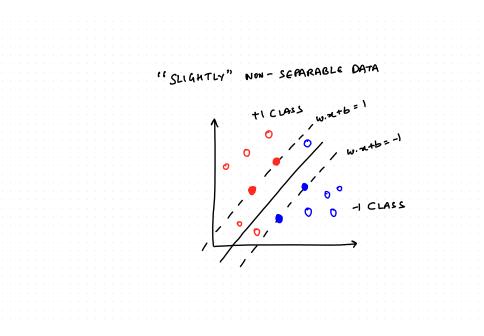
SVM Soft Margin Classification

Nipun Batra July 21, 2025

IIT Gandhinagar



Why might we need a "soft margin" SVM?

• a) Data is perfectly linearly separable

- a) Data is perfectly linearly separable
- b) Data has some noise and outliers

- a) Data is perfectly linearly separable
- b) Data has some noise and outliers
- c) We want smaller margins

- a) Data is perfectly linearly separable
- b) Data has some noise and outliers
- c) We want smaller margins
- d) To avoid using kernels

- a) Data is perfectly linearly separable
- b) Data has some noise and outliers
- c) We want smaller margins
- d) To avoid using kernels

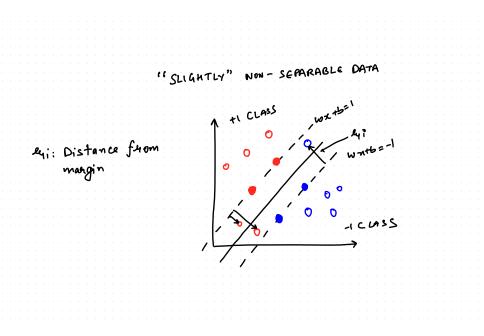
Why might we need a "soft margin" SVM?

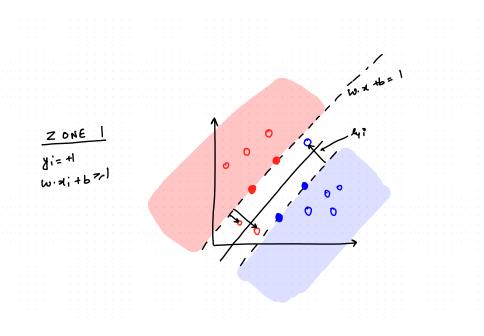
- a) Data is perfectly linearly separable
- b) Data has some noise and outliers
- c) We want smaller margins
- d) To avoid using kernels

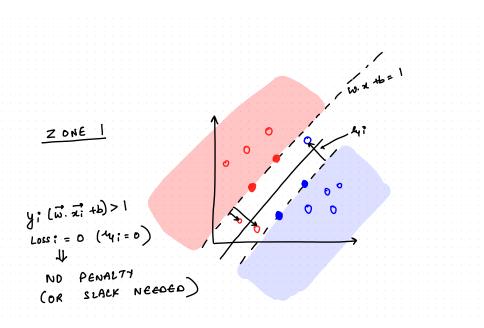
Answer: b) Data has some noise and outliers - soft margin allows controlled violations.

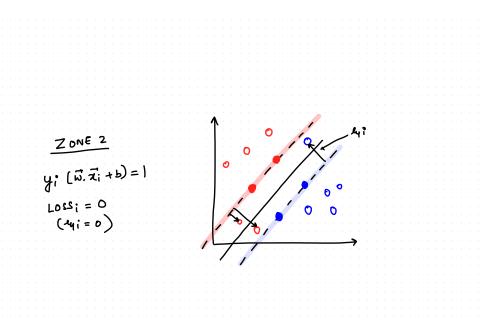
• Can we learn SVM for "slightly" non-separable data without projecting to a higher space?

- Can we learn SVM for "slightly" non-separable data without projecting to a higher space?
- Introduce some "slack" (ξ_i) or loss or penalty for samples allow some samples to be misclassified









0 < 4: ZONE 3 y; (w. zi +b) <1 Loss; ≠0 (0<4;<1 POINT CORRECTLY CLASSIFIED (BUT WRONG SIDE OF MARGIN

~ w.z. + b= 1-44" ₩.1+b= 54: ZONE 3 y; (ѿ. ҵ +b) <1 Loss; ≠0 (0<44; POINT CORRECTLY CLASSIFIED (BUT WRONG SIDE OF MARGIN)

<u>ZONE 4</u> y: (w. zi+b) <1	
POINT INCORRECTLY CLASSIFIED LOSS ; * D Ly; > 1	

<u>ZONE 4</u> y; (w. zi+b) <1	
POINT INCORRECTLY CLASSIFIED LOSS; > 0 -44; > 1	, , , , , , , , , , , , , , , , , , ,

Change Objective minimize $\frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i$ s.t. $y_i (\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1 - \xi_i$ Change Objective minimize $\frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i$ s.t. $y_i (\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1 - \xi_i$ In Dual: minimize $\sum_{i=1}^n \alpha_i - \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j y_i y_j \mathbf{x}_i \cdot \mathbf{x}_j$ s.t.

$$0 \leq \alpha_i \leq C$$
 & $\sum_{i=1}^n \alpha_i y_i = 0$

																						F										
					~						<u> </u>	. ^		r e		. 1	٢e	00	sد	-1	DŦ	F										
					3) ie	۰Ş	-	٧,		×	14	510	بو																		
			÷.,	n i																												
				•																												
							٠			1	•																					
				· ·			6	Δ.	ė.	1	1																					
							6			1	1																					
							1			•																						
				L_					-	-		-		⇒																		
														,																		

	· · · · · · · · · · · · · · · · · · ·
BIAS- VARIANCE	TRADE-OFF
G12 • • • • •	
w.z+b= 0	
$\omega_{1} = \omega_{1}$	
	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · • • · · · _ • · · · · ·	· · · · · · · · · · · · · · · · · · ·
	DLATIM
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	
LOW C	
LOW PENALTY FOR VI	1,110N
HIGH TRAIN ERROR	
M 1971	
HIGH BIAS	
· · · · · · · · · · · · · · · · · · ·	

BIAS- VARIANCE TRADE-OFF	ũ.х+=0
₩.₹+b= °	Λ
νιρίατισο	
LOW PENALTY FOR VIOLATION HIGH TRAIN ERROR HIGH BIAS	HIGH PENALTY FOR VIDLATION HIGH VARIANCE SMALL MARGIN
BIA MARGIN	

Quick Question!

What happens when the regularization parameter C is very large?

• a) The model becomes more tolerant to misclassifications

Quick Question!

- a) The model becomes more tolerant to misclassifications
- b) The model tries to classify all training points correctly

Quick Question!

- a) The model becomes more tolerant to misclassifications
- b) The model tries to classify all training points correctly
- c) The margin becomes larger

Quick Question!

- a) The model becomes more tolerant to misclassifications
- b) The model tries to classify all training points correctly
- c) The margin becomes larger
- d) Regularization increases

Quick Question!

- a) The model becomes more tolerant to misclassifications
- b) The model tries to classify all training points correctly
- c) The margin becomes larger
- d) Regularization increases

Quick Question!

What happens when the regularization parameter C is very large?

- a) The model becomes more tolerant to misclassifications
- b) The model tries to classify all training points correctly
- c) The margin becomes larger
- d) Regularization increases

Answer: b) The model tries to classify all training points correctly - high variance!

Bias Variance Trade-off for Soft-Margin SVM

Low C \implies Higher train error (higher bias)

High C \implies Very sensitive to datasete (high variance)

If $C \to 0$ Objective \to minimize $\frac{1}{2} ||\mathbf{w}||^2$ \implies Choose large margin (without worrying for ξ_i s) $\boxed{\text{Recall: Margin} = \frac{2}{||\mathbf{w}||}}$ If $C \to \infty$ (or very large) Objective \to minimize $C \sum \xi_i$ or choose \mathbf{w} , b, s.t. ξ_i is small!

What is the equivalent of hard margin?

• a)
$$C \rightarrow 0$$

What is the equivalent of hard margin?

• a)
$$C \rightarrow 0$$

• b)
$$C \to \infty$$

What is the equivalent of hard margin?

• a)
$$C \rightarrow 0$$

• b)
$$C \to \infty$$

What is the equivalent of hard margin?

• a) C
$$\rightarrow$$
 0

• b)
$$C \rightarrow \infty$$

Answer: b) $C \rightarrow \infty$ - No violations allowed!

For a support vector with slack variable $\xi_i = 1.5$, this point is:

• a) On the margin boundary

- a) On the margin boundary
- b) Correctly classified but within margin

- a) On the margin boundary
- b) Correctly classified but within margin
- c) Misclassified

- a) On the margin boundary
- b) Correctly classified but within margin
- c) Misclassified
- d) Outside both margins

- a) On the margin boundary
- b) Correctly classified but within margin
- c) Misclassified
- d) Outside both margins

- a) On the margin boundary
- b) Correctly classified but within margin
- c) Misclassified
- d) Outside both margins

```
Answer: c) Misclassified - since \xi_i > 1!
```

Types of support vectors:

• Zone 2: $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) = 1$

 \therefore As C increases, # support vectors decreases

Notebook: SVM-soft-margin

Types of support vectors:

- Zone 2: $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) = 1$
- Zone 3: $0 < \xi_i < 1$ (correctly classified)

 \therefore As C increases, # support vectors decreases

Notebook: SVM-soft-margin

Types of support vectors:

- Zone 2: $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) = 1$
- Zone 3: $0 < \xi_i < 1$ (correctly classified)
- Zone 4: $\xi_i > 1$ (Misclassified)
- \therefore As C increases, # support vectors decreases

Notebook: SVM-soft-margin

SVM Formulation in the Loss + Penalty Form

Objective: $\begin{aligned} \mininimize \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^{N} \xi_i \\ \text{Now:} \\ y_i (\mathbf{w} \cdot \mathbf{x}_i + b) \geq 1 - \xi_i \\ \xi_i \geq 1 - y_i (\mathbf{w} \cdot \mathbf{x}_i + b) \end{aligned}$ But $\xi_i \geq 0$

$$\therefore \xi_i = \max\left[0, 1 - y_i(\mathbf{w} \cdot \mathbf{x}_i + b)\right]$$

10/100

The hinge loss function max $[0, 1 - y_i(\mathbf{w} \cdot \mathbf{x}_i + b)]$ is:

• a) Convex and differentiable everywhere

The hinge loss function max $[0, 1 - y_i(\mathbf{w} \cdot \mathbf{x}_i + b)]$ is:

- a) Convex and differentiable everywhere
- b) Convex but not differentiable at one point

The hinge loss function $\max[0, 1 - y_i(\mathbf{w} \cdot \mathbf{x}_i + b)]$ is:

- a) Convex and differentiable everywhere
- b) Convex but not differentiable at one point
- c) Non-convex but differentiable

The hinge loss function $\max[0, 1 - y_i(\mathbf{w} \cdot \mathbf{x}_i + b)]$ is:

- a) Convex and differentiable everywhere
- b) Convex but not differentiable at one point
- c) Non-convex but differentiable
- d) Neither convex nor differentiable

The hinge loss function $\max[0, 1 - y_i(\mathbf{w} \cdot \mathbf{x}_i + b)]$ is:

- a) Convex and differentiable everywhere
- b) Convex but not differentiable at one point
- c) Non-convex but differentiable
- d) Neither convex nor differentiable

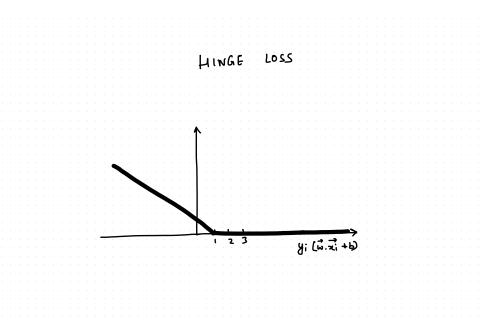
The hinge loss function $\max[0, 1 - y_i(\mathbf{w} \cdot \mathbf{x}_i + b)]$ is:

- a) Convex and differentiable everywhere
- b) Convex but not differentiable at one point
- c) Non-convex but differentiable
- d) Neither convex nor differentiable

Answer: b) Convex but not differentiable at $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) = 1!$

SVM Formulation in the Loss + Penalty Form

 $\therefore \text{ Objective is:}$ $\min initial C \sum_{i=1}^{N} \xi_i + \frac{1}{2} \|\mathbf{w}\|^2$ $\implies \min initial C \sum_{i=1}^{N} \max \left[0, 1 - y_i (\mathbf{w} \cdot \mathbf{x}_i + b)\right] + \frac{1}{2} \|\mathbf{w}\|^2$ $\implies \min initial \sum_{i=1}^{N} \max \left[0, 1 - y_i (\mathbf{w} \cdot \mathbf{x}_i + b)\right] + \underbrace{\frac{1}{2C} \|\mathbf{w}\|^2}_{\text{Regularisation}}$



Loss Function for Sum (Hinge Loss)

Loss function is $\sum_{i=1}^{N} \max \left[0, 1 - y_i (\mathbf{w} \cdot \mathbf{x}_i + b)\right]$

• Case I
$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) = 1$$

Lies on Margin: $Loss_i = 0$

Loss Function for Sum (Hinge Loss)

Loss function is $\sum_{i=1}^{N} \max \left[0, 1 - y_i (\mathbf{w} \cdot \mathbf{x}_i + b)\right]$

- Case I $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) = 1$ Lies on Margin: $Loss_i = 0$
- Case II

$$y_i(\mathbf{w}\cdot\mathbf{x}_i+b)>1$$

 $Loss_i=0$

Loss Function for Sum (Hinge Loss)

Loss function is $\sum_{i=1}^{N} \max \left[0, 1 - y_i (\mathbf{w} \cdot \mathbf{x}_i + b)\right]$

- Case I $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) = 1$ Lies on Margin: $Loss_i = 0$
- Case II $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) > 1$ $Loss_i = 0$
- Case III $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) < 1$
 - $Loss_i \neq 0$

Hinge Loss Continued

- Q) Is hinge loss convex and differentiable?
 - Convex: 🗸
 - Differentiable: X
 - Subgradient: 🗸

Hinge Loss $\sum (\max[0, (1 - y_i(\mathbf{w} \cdot \mathbf{x}_i + b))]$ is convex

Penalty $\frac{1}{2} \| \mathbf{w} \|^2$ is convex

.:. SVM loss is convex