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The need for Dimensionality Reduction

High-dimensional data is difficult to visualize and interpret.

Many features may be correlated or redundant.

Computational complexity increases with dimensions.

Places where you will see dimensionality reduction

Image compression and feature extraction in computer vision.

Exploratory data analysis for visualizing high-dimensional datasets.

Noise reduction and preprocessing for machine learning models.
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Understanding Key Statistical Terms

Mean: The average value of a feature

x̄ =
1

n

n∑
i=1

xi

Variance: Measures how spread out data is from the mean

σ2 =
1

n

n∑
i=1

(xi − x̄)2

Higher variance = More spread out data = More information
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Covariance: Measuring Relationships

Covariance: Measures how two variables change together

Cov(X ,Y ) =
1

n − 1

n∑
i=1

(xi − x̄)(yi − ȳ)

Positive covariance: Variables increase together

Negative covariance: One increases, other decreases

Zero covariance: No linear relationship

Covariance Matrix: Contains all pairwise covariances

Σ =

 σ2
1 Cov(X1,X2) · · ·

Cov(X2,X1) σ2
2 · · ·

...
...

. . .


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Positive covariance: Variables increase together

Negative covariance: One increases, other decreases

Zero covariance: No linear relationship

Covariance Matrix: Contains all pairwise covariances

Σ =

 σ2
1 Cov(X1,X2) · · ·

Cov(X2,X1) σ2
2 · · ·

...
...

. . .



Nipun Batra (IIT Gandhinagar) Principal Component Analysis October 30, 2025 4 / 25



Covariance: Measuring Relationships

Covariance: Measures how two variables change together

Cov(X ,Y ) =
1

n − 1

n∑
i=1

(xi − x̄)(yi − ȳ)
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Eigenvectors and Eigenvalues: The Key to PCA

For a matrix A, an eigenvector v and eigenvalue λ satisfy:

Av = λv

Intuition:

Eigenvector: A special direction that doesn’t change when matrix is
applied

Eigenvalue: How much the eigenvector is stretched or shrunk

In PCA: Eigenvectors = Principal component directions

Eigenvalues = Amount of variance in those directions

Why we need them:

They reveal the natural axes of variation in the data

Largest eigenvalues point to most important patterns
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Housing Price Example: The Features

Suppose we’re analyzing houses with many features:

Size-related features: (highly correlated)

Number of rooms

Number of bathrooms

Square footage

Garage size

Location-related features: (highly correlated)

Number of schools nearby

Crime rate

Distance to city center

Neighborhood income level

Problem: 8 features, but really just 2 underlying concepts!
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Housing Example: Feature Correlations

Observation: Many features are redundant

More rooms → More bathrooms → Larger square footage

More schools → Lower crime → Higher neighborhood income

Covariance Matrix reveals:

Size features have high positive covariances with each other

Location features have high covariances with each other

But size and location features are nearly independent
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Housing Example: PCA in Action

What PCA does:

PC1 (Principal Component 1): Captures ”overall size”

Combines rooms, bathrooms, square footage, garage
Explains, say, 60% of variance

PC2: Captures ”location quality”

Combines schools, crime rate, proximity, income
Explains, say, 30% of variance

Result: 8 features reduced to 2 components

We’ve captured 90% of the information with 75% fewer features!
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Housing Example: Interpretation

Original data:

Housei = [rooms, bath, sqft, garage, schools, crime, distance, income]

After PCA:
Housei = [PC1size,PC2location]

Benefits:

Easier to visualize (2D scatter plot)

Remove multicollinearity for regression models

Faster computation with fewer features

Core patterns are preserved
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From Housing to Any Dataset

The PCA principle applies universally:

Images: Thousands of pixels → Few Eigenfaces

Genes: Thousands of gene expressions → Key biological pathways

Sensors: Multiple correlated sensors → Underlying phenomena

Text: High-dimensional word vectors → Latent topics

Common thread: Find the hidden, simpler structure in complex data
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What is PCA?

AIM: To find a lower-dimensional representation that captures maximum
variance.

KEY IDEA: Transform data to a new coordinate system where axes are
ordered by variance.
Examples:
Face Recognition: Reduce thousands of pixel features to a few principal
components (Eigenfaces).
Gene Expression Analysis: Identify patterns across thousands of genes
using a few components.
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PCA Intuition

Dataset with n samples and d features: X ∈ Rn×d

Goal: Find k directions (k < d) that capture most variance

These directions are the principal components

First principal component: direction of maximum variance

Second principal component: direction of maximum remaining
variance, orthogonal to the first

And so on...
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PCA: Mathematical Formulation

Center the data: X̃ = X − X̄

Compute covariance matrix: Σ = 1
n−1 X̃

T X̃

Find eigenvectors and eigenvalues of Σ:

Σvi = λivi

Principal components are eigenvectors with largest eigenvalues

Projection onto k components:

Z = X̃Wk

where Wk contains top k eigenvectors
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Variance Explained

Each eigenvalue λi represents variance along component i

Total variance:
∑d

i=1 λi

Variance explained by component i :

λi∑d
j=1 λj

Cumulative variance explained by first k components:∑k
i=1 λi∑d
j=1 λj

Typically choose k such that cumulative variance ≥ 90% or 95%
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PCA Algorithm

Input: Data matrix X ∈ Rn×d , number of components k

Steps:

1 Center the data: subtract mean from each feature

2 Compute covariance matrix Σ = 1
n−1 X̃

T X̃

3 Compute eigendecomposition of Σ

4 Sort eigenvectors by eigenvalues (descending)

5 Select top k eigenvectors as Wk

6 Project data: Z = X̃Wk

Output: Reduced data Z ∈ Rn×k

Nipun Batra (IIT Gandhinagar) Principal Component Analysis October 30, 2025 15 / 25



PCA Algorithm

Input: Data matrix X ∈ Rn×d , number of components k
Steps:

1 Center the data: subtract mean from each feature

2 Compute covariance matrix Σ = 1
n−1 X̃

T X̃

3 Compute eigendecomposition of Σ

4 Sort eigenvectors by eigenvalues (descending)

5 Select top k eigenvectors as Wk

6 Project data: Z = X̃Wk

Output: Reduced data Z ∈ Rn×k

Nipun Batra (IIT Gandhinagar) Principal Component Analysis October 30, 2025 15 / 25



PCA Algorithm

Input: Data matrix X ∈ Rn×d , number of components k
Steps:

1 Center the data: subtract mean from each feature

2 Compute covariance matrix Σ = 1
n−1 X̃

T X̃

3 Compute eigendecomposition of Σ

4 Sort eigenvectors by eigenvalues (descending)

5 Select top k eigenvectors as Wk

6 Project data: Z = X̃Wk

Output: Reduced data Z ∈ Rn×k

Nipun Batra (IIT Gandhinagar) Principal Component Analysis October 30, 2025 15 / 25



PCA Algorithm

Input: Data matrix X ∈ Rn×d , number of components k
Steps:

1 Center the data: subtract mean from each feature

2 Compute covariance matrix Σ = 1
n−1 X̃

T X̃

3 Compute eigendecomposition of Σ

4 Sort eigenvectors by eigenvalues (descending)

5 Select top k eigenvectors as Wk

6 Project data: Z = X̃Wk

Output: Reduced data Z ∈ Rn×k

Nipun Batra (IIT Gandhinagar) Principal Component Analysis October 30, 2025 15 / 25



PCA Algorithm

Input: Data matrix X ∈ Rn×d , number of components k
Steps:

1 Center the data: subtract mean from each feature

2 Compute covariance matrix Σ = 1
n−1 X̃

T X̃

3 Compute eigendecomposition of Σ

4 Sort eigenvectors by eigenvalues (descending)

5 Select top k eigenvectors as Wk

6 Project data: Z = X̃Wk

Output: Reduced data Z ∈ Rn×k

Nipun Batra (IIT Gandhinagar) Principal Component Analysis October 30, 2025 15 / 25



PCA Algorithm

Input: Data matrix X ∈ Rn×d , number of components k
Steps:

1 Center the data: subtract mean from each feature

2 Compute covariance matrix Σ = 1
n−1 X̃

T X̃

3 Compute eigendecomposition of Σ

4 Sort eigenvectors by eigenvalues (descending)

5 Select top k eigenvectors as Wk

6 Project data: Z = X̃Wk

Output: Reduced data Z ∈ Rn×k

Nipun Batra (IIT Gandhinagar) Principal Component Analysis October 30, 2025 15 / 25



PCA Algorithm

Input: Data matrix X ∈ Rn×d , number of components k
Steps:

1 Center the data: subtract mean from each feature

2 Compute covariance matrix Σ = 1
n−1 X̃

T X̃

3 Compute eigendecomposition of Σ

4 Sort eigenvectors by eigenvalues (descending)

5 Select top k eigenvectors as Wk

6 Project data: Z = X̃Wk

Output: Reduced data Z ∈ Rn×k

Nipun Batra (IIT Gandhinagar) Principal Component Analysis October 30, 2025 15 / 25



PCA Properties

Linear transformation: PCA finds linear combinations of original
features

Orthogonal components: Principal components are mutually
orthogonal

Maximizes variance: Sequentially finds directions of maximum
variance

Minimizes reconstruction error: Best k-dimensional linear
approximation

Unsupervised: Does not use label information
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Choosing Number of Components

Several approaches:

Scree plot: Plot eigenvalues and look for ”elbow”

Cumulative variance: Choose k such that ≥ 90% or 95% variance
explained

Kaiser criterion: Keep components with λi > 1 (when data is
standardized)

Cross-validation: If using PCA for downstream task, validate based
on task performance
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PCA Considerations

Advantages:

Reduces dimensionality while preserving variance

Removes multicollinearity

Improves computational efficiency

Aids visualization of high-dimensional data

Limitations:

Assumes linear relationships

Sensitive to scaling (standardization recommended)

Components may be hard to interpret

Unsupervised: ignores class labels
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PCA Applications

Image Processing: Face recognition (Eigenfaces), image
compression

Genomics: Analyzing gene expression data, population structure

Finance: Risk modeling, portfolio analysis

Signal Processing: Noise reduction, feature extraction

Exploratory Data Analysis: Visualizing high-dimensional datasets

Preprocessing: Feature extraction before classification or regression
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PCA vs Other Methods

PCA vs LDA:
PCA: Unsupervised, maximizes variance
LDA: Supervised, maximizes class separability

PCA vs t-SNE:
PCA: Linear, preserves global structure
t-SNE: Nonlinear, preserves local structure, mainly for visualization

PCA vs Autoencoders:
PCA: Linear transformation
Autoencoders: Can learn nonlinear representations
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Autoencoders

AIM: Learn nonlinear dimensionality reduction through neural networks.

ARCHITECTURE:

Encoder: Maps input x ∈ Rd to latent representation z ∈ Rk

z = f (x) = σ(Wx + b)

Decoder: Reconstructs input from latent representation
x̂ = g(z) = σ(W ′z + b′)

Objective: Minimize reconstruction error L = ||x − x̂ ||2
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Autoencoders: Key Properties

Nonlinear: Can capture complex nonlinear relationships (unlike PCA)

Supervised training: Trained with reconstruction objective

Flexible architecture: Can use deep networks for more expressive
representations

Bottleneck: Latent dimension k < d forces compression

Variants: Denoising, variational, sparse, convolutional autoencoders
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Autoencoders vs PCA

PCA:

Linear transformation

Closed-form solution

Fast computation

Global optimum guaranteed

Interpretable components

Autoencoders:

Nonlinear transformation

Iterative optimization

More computational cost

Local minima possible

Less interpretable

Note: Linear autoencoder with MSE loss learns PCA solution!
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Autoencoder Applications

Image compression: Learn compact representations of images

Anomaly detection: High reconstruction error indicates anomalies

Denoising: Remove noise by training on corrupted inputs

Feature learning: Extract features for downstream tasks

Generative modeling: Variational autoencoders (VAEs) for
generation

Transfer learning: Pre-train encoders on large unlabeled datasets
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Summary

PCA is a fundamental dimensionality reduction technique

Finds orthogonal directions of maximum variance

Based on eigendecomposition of covariance matrix

Widely used for visualization, preprocessing, and compression

Choose number of components based on variance explained or
downstream task

Consider data standardization before applying PCA

Autoencoders extend to nonlinear dimensionality reduction

Nipun Batra (IIT Gandhinagar) Principal Component Analysis October 30, 2025 25 / 25


	Principal Component Analysis

