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Aim: Probability(Tomatoes | Radius) ? or
More generally, P(y = 1]X = x)?
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P(X = Orange|Radius) = 0y + 61 x Radius

Generally,
P(y = 1|x) = X0



Idea: Use Linear Regression

Prediction:

If 6p + 61 x Radius > 0.5 — Orange
Else — Tomato

Problem:

Range of X0 is (—o0, c0)

But P(y =1|...) € [0,1]
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Idea: Use Linear Regression
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Linear regression for classification gives a poor prediction!
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- Have a decision function similar to the above (but not so
sharp and discontinuous)
- Aim: use linear regression still!



Idea: Use Linear Regression

Logistic Regression
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Question. Can we still use Linear Regression?
Answer. Yes! Transform § — [0, 1]



Logistic / Sigmoid Function
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Logistic / Sigmoid Function
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Logistic / Sigmoid Function

Question. Could you use some other transformation (¢) of § s.t.

¢(¥) € [0,1]

Yes! But Logistic Regression works.

n



Logistic / Sigmoid Function

1
Py = 1X) = o(X0) = P

Q. Write X0 in a more convenient form (as P(y = 1|X),
P(y = 0[X))
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Logistic / Sigmoid Function

1

Q. Write X6 in a more convenient form (as P(y = 1X),
P(y = 0IX))

1 e—XH
T+e X TreX

Ply=0X)=1—-Ply=1X)=1-

P(y = 11X) X0

: _ _ Py = 11X)
"1—P(y:1|X)_e = X0 = log

1—P(y =1X)
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Odds (Used in betting)

P(win)
P(loss)

Here,

Ply=1)
P(y =0)

log-odds = log ggj;)) =X0

Odds =

14



Logistic Regression

Q. What is decision boundary for Logistic Regression?
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Logistic Regression

Q. What is decision boundary for Logistic Regression?
Decision Boundary: P(y = 1|X) = P(y = 0|X)

1 €7X6

Of TTe=x@ = T

oreX? =1

orxe =20



Learning Parameters

Could we use cost function as:

Answer: No (Non-Convex)
(See Jupyter Notebook)



Cost function convexity
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Learning Parameters

Likelihood = P(D|0)

P(y‘Xve) = Hln:’l P(yi|Xia9)
wherey =0 or 1

19



Learning Parameters

Likelihood = P(D|#)

n
PyIX,60) = T ] P(vilx;, 0)
=1

n

1 1=y
H{1+e—”’} {1—1+e_x;9}

=1

[Above: Similar to P(D|#) for Linear Regression,

Difference Bernoulli instead of Gaussian]

—log P(y|X,0) = Negative Log Likelihood
= Cost function will be minimising

=J(0) 20



Aside on Bernoulli Likelihood

- Assume you have a coin and flip it ten times and get (H, H,
TTTHHTTT).
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Aside on Bernoulli Likelihood

- Assume you have a coin and flip it ten times and get (H, H,
TTTHHTTT).

- What is p(H)?
- We might think it to be: 4/10 = 0.4. But why?

- Answer 1: Probability defined as a measure of long
running frequencies

- Answer 2: What is likelihood of seeing the above sequence
when the p(Head)=6?

- |ldea find MLE estimate for 6

21
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Aside on Bernoulli Likelihood

- p(H)y=6andp(T)=1-190
- What is the PMF for first observation P(D; = x|6), where x =
0 for Tails and x = 1 for Heads?

- P(D1 = x|0) = (1 — )1

- Verify the above: if x = 0 (Tails), P(D; = x|0) = 1— 6 and if x
=1 (Heads), P(D1 = x|6) = 6

- What is P(D4, Dy, ..., Dy|6)?

« P(D1, D3, ..., Dn|0) = P(D10)P(D2|0)...P(Dn|6)

- P(Ds, Dy, ..., Dn|6) = " (1 — 6)™

- Log-likelihood = LL(0) = np log(8) + nt log(1 — 6)

. 86856()_0 — nh+1m =0 = Owr =

_Nh
Np+nt
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Learning Parameters

n

J(0) = —log { H{H;—xf@}y’{1 — H;_X;@}Ly:}

i=1

1) = ~{ S wios(o0) + (1 - )1 - an(x) }

aja(;.) = _;;{ ;V;log(ae(x,-)) + (1 =yj)log(1 — Uo(X,'))}

= =3 g oot + 1~y g o001 ()]

23



Learning Parameters

E)é(;) = Z [ '8% log(aa(x;)) + (1 — y,)a((; log(1 — og(X; ))}

=1

0 0 o ]
22" = Bz Tre - 50+

_ et 1 e~
T (1+e 22 \1+e? 1+e g 1+e—

)(1-0(2))

—(14e7%)72
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Learning Parameters

Resuming from (1)

) [ vy 9 , 1—y; 0 ,
(979/‘ = Z [O’e(xi) %UQ(X,) toz UQ(X/‘)?(1 - Ué)(X:))]

=1

- [yl
B ; [ ag(X;) (

S
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Learning Parameters

A 50 oalo) — )

Now, just use Gradient Descent!

26



Cost function convexity
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The Hessian matrix of f(.) with respect to 6, written V3f(6) or
simply as Hi, is the d x d matrix of partial derivatives,

rof(9)  9f(9) £(0) 7
80% 00,00, T 060100,
>f(0)  f(6) *f(0)
5 060,00, 89% 060,00,
Vof(0) =
P10 P(0) 5°1(0)
20,00, 20,00, o6

28



Newton'’s Algorithm

The most basic second-order optimization algorithm is
Newton's algorithm, which consists of updates of the form,

Or1 = O — Hi gy,

where gy is the gradient at step k. This algorithm is derived by
making a second-order Taylor series approximation of f(8)
around 6:

Fand(6) = F(6) + GF(6 — ) + 56 — 0) (6 — 6)

differentiating and equating to zero to solve for .

29



Learning Parameters

Now assume:
n

OB [a@(x,-) - yf] X! = XT(00(X) — y)
=1
7 = og(X;)

Let H represent the Hessian of J(6)

30



Iteratively reweighted least squares (IRLS)

For binary logistic regression, recall that the gradient and
Hessian of the negative log-likelihood are given by:

9(0)r = X"(mc —Y)

Hp = XSpX

Sk = diag(mik(1 — mik), - - -, Tnr(1 — k)

Tik = SIgM(X;fk)

The Newton update at iteraion k + 1 for this model is as follows:
Ok1 = O, —H 'gi

= O + (X"SpX) X7 (y — )
= (XTSpX) T [(XTSkX) Ok + XT (v — k)]
= (X"SpX) T XT[SpX0k + y — ]

31



Regularized Logistic Regression

Unregularised:
1(0) = ~{ 3 itogton()) + (1 - ) og(1 o))}

L2 Regularization:
J(0) = J1(0) + \0"H

L1 Regularization:
J(0) = 1(0) + Alf]

32



Multi-Class Prediction

1. Use one-vs.-all on Binary Logistic Regression

2. Use one-vs.-one on Binary Logistic Regression

3. Extend Binary Logistic Regression to Multi-Class Logistic
Regression

33



7 cR?
e

- Z?ﬂ e’
Y fz) =1

f(z;) refers to probability of class |

f(z)
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Softmax for Multi-Class Logistic Regression

kR=1,...,kclasses

P(y = RIx,0) = =&

Zg:W exé)k
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Softmax for Multi-Class Logistic Regression

For K = 2 classes,

eXeh
Py = R|x,0) = ———
Ve 3l €4
eXeo
P(y - O‘X7 0) = exgo + exe,‘
X(91
Py =1x,0) = oo ____°

eX0o 4 exb X0 {1+ eX(90*91)}
B 1
“iie
= Sigmoid!

36



Multi-Class Logistic Regression Cost

For 2 class we had:
~{ S vitoatoute)) + (1 - v ogt1 - o)}
i=1

Extend to K-class:

{,”é;{y,—fe}logz -

I — Sample # l: Identity Function

k — Class I(true) = 1; I(false) = 0
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Multi-Class Logistic Regression Cost
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