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The need for Unsupervised Learning

e Aids the search of patterns in data.
e Find features for categorization.

e Easier to collect unlabeled data.
Places where you will see unsupervised learning

e |t can be used to segment the market based on customer
preferences.

e A data science team reduces the number of dimensions in a

large dataset to simplify modeling and reduce file size.
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Clustering



Clustering

AIM: To find groups/subgroups in a dataset.
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Clustering

AIM: To find groups/subgroups in a dataset. REQUIREMENTS:
A predefined notion of similarity/dissimilarity. Examples:

Market Segmentation: Customers with similar preferences in the
same groups. This would aid in targeted marketing.
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Clustering

gt_iris.png

Iris Data Set with ground truth 3/100



K-Means Clustering
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K-Means Clustering

N points in a RY space.

C;: set of points in the ith
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K-Means Clustering

N points in a RY space.

C;: set of points in the ith

cluster.
GUGU...C :{1,...,n}
C,ﬂCJ:{d)} fOI’I;éJ k_l.png

Dataset with 5 clusters
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K-Means Clustering
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K-Means Clustering
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K-Means Clustering
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K-Means Clustering
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K-Means Intuition

e Good Clustering: Within the cluster the variation (WCV/) is
small.
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K-Means Intuition

e Good Clustering: Within the cluster the variation (WCV/) is
small.

e Objective:

Minimize the WCV as much as possible
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K-Means Intuition

Objective:

Gy Gk

min_ <ZWCV )
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K-Means Intuition

Objective:
17 X k

min_ <ZWCV )

1

| I" pROTECTED,

WCV (G)) =

WCV(G) = |é,.| ZaECi Zbec,- |Ixa — XbH%

where |Cj| is the number of points in C;
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K-Means Algorithm

1. Randomly assign a cluster number i to every point
(where i € {1,...n})
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K-Means Algorithm

1. Randomly assign a cluster number i to every point
(where i € {1,...n})
2. lterate until convergence:

2.1 For each cluster C; compute the centroid (mean of all points in
C; over d dimensions)
2.2 Assign each observation to the cluster which is the closest.
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Working of K-Means Algorithm
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Why does K-Means work?

Let, x; € R = Centroid forit"cluster

Ly

acC;

Gil
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Why does K-Means work?

Let, x; € RY = Centroid forit"cluster

1
=G D x

aeC;

Then,

wev (c Z S 1% — 6l 3

aEC beC;
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Why does K-Means work?

Let, x; € RY =

Then,

WCV (

Centroid forit"cluster

R

Z > lxa = xsll3

aEC beC;

= 22 [Ixa = xil[3

aeC;

This shows that K-Means gives the local minima.
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Hierarchal Clustering

Gives a clustering of all the clusters
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Hierarchal Clustering

Gives a clustering of all the clusters
There is no need to specify K at the start
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Hierarchal Clustering

Gives a clustering of all the clusters

k_bad_1.png k_bad_2.png

Examples where K-Means fails
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Algorithm for Hierarchal Clustering

1. Start with all points in a single cluster
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Algorithm for Hierarchal Clustering

1. Start with all points in a single cluster

2. Repeat until all points are in a single cluster

2.1 Identify the 2 closest points
22 Mprgp them

h_e_1.png

h_e_2.png
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Joining Clusters/Linkages
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Joining Clusters/Linkages

Complete
Max inter-cluster
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Joining Clusters/Linkages

Complete Single Centroid
Max inter-cluster Min inter-cluster Dissimilarity between
similarity similarity cluster centroids
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More Code

Google Colab Link
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https://colab.research.google.com/drive/1HMPn0mpMAe4XFe5Zvh4oExgi5evkgjTi

