Principal Component Analysis

Nipun Batra

IIT Gandhinagar

October 30, 2025

The need for Dimensionality Reduction

- High-dimensional data is difficult to visualize and interpret.
- Many features may be correlated or redundant.
- Computational complexity increases with dimensions.

The need for Dimensionality Reduction

- High-dimensional data is difficult to visualize and interpret.
- Many features may be correlated or redundant.
- Computational complexity increases with dimensions.

Places where you will see dimensionality reduction

- Image compression and feature extraction in computer vision.
- Exploratory data analysis for visualizing high-dimensional datasets.
- Noise reduction and preprocessing for machine learning models.

Understanding Key Statistical Terms

Mean: The average value of a feature

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Understanding Key Statistical Terms

Mean: The average value of a feature

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Variance: Measures how spread out data is from the mean

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

Understanding Key Statistical Terms

Mean: The average value of a feature

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Variance: Measures how spread out data is from the mean

$$\sigma^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

 $\mbox{Higher variance} = \mbox{More spread out data} = \mbox{More information}$

Covariance: Measures how two variables change together

$$Cov(X, Y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

Covariance: Measures how two variables change together

$$Cov(X, Y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

Positive covariance: Variables increase together

Covariance: Measures how two variables change together

$$Cov(X, Y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

- Positive covariance: Variables increase together
- Negative covariance: One increases, other decreases

Covariance Matrix: Contains all pairwise covariances

$$\Sigma = \begin{bmatrix} \sigma_1^2 & \mathsf{Cov}(X_1, X_2) & \cdots \\ \mathsf{Cov}(X_2, X_1) & \sigma_2^2 & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix}$$

Covariance: Measures how two variables change together

$$Cov(X, Y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

- Positive covariance: Variables increase together
- Negative covariance: One increases, other decreases
- Zero covariance: No linear relationship

Covariance Matrix: Contains all pairwise covariances

$$\Sigma = \begin{bmatrix} \sigma_1^2 & \mathsf{Cov}(X_1, X_2) & \cdots \\ \mathsf{Cov}(X_2, X_1) & \sigma_2^2 & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix}$$

For a matrix A, an eigenvector v and eigenvalue λ satisfy:

$$Av = \lambda v$$

For a matrix A, an eigenvector v and eigenvalue λ satisfy:

$$Av = \lambda v$$

Intuition:

 Eigenvector: A special direction that doesn't change when matrix is applied

For a matrix A, an eigenvector v and eigenvalue λ satisfy:

$$Av = \lambda v$$

Intuition:

- Eigenvector: A special direction that doesn't change when matrix is applied
- Eigenvalue: How much the eigenvector is stretched or shrunk

For a matrix A, an eigenvector v and eigenvalue λ satisfy:

$$Av = \lambda v$$

Intuition:

- Eigenvector: A special direction that doesn't change when matrix is applied
- Eigenvalue: How much the eigenvector is stretched or shrunk
- In PCA: Eigenvectors = Principal component directions

For a matrix A, an eigenvector v and eigenvalue λ satisfy:

$$Av = \lambda v$$

Intuition:

- Eigenvector: A special direction that doesn't change when matrix is applied
- Eigenvalue: How much the eigenvector is stretched or shrunk
- In PCA: Eigenvectors = Principal component directions
- Eigenvalues = Amount of variance in those directions

For a matrix A, an eigenvector v and eigenvalue λ satisfy:

$$Av = \lambda v$$

Intuition:

- Eigenvector: A special direction that doesn't change when matrix is applied
- Eigenvalue: How much the eigenvector is stretched or shrunk
- In PCA: Eigenvectors = Principal component directions
- Eigenvalues = Amount of variance in those directions

Why we need them:

• They reveal the natural axes of variation in the data

For a matrix A, an eigenvector v and eigenvalue λ satisfy:

$$Av = \lambda v$$

Intuition:

- Eigenvector: A special direction that doesn't change when matrix is applied
- Eigenvalue: How much the eigenvector is stretched or shrunk
- In PCA: Eigenvectors = Principal component directions
- Eigenvalues = Amount of variance in those directions

- They reveal the natural axes of variation in the data
- Largest eigenvalues point to most important patterns

Suppose we're analyzing houses with many features:

Suppose we're analyzing houses with many features: Size-related features: (highly correlated)

- Number of rooms
- Number of bathrooms
- Square footage
- Garage size

Suppose we're analyzing houses with many features:

Size-related features: (highly correlated)

- Number of rooms
- Number of bathrooms
- Square footage
- Garage size

Location-related features: (highly correlated)

- Number of schools nearby
- Crime rate
- Distance to city center
- Neighborhood income level

Suppose we're analyzing houses with many features:

Size-related features: (highly correlated)

- Number of rooms
- Number of bathrooms
- Square footage
- Garage size

Location-related features: (highly correlated)

- Number of schools nearby
- Crime rate
- Distance to city center
- Neighborhood income level

Problem: 8 features, but really just 2 underlying concepts!

Observation: Many features are redundant

Observation: Many features are redundant

ullet More rooms o More bathrooms o Larger square footage

Observation: Many features are redundant

- ullet More rooms o More bathrooms o Larger square footage
- ullet More schools o Lower crime o Higher neighborhood income

Covariance Matrix reveals:

Observation: Many features are redundant

- ullet More rooms o More bathrooms o Larger square footage
- ullet More schools o Lower crime o Higher neighborhood income

Covariance Matrix reveals:

• Size features have high positive covariances with each other

Observation: Many features are redundant

- ullet More rooms o More bathrooms o Larger square footage
- ullet More schools o Lower crime o Higher neighborhood income

Covariance Matrix reveals:

- Size features have high positive covariances with each other
- Location features have high covariances with each other

Observation: Many features are redundant

- ullet More rooms o More bathrooms o Larger square footage
- ullet More schools o Lower crime o Higher neighborhood income

Covariance Matrix reveals:

- Size features have high positive covariances with each other
- Location features have high covariances with each other
- But size and location features are nearly independent

- PC1 (Principal Component 1): Captures "overall size"
 - Combines rooms, bathrooms, square footage, garage
 - Explains, say, 60% of variance

- PC1 (Principal Component 1): Captures "overall size"
 - Combines rooms, bathrooms, square footage, garage
 - Explains, say, 60% of variance
- PC2: Captures "location quality"
 - Combines schools, crime rate, proximity, income
 - Explains, say, 30% of variance

- PC1 (Principal Component 1): Captures "overall size"
 - Combines rooms, bathrooms, square footage, garage
 - Explains, say, 60% of variance
- PC2: Captures "location quality"
 - · Combines schools, crime rate, proximity, income
 - Explains, say, 30% of variance
- **Result:** 8 features reduced to 2 components

- PC1 (Principal Component 1): Captures "overall size"
 - Combines rooms, bathrooms, square footage, garage
 - Explains, say, 60% of variance
- PC2: Captures "location quality"
 - · Combines schools, crime rate, proximity, income
 - Explains, say, 30% of variance
- Result: 8 features reduced to 2 components
- We've captured 90% of the information with 75% fewer features!

Original data:

 $House_i = [rooms, bath, sqft, garage, schools, crime, distance, income]$

Original data:

 $House_i = [rooms, bath, sqft, garage, schools, crime, distance, income]$

After PCA:

$$\mathsf{House}_i = [\mathsf{PC1}_\mathsf{size}, \mathsf{PC2}_\mathsf{location}]$$

Original data:

 $House_i = [rooms, bath, sqft, garage, schools, crime, distance, income]$

After PCA:

$$\mathsf{House}_i = [\mathsf{PC1}_{\mathsf{size}}, \mathsf{PC2}_{\mathsf{location}}]$$

Benefits:

Easier to visualize (2D scatter plot)

Original data:

 $House_i = [rooms, bath, sqft, garage, schools, crime, distance, income]$

After PCA:

$$\mathsf{House}_i = [\mathsf{PC1}_{\mathsf{size}}, \mathsf{PC2}_{\mathsf{location}}]$$

Benefits:

- Easier to visualize (2D scatter plot)
- Remove multicollinearity for regression models

Housing Example: Interpretation

Original data:

 $House_i = [rooms, bath, sqft, garage, schools, crime, distance, income]$

After PCA:

$$\mathsf{House}_i = [\mathsf{PC1}_{\mathsf{size}}, \mathsf{PC2}_{\mathsf{location}}]$$

Benefits:

- Easier to visualize (2D scatter plot)
- Remove multicollinearity for regression models
- Faster computation with fewer features

Housing Example: Interpretation

Original data:

 $House_i = [rooms, bath, sqft, garage, schools, crime, distance, income]$

After PCA:

$$\mathsf{House}_i = [\mathsf{PC1}_{\mathsf{size}}, \mathsf{PC2}_{\mathsf{location}}]$$

Benefits:

- Easier to visualize (2D scatter plot)
- Remove multicollinearity for regression models
- Faster computation with fewer features
- Core patterns are preserved

The PCA principle applies universally:

The PCA principle applies universally:

Images: Thousands of pixels → Few Eigenfaces

The PCA principle applies universally:

- Images: Thousands of pixels \rightarrow Few Eigenfaces
- Genes: Thousands of gene expressions → Key biological pathways

Common thread: Find the hidden, simpler structure in complex data

The PCA principle applies universally:

- Images: Thousands of pixels → Few Eigenfaces
- Genes: Thousands of gene expressions → Key biological pathways
- Sensors: Multiple correlated sensors → Underlying phenomena

Common thread: Find the hidden, simpler structure in complex data

The PCA principle applies universally:

- Images: Thousands of pixels → Few Eigenfaces
- Genes: Thousands of gene expressions → Key biological pathways
- Sensors: Multiple correlated sensors → Underlying phenomena
- **Text:** High-dimensional word vectors → Latent topics

Common thread: Find the hidden, simpler structure in complex data

What is PCA?

AIM: To find a lower-dimensional representation that captures maximum variance.

What is PCA?

AIM: To find a lower-dimensional representation that captures maximum variance.

KEY IDEA: Transform data to a new coordinate system where axes are ordered by variance.

What is PCA?

AIM: To find a lower-dimensional representation that captures maximum variance.

KEY IDEA: Transform data to a new coordinate system where axes are ordered by variance.

Examples:

Face Recognition: Reduce thousands of pixel features to a few principal components (Eigenfaces).

Gene Expression Analysis: Identify patterns across thousands of genes using a few components.

• Dataset with n samples and d features: $X \in \mathbb{R}^{n \times d}$

- Dataset with *n* samples and *d* features: $X \in \mathbb{R}^{n \times d}$
- Goal: Find k directions (k < d) that capture most variance

- Dataset with *n* samples and *d* features: $X \in \mathbb{R}^{n \times d}$
- Goal: Find k directions (k < d) that capture most variance
- These directions are the principal components

- Dataset with n samples and d features: $X \in \mathbb{R}^{n \times d}$
- Goal: Find k directions (k < d) that capture most variance
- These directions are the principal components
- First principal component: direction of maximum variance

- Dataset with *n* samples and *d* features: $X \in \mathbb{R}^{n \times d}$
- Goal: Find k directions (k < d) that capture most variance
- These directions are the principal components
- First principal component: direction of maximum variance
- Second principal component: direction of maximum remaining variance, orthogonal to the first

- Dataset with *n* samples and *d* features: $X \in \mathbb{R}^{n \times d}$
- Goal: Find k directions (k < d) that capture most variance
- These directions are the principal components
- First principal component: direction of maximum variance
- Second principal component: direction of maximum remaining variance, orthogonal to the first
- And so on...

ullet Center the data: $ilde{X} = X - ar{X}$

- ullet Center the data: $ilde{X} = X ar{X}$
- \bullet Compute covariance matrix: $\Sigma = \frac{1}{n-1} \tilde{X}^T \tilde{X}$

- ullet Center the data: $ilde{X} = X ar{X}$
- Compute covariance matrix: $\Sigma = \frac{1}{n-1} \tilde{X}^T \tilde{X}$
- Find eigenvectors and eigenvalues of Σ :

$$\Sigma v_i = \lambda_i v_i$$

- ullet Center the data: $ilde{X} = X ar{X}$
- Compute covariance matrix: $\Sigma = \frac{1}{n-1} \tilde{X}^T \tilde{X}$
- Find eigenvectors and eigenvalues of Σ :

$$\Sigma v_i = \lambda_i v_i$$

Principal components are eigenvectors with largest eigenvalues

- ullet Center the data: $ilde{X} = X ar{X}$
- Compute covariance matrix: $\Sigma = \frac{1}{n-1} \tilde{X}^T \tilde{X}$
- Find eigenvectors and eigenvalues of Σ :

$$\sum v_i = \lambda_i v_i$$

- Principal components are eigenvectors with largest eigenvalues
- Projection onto k components:

$$Z = \tilde{X}W_k$$

where W_k contains top k eigenvectors

ullet Each eigenvalue λ_i represents variance along component i

- ullet Each eigenvalue λ_i represents variance along component i
- Total variance: $\sum_{i=1}^{d} \lambda_i$

- ullet Each eigenvalue λ_i represents variance along component i
- Total variance: $\sum_{i=1}^{d} \lambda_i$
- Variance explained by component *i*:

$$\frac{\lambda_i}{\sum_{j=1}^d \lambda_j}$$

- ullet Each eigenvalue λ_i represents variance along component i
- Total variance: $\sum_{i=1}^{d} \lambda_i$
- Variance explained by component *i*:

$$\frac{\lambda_i}{\sum_{j=1}^d \lambda_j}$$

• Cumulative variance explained by first *k* components:

$$\frac{\sum_{i=1}^k \lambda_i}{\sum_{j=1}^d \lambda_j}$$

- ullet Each eigenvalue λ_i represents variance along component i
- Total variance: $\sum_{i=1}^{d} \lambda_i$
- Variance explained by component *i*:

$$\frac{\lambda_i}{\sum_{j=1}^d \lambda_j}$$

• Cumulative variance explained by first *k* components:

$$\frac{\sum_{i=1}^k \lambda_i}{\sum_{j=1}^d \lambda_j}$$

• Typically choose k such that cumulative variance $\geq 90\%$ or 95%

Input: Data matrix $X \in \mathbb{R}^{n \times d}$, number of components k

Input: Data matrix $X \in \mathbb{R}^{n \times d}$, number of components k **Steps:**

Center the data: subtract mean from each feature

Input: Data matrix $X \in \mathbb{R}^{n \times d}$, number of components k **Steps:**

- Center the data: subtract mean from each feature
- ② Compute covariance matrix $\Sigma = \frac{1}{n-1} \tilde{X}^T \tilde{X}$

Input: Data matrix $X \in \mathbb{R}^{n \times d}$, number of components k **Steps:**

- Center the data: subtract mean from each feature
- ② Compute covariance matrix $\Sigma = \frac{1}{n-1} \tilde{X}^T \tilde{X}$
- $\begin{tabular}{ll} \hline \textbf{3} & Compute eigendecomposition of } \Sigma \\ \hline \end{tabular}$

Input: Data matrix $X \in \mathbb{R}^{n \times d}$, number of components k **Steps:**

- Center the data: subtract mean from each feature
- ② Compute covariance matrix $\Sigma = \frac{1}{n-1} \tilde{X}^T \tilde{X}$
- \odot Compute eigendecomposition of Σ
- Sort eigenvectors by eigenvalues (descending)

Input: Data matrix $X \in \mathbb{R}^{n \times d}$, number of components k **Steps:**

- Center the data: subtract mean from each feature
- ② Compute covariance matrix $\Sigma = \frac{1}{n-1} \tilde{X}^T \tilde{X}$
- \odot Compute eigendecomposition of Σ
- Sort eigenvectors by eigenvalues (descending)
- **5** Select top k eigenvectors as W_k

Input: Data matrix $X \in \mathbb{R}^{n \times d}$, number of components k **Steps:**

- Center the data: subtract mean from each feature
- ② Compute covariance matrix $\Sigma = \frac{1}{n-1} \tilde{X}^T \tilde{X}$
- \odot Compute eigendecomposition of Σ
- Sort eigenvectors by eigenvalues (descending)
- **5** Select top k eigenvectors as W_k
- **1** Project data: $Z = \tilde{X}W_k$

PCA Properties

• Linear transformation: PCA finds linear combinations of original features

PCA Properties

- Linear transformation: PCA finds linear combinations of original features
- Orthogonal components: Principal components are mutually orthogonal

PCA Properties

- Linear transformation: PCA finds linear combinations of original features
- Orthogonal components: Principal components are mutually orthogonal
- Maximizes variance: Sequentially finds directions of maximum variance

PCA Properties

- Linear transformation: PCA finds linear combinations of original features
- Orthogonal components: Principal components are mutually orthogonal
- Maximizes variance: Sequentially finds directions of maximum variance
- Minimizes reconstruction error: Best k-dimensional linear approximation

PCA Properties

- Linear transformation: PCA finds linear combinations of original features
- Orthogonal components: Principal components are mutually orthogonal
- Maximizes variance: Sequentially finds directions of maximum variance
- Minimizes reconstruction error: Best k-dimensional linear approximation
- Unsupervised: Does not use label information

Several approaches:

• Scree plot: Plot eigenvalues and look for "elbow"

Several approaches:

- Scree plot: Plot eigenvalues and look for "elbow"
- Cumulative variance: Choose k such that $\geq 90\%$ or 95% variance explained

Several approaches:

- Scree plot: Plot eigenvalues and look for "elbow"
- Cumulative variance: Choose k such that $\geq 90\%$ or 95% variance explained
- Kaiser criterion: Keep components with $\lambda_i > 1$ (when data is standardized)

Several approaches:

- Scree plot: Plot eigenvalues and look for "elbow"
- Cumulative variance: Choose k such that $\geq 90\%$ or 95% variance explained
- Kaiser criterion: Keep components with $\lambda_i > 1$ (when data is standardized)
- Cross-validation: If using PCA for downstream task, validate based on task performance

PCA Considerations

Advantages:

- Reduces dimensionality while preserving variance
- Removes multicollinearity
- Improves computational efficiency
- Aids visualization of high-dimensional data

PCA Considerations

Advantages:

- Reduces dimensionality while preserving variance
- Removes multicollinearity
- Improves computational efficiency
- Aids visualization of high-dimensional data

Limitations:

- Assumes linear relationships
- Sensitive to scaling (standardization recommended)
- Components may be hard to interpret
- Unsupervised: ignores class labels

• Image Processing: Face recognition (Eigenfaces), image compression

- Image Processing: Face recognition (Eigenfaces), image compression
- Genomics: Analyzing gene expression data, population structure

- Image Processing: Face recognition (Eigenfaces), image compression
- Genomics: Analyzing gene expression data, population structure
- Finance: Risk modeling, portfolio analysis

- Image Processing: Face recognition (Eigenfaces), image compression
- Genomics: Analyzing gene expression data, population structure
- Finance: Risk modeling, portfolio analysis
- Signal Processing: Noise reduction, feature extraction

- Image Processing: Face recognition (Eigenfaces), image compression
- Genomics: Analyzing gene expression data, population structure
- Finance: Risk modeling, portfolio analysis
- Signal Processing: Noise reduction, feature extraction
- Exploratory Data Analysis: Visualizing high-dimensional datasets

- Image Processing: Face recognition (Eigenfaces), image compression
- Genomics: Analyzing gene expression data, population structure
- Finance: Risk modeling, portfolio analysis
- Signal Processing: Noise reduction, feature extraction
- Exploratory Data Analysis: Visualizing high-dimensional datasets
- **Preprocessing:** Feature extraction before classification or regression

PCA vs Other Methods

PCA vs LDA:

- PCA: Unsupervised, maximizes variance
- LDA: Supervised, maximizes class separability

PCA vs Other Methods

PCA vs LDA:

- PCA: Unsupervised, maximizes variance
- LDA: Supervised, maximizes class separability

PCA vs t-SNE:

- PCA: Linear, preserves global structure
- t-SNE: Nonlinear, preserves local structure, mainly for visualization

PCA vs Other Methods

PCA vs LDA:

- PCA: Unsupervised, maximizes variance
- LDA: Supervised, maximizes class separability

PCA vs t-SNE:

- PCA: Linear, preserves global structure
- t-SNE: Nonlinear, preserves local structure, mainly for visualization

PCA vs Autoencoders:

- PCA: Linear transformation
- Autoencoders: Can learn nonlinear representations

AIM: Learn nonlinear dimensionality reduction through neural networks.

AIM: Learn nonlinear dimensionality reduction through neural networks. **ARCHITECTURE:**

• **Encoder:** Maps input $x \in \mathbb{R}^d$ to latent representation $z \in \mathbb{R}^k$ $z = f(x) = \sigma(Wx + b)$

AIM: Learn nonlinear dimensionality reduction through neural networks. **ARCHITECTURE:**

- **Encoder:** Maps input $x \in \mathbb{R}^d$ to latent representation $z \in \mathbb{R}^k$ $z = f(x) = \sigma(Wx + b)$
- **Decoder:** Reconstructs input from latent representation $\hat{x} = g(z) = \sigma(W'z + b')$

AIM: Learn nonlinear dimensionality reduction through neural networks. **ARCHITECTURE:**

- **Encoder:** Maps input $x \in \mathbb{R}^d$ to latent representation $z \in \mathbb{R}^k$ $z = f(x) = \sigma(Wx + b)$
- **Decoder:** Reconstructs input from latent representation $\hat{x} = g(z) = \sigma(W'z + b')$
- **Objective:** Minimize reconstruction error $\mathcal{L} = ||x \hat{x}||^2$

• Nonlinear: Can capture complex nonlinear relationships (unlike PCA)

- Nonlinear: Can capture complex nonlinear relationships (unlike PCA)
- Supervised training: Trained with reconstruction objective

- Nonlinear: Can capture complex nonlinear relationships (unlike PCA)
- Supervised training: Trained with reconstruction objective
- Flexible architecture: Can use deep networks for more expressive representations

- Nonlinear: Can capture complex nonlinear relationships (unlike PCA)
- Supervised training: Trained with reconstruction objective
- Flexible architecture: Can use deep networks for more expressive representations
- **Bottleneck:** Latent dimension k < d forces compression

- Nonlinear: Can capture complex nonlinear relationships (unlike PCA)
- Supervised training: Trained with reconstruction objective
- Flexible architecture: Can use deep networks for more expressive representations
- Bottleneck: Latent dimension k < d forces compression
- Variants: Denoising, variational, sparse, convolutional autoencoders

Autoencoders vs PCA

PCA:

- Linear transformation
- Closed-form solution
- Fast computation
- Global optimum guaranteed
- Interpretable components

Autoencoders:

- Nonlinear transformation
- Iterative optimization
- More computational cost
- Local minima possible
- Less interpretable

Autoencoders vs PCA

PCA:

- Linear transformation
- Closed-form solution
- Fast computation
- Global optimum guaranteed
- Interpretable components

Autoencoders:

- Nonlinear transformation
- Iterative optimization
- More computational cost
- Local minima possible
- Less interpretable

Note: Linear autoencoder with MSE loss learns PCA solution!

• Image compression: Learn compact representations of images

- Image compression: Learn compact representations of images
- Anomaly detection: High reconstruction error indicates anomalies

- Image compression: Learn compact representations of images
- Anomaly detection: High reconstruction error indicates anomalies
- **Denoising:** Remove noise by training on corrupted inputs

- Image compression: Learn compact representations of images
- Anomaly detection: High reconstruction error indicates anomalies
- **Denoising:** Remove noise by training on corrupted inputs
- Feature learning: Extract features for downstream tasks

- Image compression: Learn compact representations of images
- Anomaly detection: High reconstruction error indicates anomalies
- **Denoising:** Remove noise by training on corrupted inputs
- Feature learning: Extract features for downstream tasks
- Generative modeling: Variational autoencoders (VAEs) for generation

- Image compression: Learn compact representations of images
- Anomaly detection: High reconstruction error indicates anomalies
- Denoising: Remove noise by training on corrupted inputs
- Feature learning: Extract features for downstream tasks
- Generative modeling: Variational autoencoders (VAEs) for generation
- Transfer learning: Pre-train encoders on large unlabeled datasets

Summary

- PCA is a fundamental dimensionality reduction technique
- Finds orthogonal directions of maximum variance
- Based on eigendecomposition of covariance matrix
- Widely used for visualization, preprocessing, and compression
- Choose number of components based on variance explained or downstream task
- Consider data standardization before applying PCA
- Autoencoders extend to nonlinear dimensionality reduction