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Pop Quiz #1

Quick Question!

Why might we need a ”soft margin” SVM?

• a) Data is perfectly linearly separable

• b) Data has some noise and outliers

• c) We want smaller margins

• d) To avoid using kernels

Answer: b) Data has some noise and outliers - soft margin

allows controlled violations.
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Soft-Margin SVM

• Can we learn SVM for “slightly” non-separable data without

projecting to a higher space?

• Introduce some “slack” (ξi ) or loss or penalty for samples -

allow some samples to be misclassified
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Soft-Margin SVM

Change Objective

minimize 1
2∥w∥2 + C

∑n
i=1 ξi

s.t. yi (w · xi + b) ≥ 1− ξi

In Dual:

minimize
n∑

i=1

αi −
n∑

i=1

n∑
j=1

αiαjyiyjxi · xj

s.t.

0 ≤ αi ≤ C &
n∑

i=1

αiyi = 0
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Pop Quiz #2

Quick Question!

What happens when the regularization parameter C is very

large?

• a) The model becomes more tolerant to

misclassifications

• b) The model tries to classify all training points

correctly

• c) The margin becomes larger

• d) Regularization increases

Answer: b) The model tries to classify all training points

correctly - high variance!
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Bias Variance Trade-off for Soft-Margin SVM

Low C =⇒ Higher train error (higher bias)

High C =⇒ Very sensitive to datasete (high variance)
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Soft-Margin SVM

If C → 0

Objective → minimize 1
2∥w∥2

=⇒ Choose large margin (without worrying for ξi s)

Recall: Margin = 2
∥w∥

If C → ∞ (or very large) Objective → minimizeC
∑

ξi or

choose w, b, s.t. ξi is small!

6 / 100



Pop Quiz #3

Quick Question!

What is the equivalent of hard margin?

• a) C → 0

• b) C → ∞
Answer: b) C → ∞ - No violations allowed!
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Pop Quiz #4

Quick Question!

For a support vector with slack variable ξi = 1.5, this point

is:

• a) On the margin boundary

• b) Correctly classified but within margin

• c) Misclassified

• d) Outside both margins

Answer: c) Misclassified - since ξi > 1!
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Soft-Margin SVM

Types of support vectors:

• Zone 2: yi (w · xi + b) = 1

• Zone 3: 0 < ξi < 1 (correctly classified)

• Zone 4: ξi > 1 (Misclassified)

∴ As C increases, # support vectors decreases

Notebook: SVM-soft-margin
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SVM Formulation in the Loss + Penalty Form

Objective:

minimize
1

2
∥w∥2 + C

N∑
i=1

ξi

Now:

yi (w · xi + b) ≥ 1− ξi

ξi ≥ 1− yi (w · xi + b)

But ξi ≥ 0

∴ ξi = max
[
0, 1− yi (w · xi + b)

]

10 / 100



Pop Quiz #5

Quick Question!

The hinge loss function max[0, 1− yi (w · xi + b)] is:

• a) Convex and differentiable everywhere

• b) Convex but not differentiable at one point

• c) Non-convex but differentiable

• d) Neither convex nor differentiable

Answer: b) Convex but not differentiable at yi (w·xi+b) = 1!

11 / 100
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SVM Formulation in the Loss + Penalty Form

∴ Objective is:

minimizeC
∑

ξi +
1

2
∥w∥2

=⇒ minimizeC
N∑
i=1

max
[
0, 1− yi (w · xi + b)

]
+

1

2
∥w∥2

=⇒ minimize
N∑
i=1

max
[
0, 1− yi (w · xi + b)

]
︸ ︷︷ ︸

Loss

+
1

2C
∥w∥2︸ ︷︷ ︸

Regularisation

12 / 100



HINGE Loss



Loss Function for Sum (Hinge Loss)

Loss function is
∑N

i=1max
[
0, 1− yi (w · xi + b)

]
• Case I yi (w · xi + b) = 1

Lies on Margin: Lossi = 0

• Case II

yi (w · xi + b) > 1

Lossi = 0

• Case III

yi (w · xi + b) < 1

Lossi ̸= 0

13 / 100



Loss Function for Sum (Hinge Loss)

Loss function is
∑N

i=1max
[
0, 1− yi (w · xi + b)

]
• Case I yi (w · xi + b) = 1

Lies on Margin: Lossi = 0

• Case II

yi (w · xi + b) > 1

Lossi = 0

• Case III

yi (w · xi + b) < 1

Lossi ̸= 0

13 / 100



Loss Function for Sum (Hinge Loss)

Loss function is
∑N

i=1max
[
0, 1− yi (w · xi + b)

]
• Case I yi (w · xi + b) = 1

Lies on Margin: Lossi = 0

• Case II

yi (w · xi + b) > 1

Lossi = 0

• Case III

yi (w · xi + b) < 1

Lossi ̸= 0

13 / 100



Hinge Loss Continued

Q) Is hinge loss convex and differentiable?

Convex:

Differentiable: X

Subgradient:

14 / 100



SVM Loss is Convex

Hinge Loss
∑

(max[0, (1− yi (w · xi + b))] is convex

Penalty 1
2∥w∥2 is convex

∴ SVM loss is convex

15 / 100


