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1 Summary from Slides

1.1 Key Concepts
What is SVM?
e Binary classification algorithm that finds optimal separating hyperplane
e Maximizes margin between classes for better generalization
e Uses support vectors (closest points to decision boundary)
e Can handle non-linearly separable data using kernel trick
Core Idea: Margin Maximization

e Margin = perpendicular distance between two parallel hyperplanes

e Distance between hyperplanes w-x+b; =0 and w-x+ by =0 is

e Maximum margin classifier: margin = ﬁ

1.2 Hard Margin SVM (Linearly Separable)
Primal Formulation:
minimize %HW”Q
subjectto y;(w-x;+b)>1 Vi
Dual Formulation:
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subject to Zaiyi =0, ;>0
i=1

KKT Conditions:
e a;(y;(w-x; +b) —1) =0 (complementary slackness)
e Support vectors: «; # 0 where y;(w - x; +b) =1

e Non-support vectors: a; = 0 where y;(w - x; +b) > 1
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1.3 Kernel Methods
Kernel Trick:

e Transform data to higher dimensional space using ¢ : R — RP

e Compute kernel function K (x;,x;) = ¢(x;) - #(x;) efficiently

e Avoid explicit computation of ¢(x)

Common Kernels:

e Linear: K(x;,X;) = X; - X;

e Polynomial: K(x;,%;) = (c+x; - x;)¢

e RBF (Gaussian): K (x;,x;) = exp(—7|x; — x;[?)

Properties:

e RBF kernel corresponds to infinite-dimensional feature space

e RBF SVM is non-parametric (model complexity grows with data)

e Linear/polynomial kernels are parametric

1.4 Soft Margin SVM

Motivation: Handle non-separable data with noise and outliers
Primal Formulation:

N
o 1 2
minimize 3 lw|+C Zl & (5)
subjectto y;(w-x;+b)>1-¢&, & >0 (6)
Dual Formulation:
N (NN
maximize Z ai— 5 Z Z Q0L Y YK - X (7)
=1 =1 j=1
N
subjectto 0 < a; < C, Zaiyi =0 (8)
i=1
Hinge Loss Formulation:
al 1
o« . . 1 _ i . ; b - 2
mlmmlzeZmax[O, yi(w-x; +0)] + 2CHWH

i=1
Parameter C:
e Large C: Less tolerance for violations (high variance, low bias)
e Small C: More tolerance for violations (low variance, high bias)

e (' — oo: Hard margin SVM
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2 Practice Problems

Exercise 1: Basic SVM Concepts

Consider a 1D dataset with points: (1,+1),(2,+1), (-1, —1), (-2, —1).
Part A: What is the optimal separating hyperplane?

Part B: Calculate the margin of this hyperplane.

Part C: Which points are the support vectors?

Part D: What are the values of «; for each point?

Exercise 2: Distance Between Hyperplanes

Given two parallel hyperplanes:
e w-x+5=0
o w-x—3=0

where ||w|| = 4.
Part A: Calculate the distance between these hyperplanes.
Part B: If this represents the margin in an SVM, what is |w|| for the decision boundary w-x+1 = 0?

Exercise 3: KKT Conditions

For an SVM with solution w = [1,—1]T, b = 0, consider the following points:
e Point A: x=[2,1]T, y=+1,a=05
e Point B: x=[0,1]7, y =+1,a=0
e Point C: x =[-1,0]7, y = -1, =05

Part A: Verify the KKT complementary slackness condition for each point.
Part B: Which points are support vectors?
Part C: Is the constraint ), a;y; = 0 satisfied?

Exercise 4: Dual Problem Setup

Consider a binary classification problem with 3 training points:
o (x1,51) = ([1,0]7, +1)
o (x2,92) = ([0,1]", +1)
o (x3,93) = ([-1,-1]",-1)

Part A: Write the dual objective function L(a) explicitly.
Part B: What are the constraints on oy, ag, az?
Part C: If the optimal solution is a3 = 0.5, a2 = 0.5, a3 = 1, find w.
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Exercise 5: Kernel Computation

Consider the polynomial kernel K (x,z) = (1 + x - z)? for x,z € R2.

Part A: For x = [2,1]7 and z = [1, 3]T, compute K(x,z).

Part B: Find the explicit feature mapping ¢(x) such that K(x,z) = ¢(x) - ¢(2).
Part C: What is the dimensionality of the feature space?

Part D: Verify your answer by computing ¢(x) - ¢(z) directly.

Exercise 6: RBF Kernel Properties

Consider the RBF kernel K (x,z) = exp(—v|/x — z||?) with v = 0.5.
Part A: Compute K ([0,0]T,[1,1]7).

Part B: What happens to K (x,z) as ||x — z|| = oo?

Part C: What happens to K(x,z) as ||x — z|| — 07

Part D: How does increasing -y affect the kernel’s behavior?

Part E: Why is RBF SVM considered non-parametric?

Exercise 7: Soft Margin Formulation

Consider a soft margin SVM with regularization parameter C' = 2.

Part A: Write the primal optimization problem.

Part B: Express the problem in hinge loss form.

Part C: What are the dual constraints?

Part D: If a training point has & = 1.5, what does this mean for the point’s classification?

Exercise 8: Support Vector Analysis

In a soft margin SVM, classify the following scenarios for training points:

Part A: Point with y;(w - x; +b) = 1.5 and o; =0

Part B: Point with y;(w -x; +b) =1 and «; = 0.3

Part C: Point with y;(w-x; +b) =0.2 and o; = C

Part D: Point with y;(w - x; +b) = —0.5 and o; = C

For each case, determine: (i) if it’s a support vector, (ii) if it’s correctly classified, (iii) the value of

&i.

Exercise 9: Prediction with Kernels

Given an SVM with RBF kernel K (x,z) = exp(—|/x — z||?) and the following support vectors:
e x;=[L0", y1 =+1,a: =05
o x5 =[-1,0", yo=—-1,a, =05

with b = 0.

Part A: Write the decision function f(x).

Part B: Predict the class for test point X;.s; = [0.5,0]7.

Part C: Predict the class for test point x;esr = [0,1]7.

Part D: At what point would the decision function output exactly 07
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Exercise 10: Multi-class SVM

You have a 3-class problem with classes A, B, and C. Using the one-vs-all approach:
Part A: How many binary classifiers do you need?
Part B: For a test point, the classifiers output:

e A vs (B,C): fa(x)=0.8
e Bvs (A,C): fp(x)=0.6
e Cvs (AB): fo(x)=-0.2

Which class should be predicted?
Part C: What could be a problem with this approach?
Part D: How many classifiers would one-vs-one approach require?

Exercise 11: Regularization Parameter C

Consider the effect of parameter C in soft margin SVM:

Part A: What happens to the decision boundary as C — 07

Part B: What happens to the decision boundary as C' — oco?

Part C: Given a noisy dataset, should you use high or low C? Justify your answer.

Part D: How does C affect the bias-variance tradeoff?

Part E: If you have 100 training points and C = 10, what’s the maximum possible value of Zzli(i &7

Exercise 12: Hinge Loss Analysis

The hinge loss is defined as £(y, f(x)) = max[0,1 —y - f(x)].

Part A: For a correctly classified point with y - f(x) = 2, what is the hinge loss?
Part B: For a point on the margin with y - f(x) = 1, what is the hinge loss?
Part C: For a misclassified point with y - f(x) = —0.5, what is the hinge loss?
Part D: At what value of y - f(x) is the hinge loss non-differentiable?

Part E: Compare hinge loss with 0-1 loss and logistic loss for y - f(x) € [-2, 3].

Exercise 13: Computational Complexity

Consider the computational aspects of SVM:

Part A: Why is the dual formulation preferred for implementing the kernel trick?

Part B: In the dual problem, what is the dominant computational cost?

Part C: For a dataset with n points and d features, compare the computational complexity of:

e Linear kernel SVM
e RBF kernel SVM
e Explicit feature mapping with degree-2 polynomial kernel

Part D: How does the number of support vectors affect prediction time?
Part E: Why might you prefer linear SVM over RBF SVM for very large datasets?

Page 5



ES335 - Machine Learning Tutorial: Support Vector Machines

Exercise 14: Advanced Kernel Design

Design custom kernels for specific scenarios:

Part A: Prove that K(x,z) = K;(x,2) + Ka(x,2) is a valid kernel if K; and K> are valid kernels.
Part B: Prove that K(x,z) = K1(x,2) - K5(x,2z) is a valid kernel if K; and K5 are valid kernels.
Part C: Design a kernel for text classification where documents are represented as word frequency
vectors.

Part D: For time series data, propose a kernel that captures both magnitude and temporal patterns.
Part E: What properties must a function K (x,z) satisfy to be a valid kernel (Mercer’s theorem)?

Exercise 15: Comprehensive SVM Problem

You are given a 2D dataset that forms two concentric circles (inner circle: class +1, outer circle: class
-1).

Part A: Why would linear SVM fail on this dataset?

Part B: Propose a feature transformation ¢(x) that could make the data linearly separable.

Part C: Design a custom kernel that directly computes the dot product in your transformed space.
Part D: How would you choose between polynomial and RBF kernels for this problem?

Part E: If there are outliers in the inner circle that are very close to the decision boundary, how
would you handle them?

Part F: Describe a complete pipeline for solving this problem, including data preprocessing, model
selection, and evaluation.

3 Key Takeaways

e SVM finds the optimal separating hyperplane by maximizing the margin

e Dual formulation enables the kernel trick for non-linear classification

e Support vectors are the critical points that define the decision boundary

e Soft margin allows handling of non-separable data with controlled violations
e Parameter C controls the bias-variance tradeoff in soft margin SVM

e Kernel choice significantly impacts model performance and interpretability
e Hinge loss provides a convex surrogate for 0-1 loss

e SVM is both theoretically grounded and practically effective
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