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Pop Quiz #1
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Pop Quiz #1

Why might we need a "soft margin” SVM?
e a) Data is perfectly linearly separable
e b) Data has some noise and outliers
e c) We want smaller margins
e d) To avoid using kernels

Answer: b) Data has some noise and outliers - soft margin
allows controlled violations.
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Soft-Margin SVM

e Can we learn SVM for “slightly” non-separable data without
projecting to a higher space?
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Soft-Margin SVM

e Can we learn SVM for “slightly” non-separable data without
projecting to a higher space?

e Introduce some “slack” (&;) or loss or penalty for samples -
allow some samples to be misclassified
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Soft-Margin SVM

Change Objective
minimize 3|lw|? + C>7 | &
sit. yilw-x;+b)>1-¢
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Soft-Margin SVM

Change Objective
minimize %Hw”2 +CY N &
st.oyi(w-xj+b)>1-¢
In Dual:
n n n
minimizeZa; — Z Z QO YiYiXi - X
i=1 i=1 j=1
s.t.

0<a;<C & Za,-y,-:o
i=1
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Pop Quiz #2

What happens when the regularization parameter C is very
large?
e a) The model becomes more tolerant to
misclassifications
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Pop Quiz #2

What happens when the regularization parameter C is very
large?
e a) The model becomes more tolerant to

misclassifications

e b) The model tries to classify all training points
correctly

e ¢) The margin becomes larger
e d) Regularization increases

Answer: b) The model tries to classify all training points
correctly - high variance!
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Bias Variance Trade-off for Soft-Margin SVM

Low C = Higher train error (higher bias)

High C = Very sensitive to datasete (high variance)
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Soft-Margin SVM

fC—=0
Objective — minimize 1|jw||?
= Choose large margin (without worrying for &;s)

: in = 2
Recall: Margin = W]

If C — oo (or very large)  Objective — minimize C > _&; or
choose w, b, s.t. & is small!
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Pop Quiz #3

What is the equivalent of hard margin?
ea)C—0
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Pop Quiz #3

What is the equivalent of hard margin?
ea)C—0
e b)C— 0

Answer: b) C — oo - No violations allowed!
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Pop Quiz #4

For a support vector with slack variable & = 1.5, this point
is:

e a) On the margin boundary
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Pop Quiz #4

For a support vector with slack variable & = 1.5, this point
is:

a) On the margin boundary

b) Correctly classified but within margin
c) Misclassified

d) Outside both margins

Answer: c) Misclassified - since & > 1!
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Soft-Margin SVM

Types of support vectors:

e Zone 2: yj(w-x;+b)=1

.. As C increases, # support vectors decreases

Notebook: SVM-soft-margin

9/100



Soft-Margin SVM

Types of support vectors:
e Zone 2: yi(w-x;+b)=1
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.. As C increases, # support vectors decreases

Notebook: SVM-soft-margin

9/100



Soft-Margin SVM

Types of support vectors:

e Zone 2: yj(w-x;+b)=1
e Zone 3: 0 < & < 1 (correctly classified)
e Zone 4: & > 1 (Misclassified)

.. As C increases, # support vectors decreases

Notebook: SVM-soft-margin
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SVM Formulation in the Loss + Penalty Form

Objective:
1 N
L 2
minimize §||w|| + C;ﬁ;

Now:

yi(w-x;+b) >1-¢

& = 1—yi(w-xj+b)
But ¢ >0

- & = max [0, 1 —yi(w-x; + b)]
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Pop Quiz #5

The hinge loss function max[0,1 — y;(w - x; + b)] is:

e a) Convex and differentiable everywhere
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Pop Quiz #5

The hinge loss function max[0,1 — y;(w - x; + b)] is:
e a) Convex and differentiable everywhere
e b) Convex but not differentiable at one point
e c) Non-convex but differentiable
e d) Neither convex nor differentiable

Answer: b) Convex but not differentiable at y;(w-x;+b) = 1!
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SVM Formulation in the Loss + Penalty Form

.. Objective is:
S 1
minimize C E §,-—i—§\|w||2

N
_ 1
= minimize C E 1 max [0,1 — yi(w - x; + b)] + §||WH2
=
i 1
= minimize E 1 max [0,1 — yj(w - x; + b)| + ZHW‘F
=
~~ Regularisation
Loss
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Loss Function for Sum (Hinge Loss)

Loss function is Z,N:l max [0,1 — yj(w - x; + b)]
o Case | yi(w-x;+b)=1
Lies on Margin: Loss; = 0
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Loss Function for Sum (Hinge Loss)

Loss function is Z,N:l max [0,1 — yj(w - x; + b)]
o Casel yilw-x;+b)=1
Lies on Margin: Loss; = 0
o Case ll
yi(w-xj+b)>1
Loss; =0
e Case Il
yilw-x;+b) <1
Loss; # 0
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Hinge Loss Continued

Q) Is hinge loss convex and differentiable?
Convex: v/
Differentiable: X
Subgradient: v/
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SVM Loss is Convex

Hinge Loss ) (max[0, (1 — y;(w - x; + b))] is convex

Penalty %||w||? is convex

. SVM loss is convex
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