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The need for Dimensionality Reduction

@ High-dimensional data is difficult to visualize and interpret.
@ Many features may be correlated or redundant.

@ Computational complexity increases with dimensions.
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The need for Dimensionality Reduction

@ High-dimensional data is difficult to visualize and interpret.
@ Many features may be correlated or redundant.
@ Computational complexity increases with dimensions.
Places where you will see dimensionality reduction
@ Image compression and feature extraction in computer vision.
@ Exploratory data analysis for visualizing high-dimensional datasets.

@ Noise reduction and preprocessing for machine learning models.

Nipun Batra (IIT Gandhinagar) Principal Component Analysis October 30, 2025 2/25



Understanding Key Statistical Terms

Mean: The average value of a feature
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Variance: Measures how spread out data is from the mean
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Understanding Key Statistical Terms

Mean: The average value of a feature
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Variance: Measures how spread out data is from the mean
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Higher variance = More spread out data = More information
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Covariance: Measuring Relationships

Covariance: Measures how two variables change together

Cov(X,Y) = *Z i —X)yvi—7)
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Covariance: Measuring Relationships

Covariance: Measures how two variables change together

Cov(X,Y) = *Z i —X)yvi—7)

@ Positive covariance: Variables increase together
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Covariance: Measuring Relationships

Covariance: Measures how two variables change together

Cov(X,Y) = *Z i —X)yvi—7)

@ Positive covariance: Variables increase together

o Negative covariance: One increases, other decreases

Covariance Matrix: Contains all pairwise covariances

0% COV(Xl, X2)
y — | Cov(Xz, X1) 0%
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Covariance: Measuring Relationships

Covariance: Measures how two variables change together

Cov(X,Y) = *Z i —X)yvi—7)

@ Positive covariance: Variables increase together
o Negative covariance: One increases, other decreases
@ Zero covariance: No linear relationship

Covariance Matrix: Contains all pairwise covariances

0% COV(Xl, X2)
y — | Cov(Xz, X1) 0%
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Eigenvectors and Eigenvalues: The Key to PCA

For a matrix A, an eigenvector v and eigenvalue X satisfy:

Av = \v
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Eigenvectors and Eigenvalues: The Key to PCA

For a matrix A, an eigenvector v and eigenvalue X satisfy:

Av = \v

Intuition:

o Eigenvector: A special direction that doesn't change when matrix is
applied
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Eigenvectors and Eigenvalues: The Key to PCA

For a matrix A, an eigenvector v and eigenvalue X satisfy:

Av = \v

Intuition:

o Eigenvector: A special direction that doesn't change when matrix is
applied

@ Eigenvalue: How much the eigenvector is stretched or shrunk

Why we need them:
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Eigenvectors and Eigenvalues: The Key to PCA

For a matrix A, an eigenvector v and eigenvalue X satisfy:

Av = \v

Intuition:

o Eigenvector: A special direction that doesn't change when matrix is
applied

@ Eigenvalue: How much the eigenvector is stretched or shrunk

@ In PCA: Eigenvectors = Principal component directions

Why we need them:
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Eigenvectors and Eigenvalues: The Key to PCA

For a matrix A, an eigenvector v and eigenvalue X satisfy:

Av = \v

Intuition:

o Eigenvector: A special direction that doesn't change when matrix is
applied

@ Eigenvalue: How much the eigenvector is stretched or shrunk
@ In PCA: Eigenvectors = Principal component directions

@ Eigenvalues = Amount of variance in those directions
Why we need them:
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Eigenvectors and Eigenvalues: The Key to PCA

For a matrix A, an eigenvector v and eigenvalue X satisfy:

Av = \v

Intuition:

o Eigenvector: A special direction that doesn't change when matrix is
applied

@ Eigenvalue: How much the eigenvector is stretched or shrunk
@ In PCA: Eigenvectors = Principal component directions

@ Eigenvalues = Amount of variance in those directions
Why we need them:

@ They reveal the natural axes of variation in the data
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Eigenvectors and Eigenvalues: The Key to PCA

For a matrix A, an eigenvector v and eigenvalue X satisfy:

Av = \v

Intuition:

o Eigenvector: A special direction that doesn't change when matrix is
applied

@ Eigenvalue: How much the eigenvector is stretched or shrunk
@ In PCA: Eigenvectors = Principal component directions
@ Eigenvalues = Amount of variance in those directions
Why we need them:
@ They reveal the natural axes of variation in the data

o Largest eigenvalues point to most important patterns
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Housing Price Example: The Features

Suppose we're analyzing houses with many features:
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Housing Price Example: The Features

Suppose we're analyzing houses with many features:
Size-related features: (highly correlated)

@ Number of rooms
Number of bathrooms

Square footage

Garage size
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Housing Price Example: The Features

Suppose we're analyzing houses with many features:
Size-related features: (highly correlated)

@ Number of rooms
@ Number of bathrooms
@ Square footage
o Garage size
Location-related features: (highly correlated)
@ Number of schools nearby
@ Crime rate
@ Distance to city center
°

Neighborhood income level
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Housing Price Example: The Features

Suppose we're analyzing houses with many features:
Size-related features: (highly correlated)

@ Number of rooms
@ Number of bathrooms
@ Square footage
o Garage size
Location-related features: (highly correlated)
@ Number of schools nearby
@ Crime rate
@ Distance to city center
@ Neighborhood income level

Problem: 8 features, but really just 2 underlying concepts!
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Housing Example: Feature Correlations

Observation: Many features are redundant
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Housing Example: Feature Correlations

Observation: Many features are redundant

@ More rooms — More bathrooms — Larger square footage
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Housing Example: Feature Correlations

Observation: Many features are redundant
@ More rooms — More bathrooms — Larger square footage
@ More schools — Lower crime — Higher neighborhood income

Covariance Matrix reveals:
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Housing Example: Feature Correlations

Observation: Many features are redundant

@ More rooms — More bathrooms — Larger square footage

@ More schools — Lower crime — Higher neighborhood income
Covariance Matrix reveals:

@ Size features have high positive covariances with each other
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@ More rooms — More bathrooms — Larger square footage

@ More schools — Lower crime — Higher neighborhood income
Covariance Matrix reveals:

@ Size features have high positive covariances with each other
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Housing Example: Feature Correlations

Observation: Many features are redundant
@ More rooms — More bathrooms — Larger square footage
@ More schools — Lower crime — Higher neighborhood income
Covariance Matrix reveals:
@ Size features have high positive covariances with each other
@ Location features have high covariances with each other

@ But size and location features are nearly independent
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Housing Example: PCA in Action

What PCA does:
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Housing Example: PCA in Action

What PCA does:
e PC1 (Principal Component 1): Captures "overall size”

e Combines rooms, bathrooms, square footage, garage
o Explains, say, 60% of variance
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Housing Example: PCA in Action

What PCA does:
e PC1 (Principal Component 1): Captures "overall size”

e Combines rooms, bathrooms, square footage, garage
o Explains, say, 60% of variance

o PC2: Captures "location quality”

e Combines schools, crime rate, proximity, income
e Explains, say, 30% of variance
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Housing Example: PCA in Action

What PCA does:
e PC1 (Principal Component 1): Captures "overall size”

e Combines rooms, bathrooms, square footage, garage
o Explains, say, 60% of variance

o PC2: Captures "location quality”
e Combines schools, crime rate, proximity, income
e Explains, say, 30% of variance

@ Result: 8 features reduced to 2 components
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Housing Example: PCA in Action

What PCA does:
e PC1 (Principal Component 1): Captures "overall size”

e Combines rooms, bathrooms, square footage, garage
o Explains, say, 60% of variance

o PC2: Captures "location quality”

e Combines schools, crime rate, proximity, income
e Explains, say, 30% of variance

@ Result: 8 features reduced to 2 components

@ We've captured 90% of the information with 75% fewer features!
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Housing Example: Interpretation

Original data:

House; = [rooms, bath, sqft, garage, schools, crime, distance, income|
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Housing Example: Interpretation

Original data:

House; = [rooms, bath, sqft, garage, schools, crime, distance, income|

After PCA:
HOUSG,‘ = [PClsizea Pczlocation]
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Housing Example: Interpretation

Original data:

House; = [rooms, bath, sqft, garage, schools, crime, distance, income|

After PCA:
HOUSG,‘ = [PClsizea Pczlocation]

Benefits:

e Easier to visualize (2D scatter plot)
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Housing Example: Interpretation

Original data:

House; = [rooms, bath, sqft, garage, schools, crime, distance, income|

After PCA:
HOUSG,‘ = [PClsizea Pczlocation]

Benefits:
e Easier to visualize (2D scatter plot)

@ Remove multicollinearity for regression models
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Housing Example: Interpretation

Original data:

House; = [rooms, bath, sqft, garage, schools, crime, distance, income|

After PCA:
HOUSG,‘ = [PClsizea Pczlocation]

Benefits:
e Easier to visualize (2D scatter plot)
@ Remove multicollinearity for regression models

@ Faster computation with fewer features

Nipun Batra (IIT Gandhinagar) Principal Component Analysis October 30, 2025 9/25



Housing Example: Interpretation

Original data:

House; = [rooms, bath, sqft, garage, schools, crime, distance, income|

After PCA:
HOUSG,‘ = [PClsizea Pczlocation]

Benefits:
e Easier to visualize (2D scatter plot)
@ Remove multicollinearity for regression models
@ Faster computation with fewer features

o Core patterns are preserved

Nipun Batra (IIT Gandhinagar) Principal Component Analysis October 30, 2025 9/25



From Housing to Any Dataset

The PCA principle applies universally:
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From Housing to Any Dataset

The PCA principle applies universally:

o Images: Thousands of pixels — Few Eigenfaces
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From Housing to Any Dataset

The PCA principle applies universally:
@ Images: Thousands of pixels — Few Eigenfaces

@ Genes: Thousands of gene expressions — Key biological pathways

Common thread: Find the hidden, simpler structure in complex data
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From Housing to Any Dataset

The PCA principle applies universally:
@ Images: Thousands of pixels — Few Eigenfaces
@ Genes: Thousands of gene expressions — Key biological pathways

@ Sensors: Multiple correlated sensors — Underlying phenomena

Common thread: Find the hidden, simpler structure in complex data
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From Housing to Any Dataset

The PCA principle applies universally:
Images: Thousands of pixels — Few Eigenfaces
Genes: Thousands of gene expressions — Key biological pathways

Sensors: Multiple correlated sensors — Underlying phenomena

Text: High-dimensional word vectors — Latent topics

Common thread: Find the hidden, simpler structure in complex data
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What is PCA?

AIM: To find a lower-dimensional representation that captures maximum
variance.
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What is PCA?

AIM: To find a lower-dimensional representation that captures maximum
variance.

KEY IDEA: Transform data to a new coordinate system where axes are
ordered by variance.
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What is PCA?

AIM: To find a lower-dimensional representation that captures maximum
variance.

KEY IDEA: Transform data to a new coordinate system where axes are
ordered by variance.

Examples:

Face Recognition: Reduce thousands of pixel features to a few principal
components (Eigenfaces).

Gene Expression Analysis: Identify patterns across thousands of genes
using a few components.
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PCA Intuition

e Dataset with n samples and d features: X € R"*9
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PCA Intuition

e Dataset with n samples and d features: X € R"*9

@ Goal: Find k directions (k < d) that capture most variance
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PCA Intuition

e Dataset with n samples and d features: X € R"*9
@ Goal: Find k directions (k < d) that capture most variance

@ These directions are the principal components
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PCA Intuition

Dataset with n samples and d features: X € R"*¢
Goal: Find k directions (k < d) that capture most variance

These directions are the principal components

First principal component: direction of maximum variance
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PCA Intuition

Dataset with n samples and d features: X € R"*¢
Goal: Find k directions (k < d) that capture most variance
These directions are the principal components

First principal component: direction of maximum variance

Second principal component: direction of maximum remaining
variance, orthogonal to the first
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PCA Intuition

Dataset with n samples and d features: X € R"*¢
Goal: Find k directions (k < d) that capture most variance
These directions are the principal components

First principal component: direction of maximum variance

Second principal component: direction of maximum remaining
variance, orthogonal to the first

And so on...
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PCA: Mathematical Formulation

o Center the data: X = X — X
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PCA: Mathematical Formulation

o Center the data: X = X — X

o Compute covariance matrix: ¥ = ﬁXTX
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PCA: Mathematical Formulation

o Center the data: X = X — X
o Compute covariance matrix: ¥ = ﬁf(T)N(
@ Find eigenvectors and eigenvalues of X:

Yvi= Ay
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PCA: Mathematical Formulation

Center the data: X = X — X

Compute covariance matrix: ¥ = ﬁXTX

Find eigenvectors and eigenvalues of X:

Yvi= Ay

Principal components are eigenvectors with largest eigenvalues
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PCA: Mathematical Formulation

Center the data: X = X — X
1

Compute covariance matrix: ¥ = EXT)?

Find eigenvectors and eigenvalues of X:

Yvi= Ay

Principal components are eigenvectors with largest eigenvalues

Projection onto k components:
Z = XW,

where W) contains top k eigenvectors
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Variance Explained

@ Each eigenvalue )\; represents variance along component /
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Variance Explained

@ Each eigenvalue )\; represents variance along component /

o Total variance: 9, \;
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Variance Explained

@ Each eigenvalue )\; represents variance along component /
e Total variance: Zle Ai
@ Variance explained by component i:
Aj
d
Zj:l Aj
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Variance Explained

@ Each eigenvalue )\; represents variance along component /
e Total variance: Zle Ai
@ Variance explained by component i:
Aj
d
Zj:l Aj

@ Cumulative variance explained by first kK components:

Zf:l Ai

d
Zj:l Aj
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Variance Explained

Each eigenvalue \; represents variance along component i
. ) d )
Total variance: ) 7 ; A

Variance explained by component i:

Ai
d
D=1 A

@ Cumulative variance explained by first kK components:

Zf:l Ai

d
Zj:l Aj

Typically choose k such that cumulative variance > 90% or 95%

Nipun Batra (IIT Gandhinagar) Principal Component Analysis October 30, 2025 14 /25



PCA Algorithm

Input: Data matrix X € R™9, number of components k
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PCA Algorithm

Input: Data matrix X € R™9, number of components k
Steps:

@ Center the data: subtract mean from each feature
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PCA Algorithm

Input: Data matrix X € R™9, number of components k
Steps:

@ Center the data: subtract mean from each feature
@ Compute covariance matrix & = -L-XTX

Output: Reduced data Z € R"*k
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PCA Algorithm

Input: Data matrix X € R™9, number of components k
Steps:

@ Center the data: subtract mean from each feature
@ Compute covariance matrix & = -L-XTX

© Compute eigendecomposition of ¥

Output: Reduced data Z € R"*k
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PCA Algorithm

Input: Data matrix X € R™9, number of components k
Steps:

@ Center the data: subtract mean from each feature
@ Compute covariance matrix & = -L-XTX
© Compute eigendecomposition of ¥

© Sort eigenvectors by eigenvalues (descending)

Output: Reduced data Z € R"*k
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PCA Algorithm

Input: Data matrix X € R™9, number of components k
Steps:

@ Center the data: subtract mean from each feature
@ Compute covariance matrix & = -L-XTX

© Compute eigendecomposition of ¥

© Sort eigenvectors by eigenvalues (descending)

@ Select top k eigenvectors as W

Output: Reduced data Z € R"*k
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PCA Algorithm

Input: Data matrix X € R™9, number of components k
Steps:

@ Center the data: subtract mean from each feature
@ Compute covariance matrix & = -L-XTX
© Compute eigendecomposition of ¥
© Sort eigenvectors by eigenvalues (descending)
@ Select top k eigenvectors as W
@ Project data: Z = )N(Wk
Output: Reduced data Z € R"*k
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PCA Properties

o Linear transformation: PCA finds linear combinations of original
features
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o Linear transformation: PCA finds linear combinations of original
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@ Orthogonal components: Principal components are mutually
orthogonal
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PCA Properties

o Linear transformation: PCA finds linear combinations of original
features

@ Orthogonal components: Principal components are mutually
orthogonal

o Maximizes variance: Sequentially finds directions of maximum
variance
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PCA Properties

o Linear transformation: PCA finds linear combinations of original
features

@ Orthogonal components: Principal components are mutually
orthogonal

o Maximizes variance: Sequentially finds directions of maximum
variance

@ Minimizes reconstruction error: Best k-dimensional linear
approximation
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PCA Properties

o Linear transformation: PCA finds linear combinations of original
features

@ Orthogonal components: Principal components are mutually
orthogonal

o Maximizes variance: Sequentially finds directions of maximum
variance

@ Minimizes reconstruction error: Best k-dimensional linear
approximation

@ Unsupervised: Does not use label information
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Choosing Number of Components

Several approaches:

@ Scree plot: Plot eigenvalues and look for " elbow”
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Choosing Number of Components

Several approaches:
@ Scree plot: Plot eigenvalues and look for " elbow”

o Cumulative variance: Choose k such that > 90% or 95% variance
explained
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Choosing Number of Components

Several approaches:
@ Scree plot: Plot eigenvalues and look for " elbow”

o Cumulative variance: Choose k such that > 90% or 95% variance
explained

e Kaiser criterion: Keep components with A\; > 1 (when data is
standardized)

Nipun Batra (IIT Gandhinagar) Principal Component Analysis October 30, 2025 17 /25



Choosing Number of Components

Several approaches:
@ Scree plot: Plot eigenvalues and look for " elbow”

o Cumulative variance: Choose k such that > 90% or 95% variance
explained

e Kaiser criterion: Keep components with A\; > 1 (when data is
standardized)

o Cross-validation: If using PCA for downstream task, validate based
on task performance
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PCA Considerations

Advantages:
Reduces dimensionality while preserving variance
Removes multicollinearity

Improves computational efficiency

Aids visualization of high-dimensional data
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PCA Considerations

Advantages:

@ Reduces dimensionality while preserving variance
@ Removes multicollinearity
o

Improves computational efficiency

Aids visualization of high-dimensional data
Limitations:
@ Assumes linear relationships
@ Sensitive to scaling (standardization recommended)
@ Components may be hard to interpret
°

Unsupervised: ignores class labels
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PCA Applications

e Image Processing: Face recognition (Eigenfaces), image
compression
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@ Finance: Risk modeling, portfolio analysis
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PCA Application
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PCA Applications

Image Processing: Face recognition (Eigenfaces), image
compression

Genomics: Analyzing gene expression data, population structure
Finance: Risk modeling, portfolio analysis
Signal Processing: Noise reduction, feature extraction

Exploratory Data Analysis: Visualizing high-dimensional datasets
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PCA Applications

Image Processing: Face recognition (Eigenfaces), image
compression

Genomics: Analyzing gene expression data, population structure
Finance: Risk modeling, portfolio analysis
Signal Processing: Noise reduction, feature extraction

Exploratory Data Analysis: Visualizing high-dimensional datasets

Preprocessing: Feature extraction before classification or regression
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PCA vs Other Me

o PCA vs LDA:

o PCA: Unsupervised, maximizes variance
o LDA: Supervised, maximizes class separability
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PCA vs Oth

o PCA vs LDA:

o PCA: Unsupervised, maximizes variance
o LDA: Supervised, maximizes class separability

o PCA vs t-SNE:

o PCA: Linear, preserves global structure
e t-SNE: Nonlinear, preserves local structure, mainly for visualization
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o PCA vs LDA:

o PCA: Unsupervised, maximizes variance
o LDA: Supervised, maximizes class separability

o PCA vs t-SNE:

o PCA: Linear, preserves global structure
e t-SNE: Nonlinear, preserves local structure, mainly for visualization

@ PCA vs Autoencoders:

o PCA: Linear transformation
e Autoencoders: Can learn nonlinear representations
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Autoencoders

AIM: Learn nonlinear dimensionality reduction through neural networks.
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Autoencoders

AIM: Learn nonlinear dimensionality reduction through neural networks.
ARCHITECTURE:

e Encoder: Maps input x € R? to latent representation z € R¥
z=f(x) =o(Wx+ b)
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Autoencoders

AIM: Learn nonlinear dimensionality reduction through neural networks.
ARCHITECTURE:

e Encoder: Maps input x € R? to latent representation z € R¥
z=f(x) =o(Wx+ b)

@ Decoder: Reconstructs input from latent representation
R=g(z)=c(Wz+Vb)
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Autoencoders

AIM: Learn nonlinear dimensionality reduction through neural networks.
ARCHITECTURE:

e Encoder: Maps input x € R? to latent representation z € R¥
z=f(x) =o(Wx+ b)

@ Decoder: Reconstructs input from latent representation
R=g(z)=c(Wz+Vb)

o Objective: Minimize reconstruction error £ = ||x — £||?
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Autoencoders: Key Properties

@ Nonlinear: Can capture complex nonlinear relationships (unlike PCA)
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Autoencoders: Key Properties

Nonlinear: Can capture complex nonlinear relationships (unlike PCA)

Supervised training: Trained with reconstruction objective

Flexible architecture: Can use deep networks for more expressive
representations

Bottleneck: Latent dimension k < d forces compression

Variants: Denoising, variational, sparse, convolutional autoencoders

Nipun Batra (IIT Gandhinagar) Principal Component Analysis October 30, 2025 22/25



Autoencoders vs PCA

PCA: Autoencoders:
@ Linear transformation @ Nonlinear transformation
@ Closed-form solution @ lterative optimization
@ Fast computation @ More computational cost
@ Global optimum guaranteed @ Local minima possible
@ Interpretable components @ Less interpretable
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Autoencoders vs PCA

PCA: Autoencoders:
@ Linear transformation @ Nonlinear transformation

@ Closed-form solution Iterative optimization

Local minima possible

o

@ Fast computation @ More computational cost
@ Global optimum guaranteed °
o

@ Interpretable components Less interpretable

Note: Linear autoencoder with MSE loss learns PCA solution!
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Autoencoder Applications

o Image compression: Learn compact representations of images
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Autoencoder Applications

Image compression: Learn compact representations of images
Anomaly detection: High reconstruction error indicates anomalies
Denoising: Remove noise by training on corrupted inputs

Feature learning: Extract features for downstream tasks

Generative modeling: Variational autoencoders (VAEs) for
generation

Transfer learning: Pre-train encoders on large unlabeled datasets
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PCA is a fundamental dimensionality reduction technique
Finds orthogonal directions of maximum variance
Based on eigendecomposition of covariance matrix

Widely used for visualization, preprocessing, and compression

Choose number of components based on variance explained or
downstream task

Consider data standardization before applying PCA

Autoencoders extend to nonlinear dimensionality reduction
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