trade-off

Key Points: Fundamental Tension

Improving one metric often hurts the other!
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Trade-off: Model Behavior

Conservative Model

• High threshold
• Few predictions
• High precision
• Low recall

Aggressive Model

• Low threshold
• Many predictions
• Low precision
• High recall
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Classification Thresholds



From Probabilities to Predictions

Definition: How Classi-
fiers Work

Most classifiers output
probabilities, not direct
predictions
Classification threshold τ
converts probabilities to
classes:

ŷ =

{
1 if P(y = 1|x) ≥ τ

0 if P(y = 1|x) < τ

Default: τ = 0.5
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Threshold Example

Example: Three Images, Different Thresholds

Image P(kiln) τ = 0.5 τ = 0.7
A 0.85 Positive Positive
B 0.62 Positive Negative
C 0.38 Negative Negative

Key Points: Key Insight

Same model, different thresholds = different predictions!
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Low Threshold Effects

Threshold τ = 0.3

Classify as positive if P(y = 1|x) ≥ 0.3

• More instances classified as positive
• Higher recall (catch more positives)
• Lower precision (more false positives)
• More false alarms

Use when: Missing positives is costly
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High Threshold Effects

Threshold τ = 0.7

Classify as positive if P(y = 1|x) ≥ 0.7

• Fewer instances classified as positive
• Lower recall (miss more positives)
• Higher precision (fewer false positives)
• Fewer false alarms

Use when: False alarms are costly
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Precision-Recall Curves



What is a PR Curve?

Definition: Precision-Recall
Curve

A plot showing precision vs.
recall for all possible thresh-
old values

• X-axis: Recall
• Y-axis: Precision
• Each point = one

threshold value

Key Points: What It Shows

The complete trade-off space
between precision and recall
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Building a PR Curve: Steps

1. Train classifier (e.g., Logistic Regression)

2. Get predicted probabilities for test set
3. For each threshold τ ∈ [0, 1]:

◦ Apply threshold to get predictions
◦ Compute confusion matrix
◦ Calculate precision and recall
◦ Plot (recall, precision) point
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Building a PR Curve: Visualization
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Key Points: Result

Connect all threshold points to form the complete PR curve
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Implementation in Scikit-learn

Python Code

from sklearn.metrics import precision_recall_curve

# Get predicted probabilities
y_scores = model.predict_proba(X_test)[:, 1]

# Compute PR curve
precision, recall, thresholds = \

precision_recall_curve(y_test, y_scores)
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Example: Synthetic Dataset

Example: Dataset from Notebook

• Created using make_blobs()

• 100 samples, 2 features, 2 classes
• Training: 40 samples
• Test: 60 samples
• Cluster standard deviation: 8.0
• Classifier: Logistic Regression
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Threshold Analysis: Low Values

Example: From Notebook: Threshold = 0.00

• Precision: 0.48
• Recall: 1.00

Interpretation:

• Classifies almost everything as positive
• Catches all positive cases (perfect recall)
• But only 48% are actually positive
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Threshold Analysis: Medium Values

Example: From Notebook: Threshold = 0.50

• Precision: 0.74
• Recall: 0.69

Interpretation:

• Balanced operating point
• Good precision: 74% of predictions correct
• Good recall: finds 69% of positives
• This is the default threshold
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Threshold Analysis: High Values

Example: From Notebook: Threshold = 0.90

• Precision: 1.00
• Recall: 0.24

Interpretation:

• Very conservative classification
• Perfect precision: all predictions correct!
• But misses 76% of positive cases
• Only confident predictions are made
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Complete Threshold Table

Threshold Precision Recall
0.00 0.48 1.00
0.10 0.55 0.98
0.30 0.65 0.85
0.50 0.74 0.69
0.70 0.85 0.45
0.90 1.00 0.24
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Key Points: Observation

As threshold increases: Precision ↑, Recall ↓
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Interpreting PR Curves
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Interpreting PR Curves

Key Points: What Makes a Good Curve?

• Curve closer to top-right is better
• Top-right = high precision AND high recall
• Perfect classifier: stays at (1, 1)
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Interpreting PR Curves: Baseline

Baseline: Random Classifier
Horizontal line at y = # positives

total
For balanced classes: y = 0.5

Example: Example

If 48% of data is positive class:
Random classifier has precision ≈ 0.48 at all recall levels

31 / 78



Comparing Models with PR Curves

Model Comparison Rules

1. If one curve dominates (always above),
that model is better

2. If curves cross, choice depends on your needs:
◦ Need high precision? Use left side of curve
◦ Need high recall? Use right side of curve
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Application-Specific
Decisions



When to Prioritize Precision

Example: High Precision Scenarios

False positives are costly:

• Spam detection
Don’t want legitimate emails in spam folder

• Medical diagnosis
Before expensive/risky treatment

• Fraud detection
Don’t block legitimate transactions

Strategy: Choose high threshold
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When to Prioritize Recall

Example: High Recall Scenarios

False negatives are costly:

• Cancer screening
Can’t afford to miss cases

• Security threats
Missing a threat is catastrophic

• Environmental compliance
Must catch all violations

Strategy: Choose low threshold
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Decision Analysis: Option A

High Precision Choice: τ = 0.7

Metrics:

• Precision: 0.85
• Recall: 0.55

Example: Implications

• Flags 200 images
• 170 true positives, 30 false positives
• Inspection time: 1.7 hours
• Misses 45% of kilns
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Decision Analysis: Option B

High Recall Choice: τ = 0.4

Metrics:

• Precision: 0.65
• Recall: 0.85

Example: Implications

• Flags 500 images
• 325 true positives, 175 false positives
• Inspection time: 4.2 hours
• Only misses 15% of kilns
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Which Option to Choose?

Decision Factors

• Budget: How much inspector time available?
• Legal: Required detection rate?
• Environmental urgency: Cost of missed kilns?

Key Points: Typical Choice

For environmental compliance:
Option B (high recall) is usually preferred
Missing violations is worse than
spending extra inspection time
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Related Metrics



F1 Score: Balancing Both Metrics

Definition: F1 Score

Harmonic mean of precision and recall:

F1 = 2 · Precision · Recall
Precision + Recall

Alternative form:

F1 =
2 · TP

2 · TP + FP + FN

38 / 78



Why Harmonic Mean?

Key Points: Properties of F1

• Range: [0, 1], higher is better
• Heavily penalizes imbalanced metrics
• Both precision and recall must be good

Example: Example Comparison

• P = 0.80,R = 0.60 ⇒ F1 = 0.686

• P = 0.70,R = 0.70 ⇒ F1 = 0.700

Balanced metrics give better F1!
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Fβ Score: Weighted Version

Definition: Fβ Score

Fβ = (1 + β2) · Precision · Recall
β2 · Precision + Recall

Parameter β:

• β = 1: Equal weight (F1 score)
• β < 1: Favor precision (e.g., F0.5)
• β > 1: Favor recall (e.g., F2)

40 / 78



Fβ Applications: High Recall

Example: F2 Score

Use when: Recall is 2× more important than precision
Applications:

• Cancer screening
Missing a cancer case is catastrophic

• Security threat detection
Can’t afford to miss threats

• Environmental compliance
Our brick kiln detection example

Higher β = More weight on recall
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Fβ Applications: High Precision

Example: F0.5 Score

Use when: Precision is 2× more important than recall
Applications:

• Search engines
Show most relevant results first

• Spam detection
Avoid false positives (legitimate emails in spam)

• Medical diagnoses
Before expensive/invasive treatments

Lower β = More weight on precision
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Average Precision (AP)

Definition: Average Precision

Area under the precision-recall curve:

AP =

N∑
n=1

(Rn − Rn−1) · Pn

where Pn and Rn are precision and recall
at the n-th threshold
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Average Precision: Properties

Key Points: Key Properties

• Range: [0, 1], higher is better
• Single number summarizing entire curve
• Perfect classifier: AP = 1.0

• Weighted by recall changes
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When to Use Average Precision

Key Points: Use Cases

• Comparing models across all thresholds
• When you can’t choose single operating point
• Benchmark competitions

Example: Object Detection

mAP (mean Average Precision):
Average of AP across all object classes
Standard metric in COCO, Pascal VOC
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Specificity (True Negative Rate)

Definition: Specificity

Specificity =
TN

TN + FP

Fraction of negatives correctly identified

Example: Example

Out of 100 non-kiln images, if we correctly identify 90:
Specificity = 90/100 = 0.90
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False Positive Rate (FPR)

Definition: FPR

FPR =
FP

FP + TN = 1− Specificity

Fraction of negatives wrongly classified

Key Points: Relationship

FPR and Specificity are complements:
FPR + Specificity = 1
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ROC Curves



What is ROC?

Definition: ROC: Receiver Operating Characteristic

Developed during World War II for analyzing radar signals
Breaking down the name:

• Receiver: The detector/classifier receiving signals
• Operating: Different operating points (thresholds)
• Characteristic: Performance at each threshold

Key Points: Historical Context

Originally used to analyze radar operators’ ability
to correctly detect enemy aircraft from radar signals
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ROC Curve Definition

Definition: What ROC Plots

ROC curve plots TPR vs FPR
at all thresholds

• X-axis: False Positive
Rate (FPR)

FPR =
FP

FP + TN

• Y-axis: True Positive Rate
(TPR) = Recall

TPR =
TP

TP + FN
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Intuitive Understanding: TPR

Example: True Positive Rate (TPR)

TPR =
TP

TP + FN =
TP

All Actual Positives

Question it answers: Of all actual brick kilns, what fraction did
we detect?

• Same as Recall!
• Measures: Sensitivity of the detector
• High TPR = Catches most positives
• Low TPR = Misses many positives
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Intuitive Understanding: FPR

Example: False Positive Rate (FPR)

FPR =
FP

FP + TN =
FP

All Actual Negatives

Question it answers: Of all non-kiln images, what fraction did
we
incorrectly flag as having kilns?

• Measures: False alarm rate
• High FPR = Many false alarms
• Low FPR = Few false alarms
• FPR = 1− Specificity
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The ROC Trade-off

Key Points: Fundamental Trade-off

As we vary the threshold:

• Lower threshold → Higher TPR, Higher FPR
• Higher threshold → Lower TPR, Lower FPR

Low Threshold

• Catch more positives
• But more false alarms
• Top-right of ROC

High Threshold

• Fewer false alarms
• But miss more positives
• Bottom-left of ROC
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Building a ROC Curve: Steps

1. Train classifier, get predicted probabilities
2. For each threshold τ ∈ [0, 1]:

◦ Apply threshold to get predictions
◦ Compute confusion matrix
◦ Calculate TPR and FPR
◦ Plot point (FPR, TPR)

3. Connect points to form curve
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Building a ROC Curve: Interpretation
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• Perfect classifier: Curve hugs top-left corner
• Random classifier: Diagonal line
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Interpreting ROC Curves

Key Points: Good ROC
Curve

• Closer to top-left
• Top-left = perfect!
• TPR=1, FPR=0
• High TPR, low FPR

Baselines

• Perfect: Top-left
• Random: Diagonal
• Bad: Below diagonal
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Example: Same Dataset

Example: From Notebook

Using our Logistic Regression model

Threshold TPR (Recall) FPR
0.00 1.00 1.00
0.30 0.83 0.35
0.50 0.69 0.23
0.70 0.52 0.10
0.90 0.24 0.00

Key Points: Observation

As threshold increases: TPR ↓, FPR ↓
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AUC-ROC: Area Under ROC Curve

Definition: AUC-ROC

Single number summarizing en-
tire ROC curve

AUC-ROC =

∫ 1

0

TPR(FPR) d(FPR)

Interpretation:

• Range: [0, 1]

• Perfect: AUC = 1.0
• Random: AUC = 0.5
• Higher is better
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AUC-ROC Intuition

Key Points: Probabilistic Interpretation

AUC-ROC = Probability that the model ranks
a random positive example higher than
a random negative example

Example: Example

• AUC = 0.95: 95% chance model scores
a true kiln higher than a non-kiln

• AUC = 0.50: Model is guessing randomly
• AUC = 0.85: Good discrimination ability
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ROC Implementation

Scikit-learn Implementation
from sklearn.metrics import (

roc_curve, roc_auc_score,
RocCurveDisplay

)

# Get predicted probabilities
y_scores = model.predict_proba(X_test)[:, 1]

# Compute ROC curve
fpr, tpr, thresholds = roc_curve(y_test, y_scores)
auc_roc = roc_auc_score(y_test, y_scores)

# Visualize
display = RocCurveDisplay(fpr=fpr, tpr=tpr,

roc_auc=auc_roc)
display.plot()
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Comparing Multiple Models

Example: From Notebook: 3 Classifiers

• Logistic Regression (linear boundary)
• Random Forest (non-linear, ensemble)
• SVM with RBF kernel (non-linear)

Model AUC-ROC AUC-PR
Random Forest 0.92 0.90
SVM (RBF) 0.89 0.87
Logistic Regression 0.86 0.83

(Values approximate from notebook example)
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PR vs ROC: When to Use
Each



Comparing PR and ROC Curves
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Key Difference: Class Imbalance

Critical Insight
ROC curves can be overly optimistic
on highly imbalanced datasets!

Example: Why?

FPR uses TN in denominator:

FPR =
FP

FP + TN

With many negatives, even lots of FPs
can give a low FPR
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Example: Imbalanced Data Setup

Example: Scenario: Highly Imbalanced Dataset

• Total images: 1,000
• Positive class (has brick kilns): 50 (5%)
• Negative class (no kilns): 950 (95%)

This is a realistic scenario!
Many real-world problems have imbalanced classes
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Example: Imbalanced Data Analysis

Model with 100 False Positives
Suppose our model produces 100 false alarms:
Precision impact:

• Many false alarms per true positive
• Precision will be low (obvious problem!)

FPR appears good:

FPR =
100

100 + 850
=

100

950
= 0.105

Even with 100 false positives, FPR is only 10.5%!

Key Points: Conclusion

PR curve: Shows the problem clearly
ROC curve: Can hide issues in imbalanced data
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Practical Considerations



PR Curves vs ROC Curves

Key Points: Use PR Curves When:

• Classes are highly imbalanced
• You care primarily about positive class
• False positives and negatives differ in cost

Examples: Rare disease, fraud, information retrieval

Use ROC Curves When:

• Classes are relatively balanced
• Both classes equally important
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Why PR for Imbalanced Data?

Example: Brick Kiln Dataset

• Total: 10,000 images
• Positive (has kiln): 150 (1.5%)
• Negative (no kiln): 9,850 (98.5%)

Naive Classifier
Always predict “no kiln”:

• Accuracy: 98.5% (looks great!)
• Precision: undefined
• Recall: 0% (useless!)
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The Problem with Accuracy

Key Points: Why Accuracy Fails

With extreme imbalance (1.5% positive):

• Accuracy dominated by majority class
• High accuracy doesn’t mean good performance
• Need metrics focused on positive class

Use Precision, Recall, and PR curves!
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Visualization with Scikit-learn

Complete Implementation
from sklearn.metrics import (

precision_recall_curve,
average_precision_score,
PrecisionRecallDisplay

)

# Get scores
y_scores = model.predict_proba(X_test)[:, 1]

# Compute metrics
precision, recall, thresholds = \

precision_recall_curve(y_test, y_scores)
ap = average_precision_score(y_test, y_scores)

# Visualize
display = PrecisionRecallDisplay(

precision, recall, average_precision=ap)
display.plot()
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Pop Quiz #1

Answer this!

A model detects defective products (2% of all prod-
ucts). Your model achieves:

• Precision: 0.60
• Recall: 0.90

Out of 10,000 products, how many will be flagged?

A) 150
B) 300
C) 600
D) 900

Answer: B) 300
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Pop Quiz Answer

Example: Solution

Answer: B) 300

Step 1: Actual defective products
10,000× 0.02 = 200

Step 2: True Positives (Recall = 0.90)
TP = 200× 0.90 = 180

Step 3: Use precision formula

0.60 =
180

Total flagged

Total flagged =
180

0.60
= 300
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Pop Quiz #2

Answer this!

Which scenario needs model with Precision=0.70, Re-
call=0.85 over Precision=0.85, Recall=0.70?

A) Email spam detection
(false positives lose legitimate mail)

B) Airport security screening
(missing threats is catastrophic)

C) Credit card fraud
(false positives block legitimate purchases)

D) All equally

Answer: B) Airport security screening
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call=0.85 over Precision=0.85, Recall=0.70?

A) Email spam detection
(false positives lose legitimate mail)

B) Airport security screening
(missing threats is catastrophic)

C) Credit card fraud
(false positives block legitimate purchases)

D) All equally

Answer: B) Airport security screening
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Pop Quiz Answer

Example: Solution

Answer: B) Airport security screening

Reasoning:

• First model has higher recall (0.85)
• Catches more true positives
• Missing a threat = catastrophic
• Better to have false alarms than miss threats

Options (a) and (c): False positives are costly
⇒ Need high precision
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Summary



Key Takeaways (1/2)

Key Points: Core Concepts

1. Precision: Reliability of predictions
2. Recall: Completeness of detection
3. Trade-off: Can’t maximize both
4. Thresholds: Control the trade-off
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Key Takeaways (2/2)

Key Points: Practical Insights

5. PR curves: Show all trade-offs
6. Application: Determines best point
7. Imbalanced data: PR better than accuracy
8. Summary metrics: F1, AP
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Workflow Summary

1. Train classifier
2. Generate PR curve on validation set
3. Analyze precision-recall trade-offs
4. Choose threshold based on:

◦ Application requirements
◦ Cost of errors
◦ Available resources

5. Validate on test set
6. Monitor in production
7. Adjust if requirements change
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The Right Model for YOUR Application

The best model makes the right trade-offs
for your specific application

Not the highest accuracy,
not the highest F1,

but the one that aligns with your goals!
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Further Resources

• Notebook: pr-curve.html
Running example with visualization code

• Documentation:
Scikit-learn Precision-Recall guide

• Related topics:
◦ ROC curves and AUC
◦ Cost-sensitive learning
◦ Threshold optimization
◦ Multi-class metrics
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Thank you!

Questions?
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