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Motivation: The Problem
of Overfitting



The Problem: Overfitting in Linear Regression

Important: Overfitting Challenge

As model complexity increases (higher polynomial degree),
we often observe:

• Training error decreases
• Test error increases
• Model coefficients become very large

Key Points: Key Insight

Large coefficient magnitudes often indicate overfitting!

In polynomial f(x) = c0 + c1x+ c2x2 + · · ·+ cdxd, watch max |ci|
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Demonstration: Polynomial Degree vs Overfitting
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Demonstration: Polynomial Degree vs Overfitting
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Demonstration: Polynomial Degree vs Overfitting
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Demonstration: Polynomial Degree vs Overfitting
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Demonstration: Polynomial Degree vs Overfitting
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Coefficient Explosion with Overfitting

Key Points: Key Observation

As polynomial degree increases → coefficients grow expo-
nentially!
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The Central Question

Important: Critical Question

How can we control coefficient magnitudes to prevent over-
fitting?

Key Points: Answer Preview

Ridge regression adds a penalty term to shrink coefficients!
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Pop Quiz 1

Answer this!

Which statement about overfitting is TRUE?

A) Higher polynomial degree always improves
generalization

B) Large coefficients indicate good model fit
C) Overfitting occurs when training error >> test error
D) Overfitting occurs when training error << test error
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Answer: Pop Quiz 1

Answer this!

D) Overfitting occurs when training error << test er-
ror

Explanation:

• Training error becomes very small (model memorizes
training data)

• Test error remains large (model fails to generalize)
• Large gap indicates overfitting
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Ridge Regression
Formulation



Solution: Regularization

Theorem: Ridge Regression Approach

Add a penalty term to control coefficient magnitudes:

Definition: Constrained Formulation

min
θ

(y − Xθ)T (y − Xθ)

subject to θTθ ≤ S

where S > 0 controls the size of the coefficient vector.
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Lagrangian Formulation

Theorem: Equivalence Theorem

The constrained problem is equivalent to the unconstrained:

min
θ

(y − Xθ)T (y − Xθ) + λθTθ

where λ ≥ 0 is the regularization parameter.

Key Points: Key Insight

This transforms a constrained optimization into an uncon-
strained one with a penalty term.
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Understanding the Ridge Penalty

J(θ) = (y − Xθ)T (y − Xθ)︸ ︷︷ ︸
Fit to data (MSE)

+ λθTθ︸ ︷︷ ︸
Penalty term

(1)

= MSE(θ) + λ∥θ∥22 (2)

Key Points: Key Components

• Data fitting term: Ensures good fit to training data
• Regularization term: L2 penalty shrinks coefficients

toward zero
• λ: Controls trade-off between fitting vs. regularization
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Effect of Regularization Parameter λ

Key Points: Parameter Effects

• λ = 0: No regularization (standard linear regression)
• λ small: Light regularization (slight shrinkage)
• λ large: Heavy regularization (strong shrinkage)
• λ → ∞: Extreme regularization (coefficients → 0)

Important: Key Trade-off

Higher λ = more regularization = more bias, less variance

16 / 81



Geometric Interpretation
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Key Points: Key Insight

Ridge finds the minimum MSE point within the constraint ∥θ∥22 ≤
S
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Mathematical Derivation



Mathematical Derivation: Step 1

Step 1: Set up the Lagrangian

For the constrained optimization problem:

min
θ

(y − Xθ)T (y − Xθ)

s.t. θTθ ≤ S

The Lagrangian is:

L(θ, λ) = (y − Xθ)T (y − Xθ) + λ
(
θTθ − S

)
where λ ≥ 0 is the Lagrange multiplier.
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Mathematical Derivation: Step 2

Step 2: Apply KKT Conditions

For optimality, we need:

∂L
∂θ

= 0 (stationarity) (3)

λ ≥ 0 (dual feasibility) (4)
θTθ − S ≤ 0 (primal feasibility) (5)

λ(θTθ − S) = 0 (complementary slackness) (6)

Key Points: Two Cases

• Case 1: λ = 0 ⇒ No constraint active (standard OLS)
• Case 2: λ > 0 ⇒ θTθ = S (constraint is tight)
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Mathematical Derivation: Step 3

Step 3: Compute the Gradient

Taking the derivative of the Lagrangian with respect to θ:

∂L
∂θ

=
∂

∂θ

[
(y − Xθ)

T
(y − Xθ) + λθTθ

]
(7)

=
∂

∂θ

[
yTy − 2yTXθ + θTXTXθ + λθTθ

]
(8)

= −2XTy + 2XTXθ + 2λθ (9)
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Mathematical Derivation: Step 4

Step 4: Set Gradient to Zero

Setting ∂L
∂θ = 0:

−2XTy + 2XTXθ + 2λθ = 0 (10)

−XTy + (XTX + λI)θ = 0 (11)

(XTX + λI)θ = XTy (12)

Theorem: Ridge Regression Solution

θ̂ridge = (XTX + λI)−1XTy

Compare with OLS: θ̂OLS = (XTX)−1XTy
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Effect of Regularization Parameter λ
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Effect of Regularization Parameter λ
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Effect of Regularization Parameter λ
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Pop Quiz 2

Answer this!

What happens to the Ridge regression solution as λ → ∞?

A) Coefficients approach the OLS solution
B) Coefficients approach zero
C) Solution becomes undefined
D) Training error becomes zero
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Answer: Pop Quiz 2

Answer this!

B) Coefficients approach zero

As λ → ∞, the penalty term dominates:

θ̂ridge = (XTX + λI)−1XTy ≈ λ−1IXTy → 0
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Coefficient Shrinkage: Visual Evidence
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Important: Important Question

Do coefficients ever become exactly zero?
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Ridge Coefficient Behavior
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Ridge vs. Lasso: Key Difference

Key Points: Coefficient Behavior Comparison

• Ridge (L2): Coefficients shrink toward zero but remain
non-zero

• Lasso (L1): Coefficients can become exactly zero
(feature selection)

Important: Important Insight

Ridge provides shrinkage, Lasso provides selection!
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Ridge Regression Solution

Theorem: Ridge Solution Formula

θ̂ridge = (XTX + λI)−1XTy
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Key Property 1: Always Invertible

Theorem: Invertibility Guarantee

(XTX + λI) is always positive definite for λ > 0

Key Points: Why This Matters

• No singularity issues (unlike OLS)
• Always has unique solution
• Handles multi-collinearity gracefully
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Key Property 2: Coefficient Shrinkage

Theorem: Shrinkage Effect

Ridge regression shrinks coefficients toward zero (but not
exactly zero)

Key Points: Shrinkage Benefits

• Reduces overfitting
• Stabilizes coefficient estimates
• Improves generalization
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Key Property 3: Bias-Variance Trade-off

Theorem: Trade-off Effect

Ridge regression increases bias but reduces variance

Key Points: Net Effect

• Total error often decreases
• Better generalization to new data
• Controlled by λ parameter

33 / 81



Hyperparameter Selection



Choosing the Regularization Parameter λ

Important: Hyperparameter Selection

How do we choose the optimal value of λ?

Theorem: Cross-Validation Approach

1. Split data into training and validation sets (k-fold CV)
2. For each candidate λ value:

◦ Train ridge model on training data
◦ Compute validation error

3. Select λ that minimizes validation error
4. Retrain on full dataset with chosen λ
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Cross-Validation for Ridge Regression
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Key Points: CV Pattern

Small λ: Overfitting Large λ: Underfitting Optimal λ: Best trade-
off

35 / 81



Bias-Variance Trade-off in Ridge Regression

Theorem: Bias-Variance Decomposition

Total Error = Bias2 + Variance + Irreducible Error

Key Points: Ridge Effect

Regularization increases bias but reduces variance, often
leading to lower total error.
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Small vs Large Regularization
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Pop Quiz 3

Answer this!

In ridge regression, as we increase λ, what happens to
model bias and variance?

A) Both bias and variance increase
B) Both bias and variance decrease
C) Bias increases, variance decreases
D) Bias decreases, variance increases
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Answer: Pop Quiz 3

Answer this!

C) Bias increases, variance decreases

Explanation:

• Increasing λ constrains coefficients more severely
• Model becomes simpler (higher bias)
• Less sensitive to training data variations (lower

variance)
• This is the fundamental bias-variance trade-off!
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Examples and
Applications



Worked Example: Setup

Example: Ridge Regression Example

Given the following simple dataset, compare OLS vs. Ridge
regression with λ = 2:

Data: (x1, y1) = (1, 1), (x2, y2) = (2, 2), (x3, y3) = (3, 3),
(x4, y4) = (4, 0)
Model: y = θ0 + θ1x

Step 1: Set up matrices

X =


1 1
1 2
1 3
1 4

 , y =


1
2
3
0

 , θ =

[
θ0
θ1

]
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Worked Example: OLS Setup

Step 2: Ordinary Least Squares

θ̂OLS = (XTX)−1(XTy)

Step 3: Compute matrix products

XTX =

[
4 10
10 30

]
XTy =

[
6
14

]
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Worked Example: Matrix Inverse

Step 4: Compute the inverse

For XTX =

[
4 10
10 30

]
:

det(XTX) = 4 · 30− 10 · 10 = 20

(XTX)−1 =
1

20

[
30 −10
−10 4

]
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Worked Example: OLS Calculation

Step 5: Final matrix multiplication

θ̂OLS = (XTX)−1(XTy)

=
1

20

[
30 −10
−10 4

] [
6
14

]
=

1

20

[
180− 140
−60 + 56

]
=

1

20

[
40
−4

]
=

[
2.0
−0.2

]

43 / 81



OLS Final Result

Theorem: OLS Result

ŷ = 2.0− 0.2x (No regularization)
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Data
OLS: ŷ = 2.0− 0.2x

OLS fit to our example data
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Worked Example: Ridge Setup

Step 5: Ridge regression with λ = 2

θ̂ridge = (XTX + λI)−1(XTy)

Step 6: Add regularization term

XTX + λI =
[
4 10
10 30

]
+ 2I

=

[
6 10
10 32

]
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Worked Example: Matrix Inverse

Step 7: Compute inverse

det(XTX + λI) = 6 · 32− 10 · 10 = 92

(XTX + λI)−1 =
1

92

[
32 −10
−10 6

]
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Worked Example: Ridge Calculation

Step 8: Matrix multiplication

θ̂ridge = (XTX + λI)−1(XTy)

=
1

92

[
32 −10
−10 6

] [
6
14

]

Step 9: Compute products

=
1

92

[
32 · 6 + (−10) · 14
(−10) · 6 + 6 · 14

]
=

1

92

[
192− 140
−60 + 84

]
=

1

92

[
52
24

]
=

[
0.565
0.261

]
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Ridge vs OLS: Final Comparison

Theorem: Ridge Result

ŷ = 0.565 + 0.261x (With λ = 2)

1 2 3 4
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Data
OLS: ŷ = 2.0− 0.2x

Ridge: ŷ = 0.565 + 0.261x
Ridge regression provides more stable coefficients
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Coefficient Magnitude Comparison

Theorem: OLS vs Ridge Solutions

• OLS: θOLS =

[
2.0
−0.2

]
• Ridge: θRidge =

[
0.565
0.261

]

L2 Norm Calculation

∥θOLS∥22 = (2.0)2 + (−0.2)2 = 4.04 (13)
∥θRidge∥22 = (0.565)2 + (0.261)2 = 0.387 (14)
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Ridge Coefficient Shrinkage Result

Important: Key Result

Ridge regression achieved a 90.4% reduction in coefficient
magnitude!

0.387

4.04
= 0.096 (Ridge is 9.6% of OLS magnitude)

Key Points: Shrinkage Effect

Ridge systematically produces smaller coefficient magnitudes
while maintaining prediction accuracy.
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Multi-collinearity

(XTX)−1 is not computable when |XTX| = 0.
This was a drawback of using linear regression

X =

1 1 2
1 2 4
1 3 6


The matrix X is not full rank.
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Ridge Solution to Multi-collinearity

Key Points: Ridge Advantage

With ridge regression, we invert XTX + µI instead of XTX

XTX + µI =

3 + µ 6 12
6 14 + µ 28
12 28 56 + µ


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Why Ridge Fixes Singularity

Theorem: Key Result

The matrix XTX + µI is always full rank for µ > 0

Important: Another Interpretation

Ridge regression = regularization = fixing singularity issues!

Key Points: Summary

Ridge regression elegantly handles multi-collinearity prob-
lems!
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The Intercept Penalty Problem

Important: Critical Issue

Should we penalize the intercept θ0 in ridge regression?

Key Points: Two Approaches

• Standard Ridge: θ̂ = (XTX + λI)−1XTy (penalizes
intercept)

• No-intercept penalty: θ̂ = (XTX + λI∗)−1XTy
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Modified Identity Matrix I∗

Definition of I∗

I∗ =


0 0 0 . . . 0
0 1 0 . . . 0
... ... ... . . . ...
0 0 0 . . . 1


Important: Key Point

Zero in first position means NO penalty on intercept θ0

55 / 81



Demonstration: Two Simple Functions

Example: Setup

Compare two functions with different intercepts:

• Function 1: f1(x) = x (small intercept)
• Function 2: f2(x) = x + 100 (large intercept)
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Data Generation and Test Question

Data Generation

For each function, generate data at x = 1, 2:

Function 1: (1, 1), (2, 2) (15)
Function 2: (1, 101), (2, 102) (16)

Important: Test Question

How well can we predict y at x = 0 using ridge regression
with λ = 100?
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Function 1: Setup and Data

Theorem: Function 1: y = x

True value at x = 0: y = 0

Data matrices

X =

[
1 1
1 2

]
, y =

[
1
2

]
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Function 1: Matrix Computations

Matrix computations

XTX =

[
2 3
3 5

]
(17)

XTy =

[
3
5

]
(18)
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Function 1: Ridge with Standard I

Standard Ridge: I penalties both θ0 and θ1

XTX + λI =
[
2 3
3 5

]
+ 100

[
1 0
0 1

]
=

[
102 3
3 105

]
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Function 1: Standard Ridge Solution

Solution

θ̂ =

[
102 3
3 105

]−1 [
3
5

]
(19)

≈
[
0.029
0.047

]
(20)

Theorem: Prediction at x = 0

ŷ(0) = 0.029 + 0.047× 0 = 0.029
Error: |0.029− 0| = 0.029
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Function 1: Ridge with Modified I∗

Modified Ridge: I∗ does NOT penalize θ0

XTX + λI∗ =
[
2 3
3 5

]
+ 100

[
0 0
0 1

]
=

[
2 3
3 105

]
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Function 1: Modified Ridge Solution

Solution

θ̂ =

[
2 3
3 105

]−1 [
3
5

]
(21)

≈
[
−0.001
0.048

]
(22)

Theorem: Prediction at x = 0

ŷ(0) = −0.001 + 0.048× 0 = −0.001
Error: | − 0.001− 0| = 0.001
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Function 2: Setup and Data

Theorem: Function 2: y = x + 100

True value at x = 0: y = 100

Data matrices

X =

[
1 1
1 2

]
, y =

[
101
102

]
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Function 2: Matrix Computations

Matrix computations

XTX =

[
2 3
3 5

]
(same as Function 1) (23)

XTy =

[
203
305

]
(24)
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Function 2: Ridge with Standard I

Standard Ridge: penalizes large intercept heavily

XTX + λI =
[
102 3
3 105

]
(same matrix)
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Function 2: Standard Ridge Solution

Solution

θ̂ =

[
102 3
3 105

]−1 [
203
305

]
(25)

≈
[
1.98
2.89

]
(26)

Theorem: Prediction at x = 0

ŷ(0) = 1.98 + 2.89× 0 = 1.98
Error: |1.98− 100| = 98.02 (TERRIBLE!)
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Function 2: Ridge with Modified I∗

Modified Ridge: does NOT penalize intercept

XTX + λI∗ =
[
2 3
3 105

]
(same as Function 1)
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Function 2: Modified Ridge Solution

Solution

θ̂ =

[
2 3
3 105

]−1 [
203
305

]
(27)

≈
[
99.91
1.05

]
(28)

Theorem: Prediction at x = 0

ŷ(0) = 99.91 + 1.05× 0 = 99.91
Error: |99.91− 100| = 0.09 (EXCELLENT!)
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Results Summary
Function True y(0) Standard I Modified I∗
f1 : y = x 0 0.029 -0.001
Error 0.029 0.001
f2 : y = x + 100 100 1.98 99.91
Error 98.02 0.09

Important: Key Insight

Penalizing the intercept creates biased predictions when
data has non-zero mean!

Key Points: Solution

Use I∗ to avoid penalizing the intercept, or normalize data
first.
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Alternative: Data Normalization

Theorem: Normalization Approach

Center the data to have zero mean, then use standard I

Function 2 with normalization

Original: (1, 101), (2, 102)
Mean: x̄ = 1.5, ȳ = 101.5
Centered: (−0.5,−0.5), (0.5, 0.5)
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Benefits of Data Normalization

Key Points: Why Normalize?

• Can use standard I without bias
• Intercept becomes meaningful (deviation from mean)
• All features on similar scale
• More numerically stable

Important: Best Practice

Always normalize data OR use I∗ for unbiased ridge regres-
sion!
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Implementation Details



Ridge Regression via Gradient Descent

Theorem: Gradient Descent Update Rule

Standard gradient descent step for ridge regression:

θ(t+1) = θ(t) − α∇J(θ(t))

Ridge Gradient Computation

∇J(θ) = ∇
[
1

2
∥y − Xθ∥22 +

λ

2
∥θ∥22

]
(29)

= −XT(y − Xθ) + λθ (30)
= −XTy + XTXθ + λθ (31)
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Ridge vs OLS: Gradient Descent Updates

Theorem: Ridge Update (with shrinkage)

θ(t+1) = θ(t) − α(−XTy + XTXθ(t) + λθ(t))

= (1− αλ)θ(t) − α(−XTy + XTXθ(t))

Theorem: OLS Update (no shrinkage)

θ(t+1) = θ(t) − α(−XTy + XTXθ(t))

Key Points: Key Insight

The (1− αλ) factor shrinks coefficients at each step!
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Visual: OLS Gradient Descent Step

Theorem: OLS Update

θ(t+1) = θ(t) − α∇J(θ(t))

θ0

θ1

θ(t)

−α∇J

Important: Step 1

Start at θ(t) and compute negative gradient direction
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Visual: OLS Gradient Descent - Vector Sum

Theorem: Vector Addi-
tion

θ(t+1) = θ(t) + (−α∇J)

θ0

θ1

θ(t)

−α∇J

θ(t+1)

∥θ(t)∥2

∥θ(t+1)∥2

Key Points: Result

OLS: ∥θ(t+1)∥2 depends only on gradient direction
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Visual: Ridge Gradient Descent - Shrinkage Step

Theorem: Ridge Shrink-
age

First: θ(t) → (1− αλ)θ(t)

θ0

θ1

θ(t)

(1− αλ)θ(t)

shrink

Important: Ridge Step 1

Shrink current parameters by factor (1− αλ) < 1
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Visual: Ridge Gradient Descent - Complete Update

Theorem: Ridge Com-
plete Update

θ(t+1) = (1 − αλ)θ(t) −
α∇J

θ0

θ1

θ(t)

−α∇J

θ
(t+1)
ridge

∥θ(t)∥2

∥θ(t+1)
ridge ∥2

Key Points: Key Insight

Ridge: ∥θ(t+1)
ridge ∥2 < ∥θ(t+1)

OLS ∥2 (smaller coefficients!)
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Side-by-Side Comparison: OLS vs Ridge Updates

OLS Gradient Descent

θ0

θ1
θ(t)

θ(t+1)

No shrinkage
∥θ(t+1)∥2 = 1.98

Ridge Gradient Descent

θ0

θ1
θ(t)

θ(t+1)

With shrinkage
∥θ(t+1)∥2 = 1.72 < OLS

Important: Ridge Effect

Ridge regression systematically produces smaller coeffi-
cient magnitudes at every gradient descent step!
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Summary: What We Learned

Key Points: Ridge Regression Key Points

• Problem: Overfitting in linear regression with large
coefficients

• Solution: Add L2 penalty λ∥θ∥22 to loss function
• Effect: Shrinks coefficients, improves generalization
• Trade-off: Higher bias, lower variance
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Key Formula & Next Steps

Theorem: Ridge Regression Solution

θ̂ridge = (XTX + λI)−1XTy

Important: Next Steps

• Compare with Lasso regression (L1 penalty)
• Explore elastic net (combines L1 and L2)
• Apply to real-world datasets
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