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Motivation: The Problem
of Overfitting



The Problem: Overfitting in Linear Regression

Important: Overfitting Challenge

As model complexity increases (higher polynomial degree),
we often observe:

« Training error decreases
« Test error increases

« Model coefficients become very large

Key Points: Key Insight

Large coefficient magnitudes often indicate overfitting!

J
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Demonstration: Polynomial Degree vs Overfitting
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Demonstration: Polynomial Degree vs Overfitting

Degree: 1 — Max Coeff: 7.16
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Demonstration: Polynomial Degree vs Overfitting

Degree: 3 — Max Coeff: 7.18
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Demonstration: Polynomial Degree vs Overfitting
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Demonstration: Polynomial Degree vs Overfitting

Degree: 11 — Max Coeff: 37411.25
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Coefficient Explosion with Overfitting

Key Points: Key Observation

As polynomial degree increases — coefficients grow expo-
nentially!
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The Central Question

Important: Critical Question

How can we control coefficient magnitudes to prevent over-
fitting?

Key Points: Answer Preview

Ridge regression adds a penalty term to shrink coefficients!
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Pop Quiz 1

Which statement about overfitting is TRUE?

A) Higher polynomial degree always improves
generalization

B) Large coefficients indicate good model fit
C) Overfitting occurs when training error >> test error

D) Overfitting occurs when training error << test error




Answer: Pop Quiz 1

D) Overfitting occurs when training error << test er-
ror

Explanation:

- Training error becomes very small (model memorizes
training data)

« Test error remains large (model fails to generalize)

- Large gap indicates overfitting

81
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Ridge Regression
Formulation



Solution: Regularization

Theorem: Ridge Regression Approach

Add a penalty term to control coefficient magnitudes:

Definition: Constrained Formulation

min  (y —X6)" (y — X6)
subjectto 870 < S

where S > 0 controls the size of the coefficient vector.
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Lagrangian Formulation

Theorem: Equivalence Theorem

The constrained problem is equivalent to the unconstrained:
rnein (y—X0) (y —X0) + 2076

where A > 0 is the regularization parameter.

J

Key Points: Key Insight

This transforms a constrained optimization into an uncon-
strained one with a penalty term.

\
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Understanding the Ridge Penalty

JO)=(y—X0) (y—X0)+ 2076 (1)
Fit to data (MSE) Penalty term
= MSE(6) + A[|0]3 (2)

Key Points: Key Components

» Data fitting term: Ensures good fit to training data

» Regularization term: L5 penalty shrinks coefficients
toward zero

« A: Controls trade-off between fitting vs. regularization
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Effect of Regularization Parameter \

Key Points: Parameter Effects

« A = 0: No regularization (standard linear regression)

A small: Light regularization (slight shrinkage)

A large: Heavy regularization (strong shrinkage)

« A — oo: Extreme regularization (coefficients — 0)

| \

Important: Key Trade-off

Higher A = more regularization = more bias, less variance

\
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Geometric Interpretation
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Ridge solution where MSE contours touch constraint region

Key Points: Key Insight

Ridge finds the minimum MSE point within the constraint ||(|2 <

S
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Mathematical Derivation



Mathematical Derivation: Step 1

Step 1: Set up the Lagrangian

For the constrained optimization problem:
min  (y - X6)" (y — X6)
st. 70<S
The Lagrangian is:
L(O,)) =(y—X0)  (y —X0) +1(076 - 9)

where A > 0 is the Lagrange multiplier.
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Mathematical Derivation: Step 2

Step 2: Apply KKT Conditions

For optimality, we need:

oL o
%0 = 0 (stationarity) (3)
A >0 (dual feasibility) (4)
670 —S<0 (primal feasibility) (5)
AO076 —S) =0 (complementary slackness) (6)

Key Points: Two Cases

- Case 1: A = 0 = No constraint active (standard OLS)
- Case 2: A > 0= 076 = S (constraint is tight)
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Mathematical Derivation: Step 3

Step 3: Compute the Gradient

Taking the derivative of the Lagrangian with respect to 6:

aL
25 = 7 |0 —X0)" (v —X6) + A6 (7)
= a% [y'y —2y"X60 +07X"X6 + \070] (8)

= 2X"y +2X"X0 + 20 (9)
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Mathematical Derivation: Step 4

Step 4: Set Gradient to Zero

Setting % =0:

—2X Ty +2XTX6 4200 =0 (10)
XTy4+ (XX + )0 =0 (11)
(XX + )8 =Xy (12)

Theorem: Ridge Regression Solution

Bridge = (XX + AI)~1XTy

Compare with OLS: OoLs = (XTX)"'XTy
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Effect of Regularization Parameter \

Degree: 1 — p: 1 — Max Coef: 6.49
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Effect of Regularization Parameter \

Degree: 1 — p: 10 — Max Coef: 4.93
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Effect of Regularization Parameter \

Degree: 1 — p: 1000 — Max Coef: 2.36
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Pop Quiz 2

What happens to the Ridge regression solution as A — co?

A
B

) Coefficients approach the OLS solution
)
C) Solution becomes undefined
)

Coefficients approach zero

D) Training error becomes zero




Answer: Pop Quiz 2

B) Coefficients approach zero

As \ — 00, the penalty term dominates:

Bridge = XX+ M) Xy =~ A 11Xy - 0

26 /81



Coefficient Shrinkage: Visual Evidence
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Coefficient Magnitudes vs A (Real Estate Dataset)

Important: Important Question

Do coefficients ever become exactly zero?
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Ridge Coefficient Behavior
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Ridge vs. Lasso: Key Difference

Key Points: Coefficient Behavior Comparison

- Ridge (L2): Coefficients shrink toward zero but remain
non-zero

« Lasso (L;): Coefficients can become exactly zero
(feature selection)

J

Important: Important Insight

Ridge provides shrinkage, Lasso provides selection!
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Ridge Regression Solution

Theorem: Ridge Solution Formula

Bridge = (XX + AI)~'X Ty
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Key Property 1: Always Invertible

Theorem: Invertibility Guarantee

(XTX + AI) is always positive definite for A > 0

Key Points: Why This Matters

« No singularity issues (unlike OLS)

« Always has unique solution

- Handles multi-collinearity gracefully
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Key Property 2: Coefficient Shrinkage

Theorem: Shrinkage Effect

Ridge regression shrinks coefficients toward zero (but not
exactly zero)

Key Points: Shrinkage Benefits

+ Reduces overfitting

« Stabilizes coefficient estimates

« Improves generalization

\
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Key Property 3: Bias-Variance Trade-off

Theorem: Trade-off Effect

Ridge regression increases bias but reduces variance

J

Key Points: Net Effect

- Total error often decreases

- Better generalization to new data

« Controlled by \ parameter

\
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Hyperparameter Selection



Choosing the Regularization Parameter A

Important: Hyperparameter Selection

How do we choose the optimal value of A7

Theorem: Cross-Validation Approach

1. Split data into training and validation sets (k-fold CV)

2. For each candidate A value:

Train ridge model on training data
Compute validation error

3. Select A that minimizes validation error

4. Retrain on full dataset with chosen A\
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Cross-Validation for Ridge Regression

Degree: 1 — p: 1 — Max Coef: 6.49
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Bias-Variance Trade-off in Ridge Regression

Theorem: Bias-Variance Decomposition

Total Error = Bias? + Variance + Irreducible Error

J

Key Points: Ridge Effect

Regularization increases bias but reduces variance, often
leading to lower total error.
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Small vs Large Regularization

Degree: 17 — p: 0.001
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Pop Quiz 3

In ridge regression, as we increase A, what happens to
model bias and variance?

A
B

)
)
C) Bias increases, variance decreases
D)

Both bias and variance increase

Both bias and variance decrease

Bias decreases, variance increases
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Answer: Pop Quiz 3

m )

C) Bias increases, variance decreases

Explanation:

Increasing A\ constrains coefficients more severely

« Model becomes simpler (higher bias)

Less sensitive to training data variations (lower
variance)

This is the fundamental bias-variance trade-off!
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Examples and
Applications



Worked Example: Setup

Example: Ridge Regression Example

Given the following simple dataset, compare OLS vs. Ridge
regression with A = 2:

Data: (Xlayl) - (171)v (X27J/2) = (272)1 (X37y3) = (373)'
(x4, y1) = (4,0)
Model: y =6y + 61x

Step 1: Set up matrices

e T
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Worked Example: OLS Setup

Step 2: Ordinary Least Squares

fors = (X'X)"'(XTy)

Step 3: Compute matrix products
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Worked Example: Matrix Inverse

Step 4: Compute the inverse

4

10

Ty _ .
For X'X = [10 30].
det(XTX) =4-30—10-10 = 20

(XTX)

4 1[30 -10
T 90 |-10 4

|
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Worked Example: OLS Calculation

Step 5: Final matrix multiplication

Oors = (X"X)'(XTy)
_ 1730 -10
T 20 |—-10 4
_ 1 [180—140
" 20 | —60 + 56

6
14
1
20

“]=120)
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OLS Final Result

Theorem: OLS Result

y=2.0-0.2x (No regularization)

4, -
30 ° .
>
2*.\
1 e =
i é :;) Z‘l ) Data
X —OLS: y=2.0-0.2x

OLS fit to our example data
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Worked Example: Ridge Setup

Step 5: Ridge regression with A =2

Bridge = (XX + A1)~ 1(XTy)

Step 6: Add regularization term

4 10
10 30

6 10
~ |10 32

XX + M\ = [
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Worked Example: Matrix Inverse

Step 7: Compute inverse

det(XTX + M) =6-32 —10-10 = 92

(XX + A1)~ 1 [32 _10]

92 (-10 6
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Worked Example: Ridge Calculation

Step 8: Matrix multiplication

éridge = (XTX + )‘I)_l(XTy)

_ 132 -10][6
T 92(-10 6 | |14

Step 9: Compute products

1 [32-6+ (—10) - 14]

92 | (~10)-6+6-14

2
1 [192—140] _ 1 [52]
2

92 |—60+84| 92 |24

_ [0.565
~ 0.261
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Ridge vs OLS: Final Comparison

Theorem: Ridge Result

y=0.565+0.261x  (With A = 2)

3+ ® -
2L ° .
>
1, —~
0 o
| | | |
1 2 3 4
X
) Data

—  OLS: y=2.0-0.2x
—— Ridge: y = 0.565 + 0.261x

Ridge regression provides more stable coefficients
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Coefficient Magnitude Comparison

Theorem: OLS vs Ridge Solutions

2.0
- OLS: 00L5 = |:_0.2:|

- Ridge: 0Ridge = [0'565]

0.261

J

L2 Norm Calculation

180csl3 = (2.0)2 + (—0.2)? = 4.04 (13)
||Oridggell3 = (0.565)2 + (0.261)? = 0.387 (14)
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Ridge Coefficient Shrinkage Result

Important: Key Result

Ridge regression achieved a 90.4% reduction in coefficient
magnitude!

0.387
o1 = 0.096 (Ridge is 9.6% of OLS magnitude)

Key Points: Shrinkage Effect

Ridge systematically produces smaller coefficient magnitudes
while maintaining prediction accuracy.

\
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Multi-collinearity

(XTX)~! is not computable when |X7X]| = 0.

This was a drawback of using linear regression
11 2
X=1|1 2 4
1 3 6

The matrix X is not full rank.
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Ridge Solution to Multi-collinearity

Key Points: Ridge Advantage

With ridge regression, we invert X "X + uI instead of XX

3+ 6 12
X'X+puI=| 6 14+pu 28
12 28 56+ p
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Why Ridge Fixes Singularity

Theorem: Key Result

The matrix XX + pI is always full rank for p > 0

Important: Another Interpretation

Ridge regression = regularization = fixing singularity issues!

\

Key Points: Summary

Ridge regression elegantly handles multi-collinearity prob-
lems!
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The Intercept Penalty Problem

Important: Critical Issue

Should we penalize the intercept g in ridge regression?

Key Points: Two Approaches

- Standard Ridge: 6 = (X"X + A\I)"'X Ty (penalizes
intercept)
- No-intercept penalty: § = (X"X 4+ \I*)"1XTy
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Modified ldentity Matrix I*

Definition of I*

00 0 0
010 0
=
00 0 1

Important: Key Point

Zero in first position means NO penalty on intercept 6y

\
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Demonstration: Two Simple Functions

Example: Setup

Compare two functions with different intercepts:

« Function 1: f;(x) = x (small intercept)
« Function 2: f(x) = x+ 100 (large intercept)
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Data Generation and Test Question

Data Generation

For each function, generate data at x =1, 2:

Function 1: (1,1),(2,2) (15)
Function 2. (1,101),(2,102) (16)

Important: Test Question

How well can we predict y at x = 0 using ridge regression
with A = 1007

57 /81



Function 1: Setup and Data

Theorem: Function 1: y= x

True value at x=0: y=0

Data matrices
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Function 1: Matrix Computations

XX = [2 3] (17)

XTy = [ﬁ] (18)
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Function 1: Ridge with Standard I

Standard Ridge: I penalties both f; and 6,

= 2 3 1 0] _ [102 3
XX+)\I_[3 5]+100[0 1]_[3 105]
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Function 1: Standard Ridge Solution

6= {132 1?)5]_1 [g] (19)
- 2

Theorem: Prediction at x=0

y(0) = 0.029 + 0.047 x 0 = 0.029
Error: [0.029 — 0] = 0.029
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Function 1: Ridge with Modified I*

Modified Ridge: I* does NOT penalize 6

- . 23 0 0] [2 3
XX + A _[3 5]+100[0 1}_[3 105}
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Function 1: Modified Ridge Solution

6= [?, 135]_1 m (21)
- [ g

Theorem: Prediction at x=0

y(0) = —0.001 4 0.048 x 0 = —0.001
Error: | —0.001 — 0] = 0.001
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Function 2: Setup and Data

Theorem: Function 2: y = x+ 100

True value at x=0: y= 100

11 101
X‘L 2}’ y_[m}
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Function 2: Matrix Computations

Matrix computations

XTX:[

- 2] e

g] (same as Function 1) (23)
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Function 2: Ridge with Standard I

Standard Ridge: penalizes large intercept heavily

102 3

T —
X' X+ A= [ 3 105

] (same matrix)
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Function 2: Standard Ridge Solution

—1
- 102 3 203
o= [ 3 105] [305] (25)

~[>%) (20

Theorem: Prediction at x=0

#(0) = 1.98 4+ 2.89 x 0 = 1.98
Error: |1.98 — 100| = 98.02 (TERRIBLE!)
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Function 2: Ridge with Modified I*

Modified Ridge: does NOT penalize intercept

2 3

T *
X' X+ ' = [3 105

] (same as Function 1)
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Function 2: Modified Ridge Solution

6= E 135]_1 Egg] (27)
~ [91?6951] (28)

Theorem: Prediction at x=0

7(0) = 99.91 4 1.05 x 0 = 99.91
Error: [99.91 — 100| = 0.09 (EXCELLENT!)
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Results Summary

Function True y(0) | Standard I | Modified I*
i:y=x 0 0.029 -0.001
Error 0.029 0.001
fo:y=x+100 100 1.98 09.91
Error 98.02 0.09

Important: Key Insight

Penalizing the intercept creates biased predictions when
data has non-zero mean!

Key Points: Solution

Use I* to avoid penalizing the intercept, or normalize data
first.
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Alternative: Data Normalization

Theorem: Normalization Approach

Center the data to have zero mean, then use standard I

Original: (1,101), (2,102)
Mean: x= 1.5,y =101.5
Centered: (—0.5,—0.5), (0.5,0.5)
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Benefits of Data Normalization

Key Points: Why Normalize?

o Can use standard I without bias

Intercept becomes meaningful (deviation from mean)

All features on similar scale

» More numerically stable

| \

Important: Best Practice

Always normalize data OR use I* for unbiased ridge regres-
sion!
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Implementation Details



Ridge Regression via Gradient Descent

Theorem: Gradient Descent Update Rule

Standard gradient descent step for ridge regression:

0+ = 9 — oV J(OW)

Ridge Gradient Computation

1 A
vi6) =V gly - Xel3+ 5lelE]  (29)

=-X'"(y—X0)+ )6 (30)
= X'y +X"X0 + )6 (31)
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Ridge vs OLS: Gradient Descent Updates

Theorem: Ridge Update (with shrinkage)

o) = 91 — o (—XTy + X7X0 + \gV)
=(1—aN8 — a(—XTy + XTX01)

Theorem: OLS Update (no shrinkage)

0+ — 91 _ o(—XTy + XTX0)

\

Key Points: Key Insight

The (1 — a\) factor shrinks coefficients at each step!
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Visual: OLS Gradient Descent Step

Theorem: OLS Update —aVJ/

(D) = 9 — oV J(OW)

Important: Step 1

Start at (Y and compute negative gradient direction
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Theorem: Vector Addi-

tion

0+ = 9(t) 4 (—aV )

Visual: OLS Gradient Descent - Vector Sum

th

1 A
—aVJ//
sy

o0 p(tl)
|67 |2 7

ml o

Key Points: Result

OLS: ||@(t+1D) ||, depends only on gradient direction
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Visual: Ridge Gradient Descent - Shrinkage Step

Theorem: Ridge Shrink-
age (1 ="a))g®

First: 8() — (1 —a))@®

Important: Ridge Step 1

Shrink current parameters by factor (1 — a)) < 1
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Visual: Ridge Gradient Descent - Complete Update

01
Theorem: Ridge Com- | a0
plete Update oV

00
Ot = (1 — an)e) — H ﬁ/
t41)

avJ I9§Z;l’ﬂﬁmge

Bl o

Key Points: Key Insight

Ridge: ||0£iz;?||2 < ||6’g:rsl)||2 (smaller coefficients!)

78 /81



Side-by-Side Comparison: OLS vs Ridge Updates

OLS Gradient Descent Ridge Gradient Descent
91 91
2189 T 18}
/ /
® ’é“‘*‘*l) ) /éz/prl)
—+ » — » 0o
No shrinkage With shrinkage
|0+ || = 1.98 |0+ ||y = 1.72 < OLS

Important: Ridge Effect

Ridge regression systematically produces smaller coeffi-
cient magnitudes at every gradient descent step!
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Summary: What We Learned

Key Points: Ridge Regression Key Points

Problem: Overfitting in linear regression with large
coefficients

Solution: Add Ly penalty \||@]|3 to loss function

Effect: Shrinks coefficients, improves generalization

Trade-off: Higher bias, lower variance
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Key Formula & Next Steps

Theorem: Ridge Regression Solution

Bridge = (XX + AI)~'X Ty

Important: Next Steps

- Compare with Lasso regression (L; penalty)

« Explore elastic net (combines L; and Ly)

« Apply to real-world datasets
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