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1 Summary from Slides

1.1 Key Concepts

What is SVM?

• Binary classification algorithm that finds optimal separating hyperplane

• Maximizes margin between classes for better generalization

• Uses support vectors (closest points to decision boundary)

• Can handle non-linearly separable data using kernel trick

Core Idea: Margin Maximization

• Margin = perpendicular distance between two parallel hyperplanes

• Distance between hyperplanes w · x+ b1 = 0 and w · x+ b2 = 0 is |b1−b2|
∥w∥

• Maximum margin classifier: margin = 2
∥w∥

1.2 Hard Margin SVM (Linearly Separable)

Primal Formulation:

minimize
1

2
∥w∥2 (1)

subject to yi(w · xi + b) ≥ 1 ∀i (2)

Dual Formulation:

maximize L(α) =

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjxi · xj (3)

subject to

N∑
i=1

αiyi = 0, αi ≥ 0 (4)

KKT Conditions:

• αi(yi(w · xi + b)− 1) = 0 (complementary slackness)

• Support vectors: αi ̸= 0 where yi(w · xi + b) = 1

• Non-support vectors: αi = 0 where yi(w · xi + b) > 1
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1.3 Kernel Methods

Kernel Trick:

• Transform data to higher dimensional space using ϕ : Rd → RD

• Compute kernel function K(xi,xj) = ϕ(xi) · ϕ(xj) efficiently

• Avoid explicit computation of ϕ(x)

Common Kernels:

• Linear: K(xi,xj) = xi · xj

• Polynomial: K(xi,xj) = (c+ xi · xj)
d

• RBF (Gaussian): K(xi,xj) = exp(−γ∥xi − xj∥2)

Properties:

• RBF kernel corresponds to infinite-dimensional feature space

• RBF SVM is non-parametric (model complexity grows with data)

• Linear/polynomial kernels are parametric

1.4 Soft Margin SVM

Motivation: Handle non-separable data with noise and outliers
Primal Formulation:

minimize
1

2
∥w∥2 + C

N∑
i=1

ξi (5)

subject to yi(w · xi + b) ≥ 1− ξi, ξi ≥ 0 (6)

Dual Formulation:

maximize

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjxi · xj (7)

subject to 0 ≤ αi ≤ C,

N∑
i=1

αiyi = 0 (8)

Hinge Loss Formulation:

minimize

N∑
i=1

max[0, 1− yi(w · xi + b)] +
1

2C
∥w∥2

Parameter C:

• Large C: Less tolerance for violations (high variance, low bias)

• Small C: More tolerance for violations (low variance, high bias)

• C → ∞: Hard margin SVM

Page 2



ES335 - Machine Learning Tutorial: Support Vector Machines

2 Practice Problems

Exercise 1: Basic SVM Concepts

Consider a 1D dataset with points: (1,+1), (2,+1), (−1,−1), (−2,−1).
Part A: What is the optimal separating hyperplane?
Part B: Calculate the margin of this hyperplane.
Part C: Which points are the support vectors?
Part D: What are the values of αi for each point?

Exercise 2: Distance Between Hyperplanes

Given two parallel hyperplanes:

• w · x+ 5 = 0

• w · x− 3 = 0

where ∥w∥ = 4.
Part A: Calculate the distance between these hyperplanes.
Part B: If this represents the margin in an SVM, what is ∥w∥ for the decision boundary w ·x+1 = 0?

Exercise 3: KKT Conditions

For an SVM with solution w = [1,−1]T , b = 0, consider the following points:

• Point A: x = [2, 1]T , y = +1, α = 0.5

• Point B: x = [0, 1]T , y = +1, α = 0

• Point C: x = [−1, 0]T , y = −1, α = 0.5

Part A: Verify the KKT complementary slackness condition for each point.
Part B: Which points are support vectors?
Part C: Is the constraint

∑
i αiyi = 0 satisfied?

Exercise 4: Dual Problem Setup

Consider a binary classification problem with 3 training points:

• (x1, y1) = ([1, 0]T ,+1)

• (x2, y2) = ([0, 1]T ,+1)

• (x3, y3) = ([−1,−1]T ,−1)

Part A: Write the dual objective function L(α) explicitly.
Part B: What are the constraints on α1, α2, α3?
Part C: If the optimal solution is α1 = 0.5, α2 = 0.5, α3 = 1, find w.
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Exercise 5: Kernel Computation

Consider the polynomial kernel K(x, z) = (1 + x · z)2 for x, z ∈ R2.
Part A: For x = [2, 1]T and z = [1, 3]T , compute K(x, z).
Part B: Find the explicit feature mapping ϕ(x) such that K(x, z) = ϕ(x) · ϕ(z).
Part C: What is the dimensionality of the feature space?
Part D: Verify your answer by computing ϕ(x) · ϕ(z) directly.

Exercise 6: RBF Kernel Properties

Consider the RBF kernel K(x, z) = exp(−γ∥x− z∥2) with γ = 0.5.
Part A: Compute K([0, 0]T , [1, 1]T ).
Part B: What happens to K(x, z) as ∥x− z∥ → ∞?
Part C: What happens to K(x, z) as ∥x− z∥ → 0?
Part D: How does increasing γ affect the kernel’s behavior?
Part E: Why is RBF SVM considered non-parametric?

Exercise 7: Soft Margin Formulation

Consider a soft margin SVM with regularization parameter C = 2.
Part A: Write the primal optimization problem.
Part B: Express the problem in hinge loss form.
Part C: What are the dual constraints?
Part D: If a training point has ξi = 1.5, what does this mean for the point’s classification?

Exercise 8: Support Vector Analysis

In a soft margin SVM, classify the following scenarios for training points:
Part A: Point with yi(w · xi + b) = 1.5 and αi = 0
Part B: Point with yi(w · xi + b) = 1 and αi = 0.3
Part C: Point with yi(w · xi + b) = 0.2 and αi = C
Part D: Point with yi(w · xi + b) = −0.5 and αi = C
For each case, determine: (i) if it’s a support vector, (ii) if it’s correctly classified, (iii) the value of
ξi.

Exercise 9: Prediction with Kernels

Given an SVM with RBF kernel K(x, z) = exp(−∥x− z∥2) and the following support vectors:

• x1 = [1, 0]T , y1 = +1, α1 = 0.5

• x2 = [−1, 0]T , y2 = −1, α2 = 0.5

with b = 0.
Part A: Write the decision function f(x).
Part B: Predict the class for test point xtest = [0.5, 0]T .
Part C: Predict the class for test point xtest = [0, 1]T .
Part D: At what point would the decision function output exactly 0?
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Exercise 10: Multi-class SVM

You have a 3-class problem with classes A, B, and C. Using the one-vs-all approach:
Part A: How many binary classifiers do you need?
Part B: For a test point, the classifiers output:

• A vs (B,C): fA(x) = 0.8

• B vs (A,C): fB(x) = 0.6

• C vs (A,B): fC(x) = −0.2

Which class should be predicted?
Part C: What could be a problem with this approach?
Part D: How many classifiers would one-vs-one approach require?

Exercise 11: Regularization Parameter C

Consider the effect of parameter C in soft margin SVM:
Part A: What happens to the decision boundary as C → 0?
Part B: What happens to the decision boundary as C → ∞?
Part C: Given a noisy dataset, should you use high or low C? Justify your answer.
Part D: How does C affect the bias-variance tradeoff?
Part E: If you have 100 training points and C = 10, what’s the maximum possible value of

∑100
i=1 ξi?

Exercise 12: Hinge Loss Analysis

The hinge loss is defined as ℓ(y, f(x)) = max[0, 1− y · f(x)].
Part A: For a correctly classified point with y · f(x) = 2, what is the hinge loss?
Part B: For a point on the margin with y · f(x) = 1, what is the hinge loss?
Part C: For a misclassified point with y · f(x) = −0.5, what is the hinge loss?
Part D: At what value of y · f(x) is the hinge loss non-differentiable?
Part E: Compare hinge loss with 0-1 loss and logistic loss for y · f(x) ∈ [−2, 3].

Exercise 13: Computational Complexity

Consider the computational aspects of SVM:
Part A: Why is the dual formulation preferred for implementing the kernel trick?
Part B: In the dual problem, what is the dominant computational cost?
Part C: For a dataset with n points and d features, compare the computational complexity of:

• Linear kernel SVM

• RBF kernel SVM

• Explicit feature mapping with degree-2 polynomial kernel

Part D: How does the number of support vectors affect prediction time?
Part E: Why might you prefer linear SVM over RBF SVM for very large datasets?
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Exercise 14: Advanced Kernel Design

Design custom kernels for specific scenarios:
Part A: Prove that K(x, z) = K1(x, z) +K2(x, z) is a valid kernel if K1 and K2 are valid kernels.
Part B: Prove that K(x, z) = K1(x, z) ·K2(x, z) is a valid kernel if K1 and K2 are valid kernels.
Part C: Design a kernel for text classification where documents are represented as word frequency
vectors.
Part D: For time series data, propose a kernel that captures both magnitude and temporal patterns.
Part E: What properties must a function K(x, z) satisfy to be a valid kernel (Mercer’s theorem)?

Exercise 15: Comprehensive SVM Problem

You are given a 2D dataset that forms two concentric circles (inner circle: class +1, outer circle: class
-1).
Part A: Why would linear SVM fail on this dataset?
Part B: Propose a feature transformation ϕ(x) that could make the data linearly separable.
Part C: Design a custom kernel that directly computes the dot product in your transformed space.
Part D: How would you choose between polynomial and RBF kernels for this problem?
Part E: If there are outliers in the inner circle that are very close to the decision boundary, how
would you handle them?
Part F: Describe a complete pipeline for solving this problem, including data preprocessing, model
selection, and evaluation.

3 Key Takeaways

• SVM finds the optimal separating hyperplane by maximizing the margin

• Dual formulation enables the kernel trick for non-linear classification

• Support vectors are the critical points that define the decision boundary

• Soft margin allows handling of non-separable data with controlled violations

• Parameter C controls the bias-variance tradeoff in soft margin SVM

• Kernel choice significantly impacts model performance and interpretability

• Hinge loss provides a convex surrogate for 0-1 loss

• SVM is both theoretically grounded and practically effective
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