Ridge Regression

Nipun Batra

IIT Gandhinagar

September 17, 2025

Outline

- 1. Motivation: The Problem of Overfitting
- 2. Ridge Regression Formulation
- 3. Mathematical Derivation
- 4. Hyperparameter Selection
- 5. Examples and Applications
- 6. Implementation Details

Motivation: The Problem of Overfitting

The Problem: Overfitting in Linear Regression

Important: Overfitting Challenge

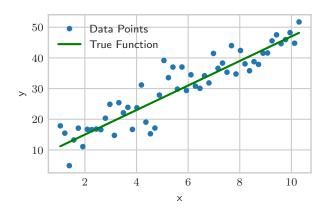
As model complexity increases (higher polynomial degree), we often observe:

- Training error decreases
- Test error increases
- Model coefficients become very large

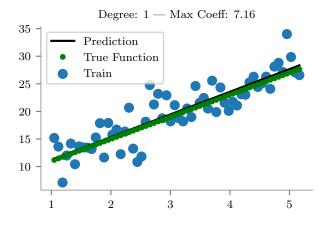
Key Points: Key Insight

Large coefficient magnitudes often indicate overfitting!

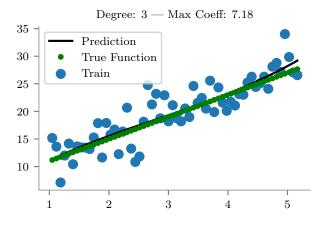
In polynomial $f(x) = c_0 + c_1 x + c_2 x^2 + \cdots + c_d x^d$, watch $\max |c_i|$



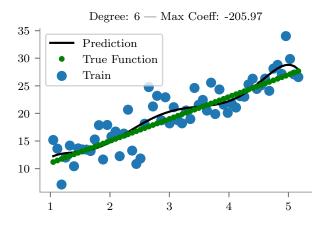
Base Data Set



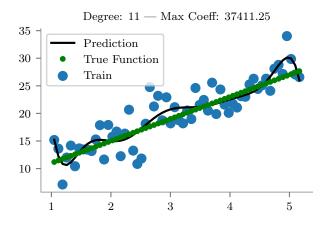
Fit with Degree 1 - Underfitting



Fit with Degree 3 - Good Fit



Fit with Degree 6 - Starting to Overfit

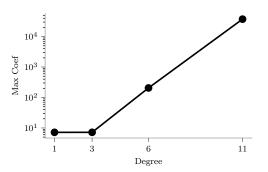


Fit with Degree 11 - Severe Overfitting

Coefficient Explosion with Overfitting

Key Points: Key Observation

As polynomial degree increases \rightarrow coefficients grow exponentially!



Coefficient Magnitudes vs Polynomial Degree

The Central Question

Important: Critical Question

How can we control coefficient magnitudes to prevent overfitting?

Key Points: Answer Preview

Ridge regression adds a penalty term to shrink coefficients!

Pop Quiz 1

Answer this!

Which statement about overfitting is TRUE?

- A) Higher polynomial degree always improves generalization
- B) Large coefficients indicate good model fit
- C) Overfitting occurs when training error >> test error
- D) Overfitting occurs when training error << test error

Answer: Pop Quiz 1

Answer this!

D) Overfitting occurs when training error << test error

Explanation:

- Training error becomes very small (model memorizes training data)
- Test error remains large (model fails to generalize)
- Large gap indicates overfitting

Ridge Regression Formulation

Solution: Regularization

Theorem: Ridge Regression Approach

Add a penalty term to control coefficient magnitudes:

Definition: Constrained Formulation

$$\min_{m{ heta}} \quad \left(\mathbf{y} - \mathbf{X} m{ heta}
ight)^T (\mathbf{y} - \mathbf{X} m{ heta})$$
 subject to $\quad m{ heta}^T m{ heta} \leq \mathcal{S}$

where S > 0 controls the size of the coefficient vector.

Lagrangian Formulation

Theorem: Equivalence Theorem

The constrained problem is equivalent to the unconstrained:

$$\min_{oldsymbol{ heta}} \quad (\mathbf{y} - \mathbf{X}oldsymbol{ heta})^{\mathsf{T}} (\mathbf{y} - \mathbf{X}oldsymbol{ heta}) + \lambda oldsymbol{ heta}^{\mathsf{T}}oldsymbol{ heta}$$

where $\lambda \geq 0$ is the regularization parameter.

Key Points: Key Insight

This transforms a constrained optimization into an unconstrained one with a penalty term.

Understanding the Ridge Penalty

$$J(\theta) = \underbrace{(\mathbf{y} - \mathbf{X}\theta)^{T} (\mathbf{y} - \mathbf{X}\theta)}_{\text{Fit to data (MSE)}} + \underbrace{\lambda \theta^{T} \theta}_{\text{Penalty term}} \tag{1}$$

$$= \mathsf{MSE}(\boldsymbol{\theta}) + \lambda \|\boldsymbol{\theta}\|_2^2 \tag{2}$$

Key Points: Key Components

- Data fitting term: Ensures good fit to training data
- Regularization term: L_2 penalty shrinks coefficients toward zero
- λ : Controls trade-off between fitting vs. regularization

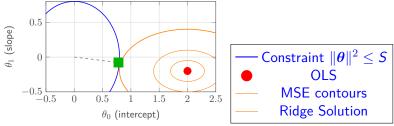
Key Points: Parameter Effects

- $\lambda = 0$: No regularization (standard linear regression)
- λ small: Light regularization (slight shrinkage)
- λ large: Heavy regularization (strong shrinkage)
- $\lambda \to \infty$: Extreme regularization (coefficients $\to 0$)

Important: Key Trade-off

Higher $\lambda = \text{more regularization} = \text{more bias, less variance}$

Geometric Interpretation



Ridge solution where MSE contours touch constraint region

Key Points: Key Insight

Ridge finds the minimum MSE point within the constraint $\|\boldsymbol{\theta}\|_2^2 \leq S$

Mathematical Derivation

Step 1: Set up the Lagrangian

For the constrained optimization problem:

The Lagrangian is:

$$L(\boldsymbol{\theta}, \lambda) = (\mathbf{y} - \mathbf{X}\boldsymbol{\theta})^{T} (\mathbf{y} - \mathbf{X}\boldsymbol{\theta}) + \lambda (\boldsymbol{\theta}^{T}\boldsymbol{\theta} - S)$$

where $\lambda \geq 0$ is the Lagrange multiplier.

Step 2: Apply KKT Conditions

For optimality, we need:

$$\frac{\partial L}{\partial \boldsymbol{\theta}} = 0 \quad \text{(stationarity)} \tag{3}$$

$$\lambda \ge 0$$
 (dual feasibility) (4)

$$\theta^T \theta - S \le 0$$
 (primal feasibility) (5)

$$\lambda(\boldsymbol{\theta}^T \boldsymbol{\theta} - \boldsymbol{S}) = 0$$
 (complementary slackness) (6)

Key Points: Two Cases

- Case 1: $\lambda = 0 \Rightarrow \text{No constraint active (standard OLS)}$
- Case 2: $\lambda > 0 \Rightarrow \theta^T \theta = S$ (constraint is tight)

Step 3: Compute the Gradient

Taking the derivative of the Lagrangian with respect to θ :

$$\frac{\partial L}{\partial \boldsymbol{\theta}} = \frac{\partial}{\partial \boldsymbol{\theta}} \left[(\mathbf{y} - \mathbf{X}\boldsymbol{\theta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\theta}) + \lambda \boldsymbol{\theta}^T \boldsymbol{\theta} \right]$$
 (7)

$$= \frac{\partial}{\partial \boldsymbol{\theta}} \left[\mathbf{y}^{\mathsf{T}} \mathbf{y} - 2 \mathbf{y}^{\mathsf{T}} \mathbf{X} \boldsymbol{\theta} + \boldsymbol{\theta}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \boldsymbol{\theta} + \lambda \boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{\theta} \right]$$
(8)

$$= -2\mathbf{X}^{\mathsf{T}}\mathbf{y} + 2\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{\theta} + 2\lambda\boldsymbol{\theta} \tag{9}$$

Step 4: Set Gradient to Zero

Setting $\frac{\partial L}{\partial \theta} = 0$:

$$-2\mathbf{X}^{\mathsf{T}}\mathbf{y} + 2\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{\theta} + 2\lambda\boldsymbol{\theta} = 0 \tag{10}$$

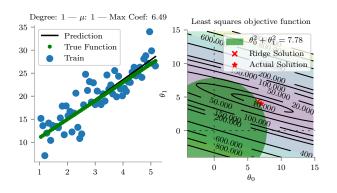
$$-\mathbf{X}^{T}\mathbf{y} + (\mathbf{X}^{T}\mathbf{X} + \lambda \mathbf{I})\boldsymbol{\theta} = 0$$
 (11)

$$(\mathbf{X}^{\mathsf{T}}\mathbf{X} + \lambda \mathbf{I})\boldsymbol{\theta} = \mathbf{X}^{\mathsf{T}}\mathbf{y}$$
 (12)

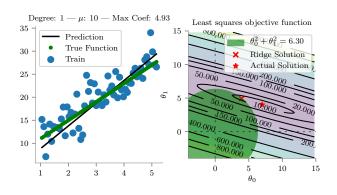
Theorem: Ridge Regression Solution

$$\hat{\boldsymbol{\theta}}_{\mathsf{ridge}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$

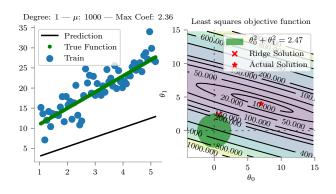
Compare with OLS: $\hat{\theta}_{OLS} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$



 $\lambda=1$ - Mild Regularization



 $\lambda=10$ - Moderate Regularization



 $\lambda=1000$ - Heavy Regularization

Pop Quiz 2

Answer this!

What happens to the Ridge regression solution as $\lambda \to \infty$?

- A) Coefficients approach the OLS solution
- B) Coefficients approach zero
- C) Solution becomes undefined
- D) Training error becomes zero

Answer: Pop Quiz 2

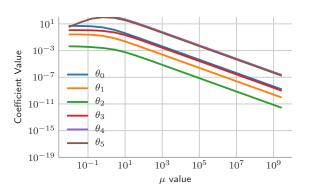
Answer this!

B) Coefficients approach zero

As $\lambda \to \infty$, the penalty term dominates:

$$\hat{\boldsymbol{\theta}}_{\mathsf{ridge}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y} \approx \lambda^{-1}\mathbf{I}\mathbf{X}^{\mathsf{T}}\mathbf{y} \rightarrow \mathbf{0}$$

Coefficient Shrinkage: Visual Evidence

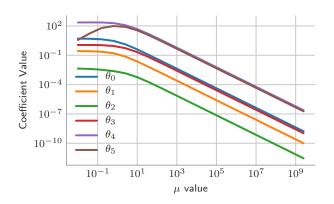


Coefficient Magnitudes vs λ (Real Estate Dataset)

Important: Important Question

Do coefficients ever become exactly zero?

Ridge Coefficient Behavior



Ridge Coefficients Shrink but Never Reach Zero

Ridge vs. Lasso: Key Difference

Key Points: Coefficient Behavior Comparison

- Ridge (L₂): Coefficients shrink toward zero but remain non-zero
- Lasso (L₁): Coefficients can become exactly zero (feature selection)

Important: Important Insight

Ridge provides shrinkage, Lasso provides selection!

Ridge Regression Solution

Theorem: Ridge Solution Formula

$$\hat{\boldsymbol{\theta}}_{\mathsf{ridge}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$

Key Property 1: Always Invertible

Theorem: Invertibility Guarantee

 $(\mathbf{X}^T\mathbf{X} + \lambda \mathbf{I})$ is always positive definite for $\lambda > 0$

Key Points: Why This Matters

- No singularity issues (unlike OLS)
- · Always has unique solution
- Handles multi-collinearity gracefully

Key Property 2: Coefficient Shrinkage

Theorem: Shrinkage Effect

Ridge regression shrinks coefficients toward zero (but not exactly zero)

Key Points: Shrinkage Benefits

- Reduces overfitting
- Stabilizes coefficient estimates
- · Improves generalization

Key Property 3: Bias-Variance Trade-off

Theorem: Trade-off Effect

Ridge regression increases bias but reduces variance

Key Points: Net Effect

- Total error often decreases
- · Better generalization to new data
- Controlled by λ parameter

Hyperparameter Selection

Choosing the Regularization Parameter λ

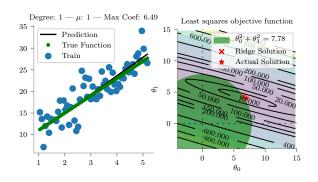
Important: Hyperparameter Selection

How do we choose the optimal value of λ ?

Theorem: Cross-Validation Approach

- 1. Split data into training and validation sets (k-fold CV)
- 2. For each candidate λ value:
 - Train ridge model on training data
 - Compute validation error
- 3. Select λ that minimizes validation error
- 4. Retrain on full dataset with chosen λ

Cross-Validation for Ridge Regression



Cross-validation curve showing optimal λ

Key Points: CV Pattern Small λ : Overfitting Large λ : Underfitting Optimal λ : Best tradeoff

Bias-Variance Trade-off in Ridge Regression

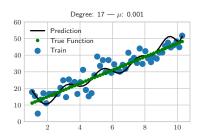
Theorem: Bias-Variance Decomposition

Total Error = $Bias^2 + Variance + Irreducible Error$

Key Points: Ridge Effect

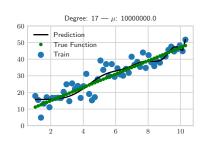
Regularization increases bias but reduces variance, often leading to lower total error.

Small vs Large Regularization



Small λ ($\lambda \to 0$):

- · Low bias
- High variance
- Risk of overfitting



Large λ ($\lambda \to \infty$):

- High bias
- · Low variance
- Risk of underfitting

Pop Quiz 3

Answer this!

In ridge regression, as we increase λ , what happens to model bias and variance?

- A) Both bias and variance increase
- B) Both bias and variance decrease
- C) Bias increases, variance decreases
- D) Bias decreases, variance increases

Answer: Pop Quiz 3

Answer this!

C) Bias increases, variance decreases

Explanation:

- Increasing λ constrains coefficients more severely
- Model becomes simpler (higher bias)
- Less sensitive to training data variations (lower variance)
- This is the fundamental bias-variance trade-off!

Examples and Applications

Worked Example: Setup

Example: Ridge Regression Example

Given the following simple dataset, compare OLS vs. Ridge regression with $\lambda=2\colon$

Data:
$$(x_1, y_1) = (1, 1)$$
, $(x_2, y_2) = (2, 2)$, $(x_3, y_3) = (3, 3)$, $(x_4, y_4) = (4, 0)$

Model: $y = \theta_0 + \theta_1 x$

Step 1: Set up matrices

$$\mathbf{X} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 0 \end{bmatrix}, \quad \boldsymbol{\theta} = \begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix}$$

Worked Example: OLS Setup

Step 2: Ordinary Least Squares

$$\hat{\boldsymbol{\theta}}_{\mathsf{OLS}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}(\mathbf{X}^{\mathsf{T}}\mathbf{y})$$

Step 3: Compute matrix products

$$\mathbf{X}^{T}\mathbf{X} = \begin{bmatrix} 4 & 10 \\ 10 & 30 \end{bmatrix}$$
$$\mathbf{X}^{T}\mathbf{y} = \begin{bmatrix} 6 \\ 14 \end{bmatrix}$$

Worked Example: Matrix Inverse

Step 4: Compute the inverse
$$\begin{aligned} \text{For } \mathbf{X}^T \mathbf{X} &= \begin{bmatrix} 4 & 10 \\ 10 & 30 \end{bmatrix} : \\ \det(\mathbf{X}^T \mathbf{X}) &= 4 \cdot 30 - 10 \cdot 10 = 20 \\ &(\mathbf{X}^T \mathbf{X})^{-1} &= \frac{1}{20} \begin{bmatrix} 30 & -10 \\ -10 & 4 \end{bmatrix} \end{aligned}$$

Worked Example: OLS Calculation

Step 5: Final matrix multiplication

$$\hat{\boldsymbol{\theta}}_{OLS} = (\mathbf{X}^T \mathbf{X})^{-1} (\mathbf{X}^T \mathbf{y})$$

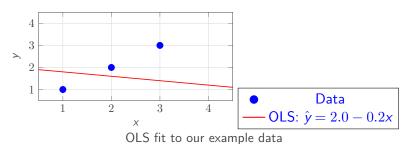
$$= \frac{1}{20} \begin{bmatrix} 30 & -10 \\ -10 & 4 \end{bmatrix} \begin{bmatrix} 6 \\ 14 \end{bmatrix}$$

$$= \frac{1}{20} \begin{bmatrix} 180 - 140 \\ -60 + 56 \end{bmatrix} = \frac{1}{20} \begin{bmatrix} 40 \\ -4 \end{bmatrix} = \begin{bmatrix} 2.0 \\ -0.2 \end{bmatrix}$$

OLS Final Result

Theorem: OLS Result

$$\hat{y} = 2.0 - 0.2x$$
 (No regularization)



Worked Example: Ridge Setup

Step 5: Ridge regression with $\lambda=2$

$$\hat{\boldsymbol{\theta}}_{\mathsf{ridge}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X} + \lambda \mathbf{I})^{-1}(\mathbf{X}^{\mathsf{T}}\mathbf{y})$$

Step 6: Add regularization term

$$\mathbf{X}^{T}\mathbf{X} + \lambda \mathbf{I} = \begin{bmatrix} 4 & 10 \\ 10 & 30 \end{bmatrix} + 2\mathbf{I}$$
$$= \begin{bmatrix} 6 & 10 \\ 10 & 32 \end{bmatrix}$$

Worked Example: Matrix Inverse

Step 7: Compute inverse
$$\det(\mathbf{X}^T\mathbf{X} + \lambda \mathbf{I}) = 6 \cdot 32 - 10 \cdot 10 = 92$$
$$(\mathbf{X}^T\mathbf{X} + \lambda \mathbf{I})^{-1} = \frac{1}{92} \begin{bmatrix} 32 & -10 \\ -10 & 6 \end{bmatrix}$$

Worked Example: Ridge Calculation

Step 8: Matrix multiplication

$$\hat{\boldsymbol{\theta}}_{\mathsf{ridge}} = (\mathbf{X}^{\mathsf{T}} \mathbf{X} + \lambda \mathbf{I})^{-1} (\mathbf{X}^{\mathsf{T}} \mathbf{y})$$
$$= \frac{1}{92} \begin{bmatrix} 32 & -10 \\ -10 & 6 \end{bmatrix} \begin{bmatrix} 6 \\ 14 \end{bmatrix}$$

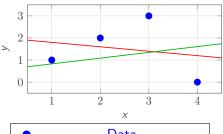
Step 9: Compute products

$$= \frac{1}{92} \begin{bmatrix} 32 \cdot 6 + (-10) \cdot 14 \\ (-10) \cdot 6 + 6 \cdot 14 \end{bmatrix}$$
$$= \frac{1}{92} \begin{bmatrix} 192 - 140 \\ -60 + 84 \end{bmatrix} = \frac{1}{92} \begin{bmatrix} 52 \\ 24 \end{bmatrix} = \begin{bmatrix} 0.565 \\ 0.261 \end{bmatrix}$$

Ridge vs OLS: Final Comparison

Theorem: Ridge Result

$$\hat{y} = 0.565 + 0.261x$$
 (With $\lambda = 2$)



Data
OLS: $\hat{y} = 2.0 - 0.2x$ Ridge: $\hat{y} = 0.565 + 0.261x$

Ridge regression provides more stable coefficients

Coefficient Magnitude Comparison

Theorem: OLS vs Ridge Solutions

• OLS:
$$\theta_{OLS} = \begin{bmatrix} 2.0 \\ -0.2 \end{bmatrix}$$

• Ridge:
$$heta_{ extit{Ridge}} = egin{bmatrix} 0.565 \\ 0.261 \end{bmatrix}$$

L2 Norm Calculation

$$\|\boldsymbol{\theta}_{OLS}\|_{2}^{2} = (2.0)^{2} + (-0.2)^{2} = 4.04$$
 (13)

$$\|\boldsymbol{\theta}_{Ridge}\|_{2}^{2} = (0.565)^{2} + (0.261)^{2} = 0.387$$
 (14)

Ridge Coefficient Shrinkage Result

Important: Key Result

Ridge regression achieved a **90.4% reduction** in coefficient magnitude!

$$\frac{0.387}{4.04} = 0.096 \quad \text{(Ridge is 9.6\% of OLS magnitude)}$$

Key Points: Shrinkage Effect

Ridge systematically produces smaller coefficient magnitudes while maintaining prediction accuracy.

Multi-collinearity

 $(\mathbf{X}^T\mathbf{X})^{-1}$ is not computable when $|\mathbf{X}^T\mathbf{X}|=0$. This was a drawback of using linear regression

$$\mathbf{X} = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 4 \\ 1 & 3 & 6 \end{bmatrix}$$

The matrix X is not full rank.

Ridge Solution to Multi-collinearity

Key Points: Ridge Advantage

With ridge regression, we invert $\mathbf{X}^T\mathbf{X} + \mu\mathbf{I}$ instead of $\mathbf{X}^T\mathbf{X}$

$$\mathbf{X}^{\mathsf{T}}\mathbf{X} + \mu \mathbf{I} = \begin{bmatrix} 3 + \mu & 6 & 12 \\ 6 & 14 + \mu & 28 \\ 12 & 28 & 56 + \mu \end{bmatrix}$$

Why Ridge Fixes Singularity

Theorem: Key Result

The matrix $\mathbf{X}^T\mathbf{X} + \mu\mathbf{I}$ is always full rank for $\mu > 0$

Important: Another Interpretation

 $\label{eq:Ridge regression} \textbf{Ridge regression} = \textbf{regularization} = \textbf{fixing singularity issues!}$

Key Points: Summary

Ridge regression elegantly handles multi-collinearity problems!

The Intercept Penalty Problem

Important: Critical Issue

Should we penalize the intercept θ_0 in ridge regression?

Key Points: Two Approaches

- Standard Ridge: $\hat{\theta} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}$ (penalizes intercept)
- No-intercept penalty: $\hat{\boldsymbol{\theta}} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I}^*)^{-1} \mathbf{X}^T \mathbf{y}$

Modified Identity Matrix \mathbf{I}^*

$$\mathbf{I}^* = \begin{bmatrix} 0 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{bmatrix}$$

Important: Key Point

Zero in first position means NO penalty on intercept $heta_0$

Demonstration: Two Simple Functions

Example: Setup

Compare two functions with different intercepts:

- Function 1: $f_1(x) = x$ (small intercept)
- Function 2: $f_2(x) = x + 100$ (large intercept)

Data Generation and Test Question

Data Generation

For each function, generate data at x = 1, 2:

Function 1: (1,1),(2,2) (15)

Function 2: (1,101), (2,102) (16)

Important: Test Question

How well can we predict y at x=0 using ridge regression with $\lambda=100$?

Function 1: Setup and Data

Theorem: Function 1: y = x

True value at x = 0: y = 0

Data matrices

$$\mathbf{X} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Function 1: Matrix Computations

Matrix computations	
F7	
$\mathbf{X}^{T}\mathbf{X} = \begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix}$	(17)
$\mathbf{X}^{T}\mathbf{y} = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$	(18)

Function 1: Ridge with Standard ${f I}$

Standard Ridge: I penalties both
$$\theta_0$$
 and θ_1
$$\mathbf{X}^T\mathbf{X} + \lambda \mathbf{I} = \begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix} + 100 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 102 & 3 \\ 3 & 105 \end{bmatrix}$$

Function 1: Standard Ridge Solution

Solution

$$\hat{\boldsymbol{\theta}} = \begin{bmatrix} 102 & 3 \\ 3 & 105 \end{bmatrix}^{-1} \begin{bmatrix} 3 \\ 5 \end{bmatrix}$$

$$\approx \begin{bmatrix} 0.029 \\ 0.047 \end{bmatrix}$$
(20)

Theorem: Prediction at x = 0

$$\hat{\mathbf{y}}(0) = 0.029 + 0.047 \times 0 = 0.029$$

Error: |0.029 - 0| = 0.029

Function 1: Ridge with Modified \mathbf{I}^*

Modified Ridge:
$$\mathbf{I}^*$$
 does NOT penalize θ_0
$$\mathbf{X}^T\mathbf{X} + \lambda\mathbf{I}^* = \begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix} + 100 \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 3 & 105 \end{bmatrix}$$

Function 1: Modified Ridge Solution

Solution

$$\hat{\boldsymbol{\theta}} = \begin{bmatrix} 2 & 3 \\ 3 & 105 \end{bmatrix}^{-1} \begin{bmatrix} 3 \\ 5 \end{bmatrix}$$

$$\approx \begin{bmatrix} -0.001 \\ 0.048 \end{bmatrix}$$
(21)

Theorem: Prediction at x = 0

$$\hat{\mathbf{y}}(0) = -0.001 + 0.048 \times 0 = -0.001$$

Error: |-0.001 - 0| = 0.001

Function 2: Setup and Data

Theorem: Function 2: y = x + 100

True value at x = 0: y = 100

Data matrices

$$\mathbf{X} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} 101 \\ 102 \end{bmatrix}$$

Function 2: Matrix Computations

Matrix computations		
$\mathbf{X}^{T}\mathbf{X} = \begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix}$ $\mathbf{X}^{T}\mathbf{y} = \begin{bmatrix} 203 \\ 305 \end{bmatrix}$	(same as Function 1)	(23) (24)

Function 2: Ridge with Standard I

Standard Ridge: penalizes large intercept heavily
$$\mathbf{X}^T\mathbf{X} + \lambda\mathbf{I} = \begin{bmatrix} 102 & 3 \\ 3 & 105 \end{bmatrix} \quad \text{(same matrix)}$$

Function 2: Standard Ridge Solution

Solution

$$\hat{\boldsymbol{\theta}} = \begin{bmatrix} 102 & 3 \\ 3 & 105 \end{bmatrix}^{-1} \begin{bmatrix} 203 \\ 305 \end{bmatrix}$$

$$\approx \begin{bmatrix} 1.98 \\ 2.89 \end{bmatrix}$$
(25)

Theorem: Prediction at x = 0

$$\hat{\mathbf{y}}(0) = 1.98 + 2.89 \times 0 = 1.98$$

Error: |1.98 - 100| = 98.02 (TERRIBLE!)

Function 2: Ridge with Modified \mathbf{I}^*

Modified Ridge: does NOT penalize intercept

$$\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I}^* = \begin{bmatrix} 2 & 3 \\ 3 & 105 \end{bmatrix}$$
 (same as Function 1)

Function 2: Modified Ridge Solution

Solution

$$\hat{\boldsymbol{\theta}} = \begin{bmatrix} 2 & 3 \\ 3 & 105 \end{bmatrix}^{-1} \begin{bmatrix} 203 \\ 305 \end{bmatrix}$$

$$\approx \begin{bmatrix} 99.91 \\ 1.05 \end{bmatrix}$$
(27)

Theorem: Prediction at x = 0

$$\hat{\mathbf{y}}(0) = 99.91 + 1.05 \times 0 = 99.91$$

Error: |99.91 - 100| = 0.09 (**EXCELLENT!**)

Results Summary

Function	True $y(0)$	Standard I	Modified I*
$f_1: y=x$	0	0.029	-0.001
Error		0.029	0.001
$f_2: y = x + 100$	100	1.98	99.91
Error		98.02	0.09

Important: Key Insight

Penalizing the intercept creates **biased predictions** when data has non-zero mean!

Key Points: Solution

Use \mathbf{I}^* to avoid penalizing the intercept, or normalize data first.

Alternative: Data Normalization

Theorem: Normalization Approach

Center the data to have zero mean, then use standard ${\bf I}$

Function 2 with normalization

Original: (1, 101), (2, 102)

Mean: $\bar{x} = 1.5, \bar{y} = 101.5$

Centered: (-0.5, -0.5), (0.5, 0.5)

Benefits of Data Normalization

Key Points: Why Normalize?

- Can use standard I without bias
- Intercept becomes meaningful (deviation from mean)
- · All features on similar scale
- More numerically stable

Important: Best Practice

Always normalize data OR use I^* for unbiased ridge regression!

Implementation Details

Ridge Regression via Gradient Descent

Theorem: Gradient Descent Update Rule

Standard gradient descent step for ridge regression:

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \alpha \nabla J(\boldsymbol{\theta}^{(t)})$$

Ridge Gradient Computation

$$\nabla J(\boldsymbol{\theta}) = \nabla \left[\frac{1}{2} \| \mathbf{y} - \mathbf{X} \boldsymbol{\theta} \|_{2}^{2} + \frac{\lambda}{2} \| \boldsymbol{\theta} \|_{2}^{2} \right]$$

$$= -\mathbf{X}^{T} (\mathbf{y} - \mathbf{X} \boldsymbol{\theta}) + \lambda \boldsymbol{\theta}$$

$$= -\mathbf{X}^{T} \mathbf{y} + \mathbf{X}^{T} \mathbf{X} \boldsymbol{\theta} + \lambda \boldsymbol{\theta}$$
(30)
$$= (31)$$

Ridge vs OLS: Gradient Descent Updates

Theorem: Ridge Update (with shrinkage)

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \alpha (-\mathbf{X}^T \mathbf{y} + \mathbf{X}^T \mathbf{X} \boldsymbol{\theta}^{(t)} + \lambda \boldsymbol{\theta}^{(t)})$$
$$= (1 - \alpha \lambda) \boldsymbol{\theta}^{(t)} - \alpha (-\mathbf{X}^T \mathbf{y} + \mathbf{X}^T \mathbf{X} \boldsymbol{\theta}^{(t)})$$

Theorem: OLS Update (no shrinkage)

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \alpha(-\mathbf{X}^T\mathbf{y} + \mathbf{X}^T\mathbf{X}\boldsymbol{\theta}^{(t)})$$

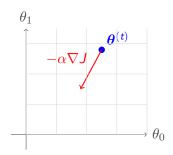
Key Points: Key Insight

The $(1 - \alpha \lambda)$ factor **shrinks** coefficients at each step!

Visual: OLS Gradient Descent Step

Theorem: OLS Update

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \alpha \nabla J(\boldsymbol{\theta}^{(t)})$$



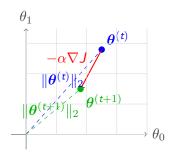
Important: Step 1

Start at $heta^{(t)}$ and compute negative gradient direction

Visual: OLS Gradient Descent - Vector Sum

Theorem: Vector Addition

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} + (-\alpha \nabla J)$$



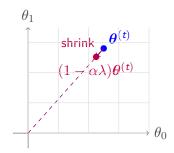
Key Points: Result

OLS: $\| \boldsymbol{\theta}^{(t+1)} \|_2$ depends only on gradient direction

Visual: Ridge Gradient Descent - Shrinkage Step

Theorem: Ridge Shrinkage

First: $\boldsymbol{\theta}^{(t)} \rightarrow (1 - \alpha \lambda) \boldsymbol{\theta}^{(t)}$



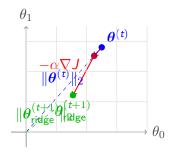
Important: Ridge Step 1

Shrink current parameters by factor $(1 - \alpha \lambda) < 1$

Visual: Ridge Gradient Descent - Complete Update

Theorem: Ridge Complete Update

$$\boldsymbol{\theta}^{(t+1)} = (1 - \alpha \lambda) \boldsymbol{\theta}^{(t)} - \alpha \nabla J$$

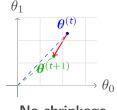


Key Points: Key Insight

Ridge: $\|m{ heta}_{\mathsf{ridge}}^{(t+1)}\|_2 < \|m{ heta}_{\mathsf{OLS}}^{(t+1)}\|_2$ (smaller coefficients!)

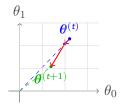
Side-by-Side Comparison: OLS vs Ridge Updates

OLS Gradient Descent



No shrinkage $\|\boldsymbol{\theta}^{(t+1)}\|_2 = 1.98$

Ridge Gradient Descent



With shrinkage $\|\boldsymbol{\theta}^{(t+1)}\|_2 = 1.72 < \mathsf{OLS}$

Important: Ridge Effect

Ridge regression systematically produces **smaller coefficient magnitudes** at every gradient descent step!

Summary: What We Learned

Key Points: Ridge Regression Key Points

- Problem: Overfitting in linear regression with large coefficients
- **Solution**: Add L_2 penalty $\lambda \|\theta\|_2^2$ to loss function
- Effect: Shrinks coefficients, improves generalization
- Trade-off: Higher bias, lower variance

Key Formula & Next Steps

Theorem: Ridge Regression Solution

$$\hat{\boldsymbol{\theta}}_{\mathsf{ridge}} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}$$

Important: Next Steps

- Compare with Lasso regression (L_1 penalty)
- Explore elastic net (combines L_1 and L_2)
- Apply to real-world datasets