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Gaussian Distribution



1D Gaussian Scatter Plot
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1D Gaussian Histogram
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Varying 1D Gaussian Variance
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Variance = 0.5
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Variance = 1
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Variance = 2
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Bi-variate Gaussian

(
X1
X2

)
∼ N

((
µ1

µ2

)
,

(
a ρ

ρ b

))

ρ denotes the correlation between X1 and X2.

b denotes the variance of X1.

a denotes the variance of X2.
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Sampling Bi-variate Gaussian - 1
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Here the covariance between the two random variables is
positive. 5



Sampling Bi-variate Gaussian - 2
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Here the covariance between the two random variables is
negative. 6



Sampling Bi-variate Gaussian - 3
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The two random variables are uncorrelated. 7



Surface Plots Bi-variate Gaussian - 1
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Surface Plots Sampling Bi-variate Gaussian - 2
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Visualizing samples from 2D
Gaussian



Cov = 0.1 | Random State - 1

One can notice, increasing the ρ (or the covariance) between X1
and X2 results in the realizations of X1 and X2 to increasingly
move together.
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Cov = 0.1 | Random State - 2

One can notice, increasing the ρ (or the covariance) between X1
and X2 results in the realizations of X1 and X2 to increasingly
move together.
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Cov = 0.1 | Random State - 3

One can notice, increasing the ρ (or the covariance) between X1
and X2 results in the realizations of X1 and X2 to increasingly
move together.
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Cov = 0.1 | Random State - 4

One can notice, increasing the ρ (or the covariance) between X1
and X2 results in the realizations of X1 and X2 to increasingly
move together.
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Cov = 0.1 | Random State - 5

One can notice, increasing the ρ (or the covariance) between X1
and X2 results in the realizations of X1 and X2 to increasingly
move together.
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Cov = 0.7 | Random State - 1

One can notice, increasing the ρ (or the covariance) between X1
and X2 results in the realizations of X1 and X2 to increasingly
move together.
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Cov = 0.7 | Random State - 2

One can notice, increasing the ρ (or the covariance) between X1
and X2 results in the realizations of X1 and X2 to increasingly
move together.
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Cov = 0.7 | Random State - 3

One can notice, increasing the ρ (or the covariance) between X1
and X2 results in the realizations of X1 and X2 to increasingly
move together.
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Cov = 0.7 | Random State - 4

One can notice, increasing the ρ (or the covariance) between X1
and X2 results in the realizations of X1 and X2 to increasingly
move together.
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Cov = 0.7 | Random State - 5

One can notice, increasing the ρ (or the covariance) between X1
and X2 results in the realizations of X1 and X2 to increasingly
move together.
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Conditional Bi-variate Distribution



Conditional Bi-variate Distribution

(
X1
X2

)
∼ N

((
0
0

)
,

(
1 ρ

ρ 1

))

The conditional expectation of X2 given X1 is:
E(X2 | X1 = x1) = ρx1

and the conditional variance is: var(X2 | X1 = x1) = 1− ρ2
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Conditional bi-variate | Cov = 0.1 | Random State - 1

Notice that upon fixing the first random variable, the variance
of the second random variable X2 is a function of the
covariance (ρ) between the two random variables.
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Conditional bi-variate | Cov = 0.1 | Random State - 2

Notice that upon fixing the first random variable, the variance
of the second random variable X2 is a function of the
covariance (ρ) between the two random variables.
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Conditional bi-variate | Cov = 0.1 | Random State - 3

Notice that upon fixing the first random variable, the variance
of the second random variable X2 is a function of the
covariance (ρ) between the two random variables.

23



Conditional bi-variate | Cov = 0.1 | Random State - 4

Notice that upon fixing the first random variable, the variance
of the second random variable X2 is a function of the
covariance (ρ) between the two random variables.
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Conditional bi-variate | Cov = 0.1 | Random State - 5

Notice that upon fixing the first random variable, the variance
of the second random variable X2 is a function of the
covariance (ρ) between the two random variables.
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Conditional bi-variate | Cov = 0.7 | Random State - 1

Notice that upon fixing the first random variable, the variance
of the second random variable X2 is a function of the
covariance (ρ) between the two random variables.
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Conditional bi-variate | Cov = 0.7 | Random State - 2

Notice that upon fixing the first random variable, the variance
of the second random variable X2 is a function of the
covariance (ρ) between the two random variables.

27



Conditional bi-variate | Cov = 0.7 | Random State - 3

Notice that upon fixing the first random variable, the variance
of the second random variable X2 is a function of the
covariance (ρ) between the two random variables.
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Conditional bi-variate | Cov = 0.7 | Random State - 4

Notice that upon fixing the first random variable, the variance
of the second random variable X2 is a function of the
covariance (ρ) between the two random variables.
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Conditional bi-variate | Cov = 0.7 | Random State - 5

Notice that upon fixing the first random variable, the variance
of the second random variable X2 is a function of the
covariance (ρ) between the two random variables.
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5D Multivariate



Multivariate Gaussian Sample | Random State - 1

From the visualisation above we can see that:

• Since X1 and X2 are highly correlated, they move up and
down together

• but, X1 and X5 have low correlation, thus, they can seem to
wiggle almost independently of each other. 31



Multivariate Gaussian Sample | Random State - 2

From the visualisation above we can see that:

• Since X1 and X2 are highly correlated, they move up and
down together

• but, X1 and X5 have low correlation, thus, they can seem to
wiggle almost independently of each other. 32



Multivariate Gaussian Sample | Random State - 3

From the visualisation above we can see that:

• Since X1 and X2 are highly correlated, they move up and
down together

• but, X1 and X5 have low correlation, thus, they can seem to
wiggle almost independently of each other. 33



Multivariate Gaussian Sample | Random State - 4

From the visualisation above we can see that:

• Since X1 and X2 are highly correlated, they move up and
down together

• but, X1 and X5 have low correlation, thus, they can seem to
wiggle almost independently of each other. 34



Multivariate Gaussian Sample | Random State - 5

From the visualisation above we can see that:

• Since X1 and X2 are highly correlated, they move up and
down together

• but, X1 and X5 have low correlation, thus, they can seem to
wiggle almost independently of each other. 35



Conditional Multivariate Distribution



Conditional Multivariate Distribution Definition1

If N-dimensional x is partitioned as follows

x =
[
xA
xB

]
with sizes

[
q× 1

(N− q)× 1

]

and accordingly µ and are partitioned as follows

µ =

[
µA

µB

]
with sizes

[
q× 1

(N− q)× 1

]

Σ =

[
ΣAA ΣAB

ΣBA ΣBB

]
with sizes

[
q× q q× (N− q)

(N− q)× q (N− q)× (N− q)

]
1https://en.wikipedia.org/wiki/Multivariate_normal_
distribution#Conditional_distributions
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then the distribution of xA conditional on xB = b is
multivariate normal (xA|xB = b) ∼ N (µ̄,Σ)

µ̄ = µA +ΣABΣ
−1
BB (B− µB)

and covariance matrix

Σ = ΣAA −ΣABΣ
−1
BBΣBA.
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Conditional Multivariate Distribution | Random State - 1

From the visualisation above we can see that:

• Since the covariance between X4 and X5 is high, X4 moves
such that it’s value is similar to the fixed value of X5.

• Since covariance between X1 and X5 is low, thus the
realizations of X1 are uncorrelated to the fixed value of X5. 38



Conditional Multivariate Distribution | Random State - 2

From the visualisation above we can see that:

• Since the covariance between X4 and X5 is high, X4 moves
such that it’s value is similar to the fixed value of X5.

• Since covariance between X1 and X5 is low, thus the
realizations of X1 are uncorrelated to the fixed value of X5. 39



Conditional Multivariate Distribution | Random State - 3

From the visualisation above we can see that:

• Since the covariance between X4 and X5 is high, X4 moves
such that it’s value is similar to the fixed value of X5.

• Since covariance between X1 and X5 is low, thus the
realizations of X1 are uncorrelated to the fixed value of X5. 40



Conditional Multivariate Distribution | Random State - 4

From the visualisation above we can see that:

• Since the covariance between X4 and X5 is high, X4 moves
such that it’s value is similar to the fixed value of X5.

• Since covariance between X1 and X5 is low, thus the
realizations of X1 are uncorrelated to the fixed value of X5. 41



Conditional Multivariate Distribution | Random State - 5

From the visualisation above we can see that:

• Since the covariance between X4 and X5 is high, X4 moves
such that it’s value is similar to the fixed value of X5.

• Since covariance between X1 and X5 is low, thus the
realizations of X1 are uncorrelated to the fixed value of X5. 42



20 Dimensional Multivariate

The above heatmap shows that there is high covariance value
between nearby points, but close to zero or zero covariance
otherwise.
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Multivariate (20D) Distribution Samples | Random State - 1

From the animation above, we can see different family of
functions of mean zero across 20 points. Notice that nearby
points are more correlated (making the curve smooth) than
the points farther away.
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Multivariate (20D) Distribution Samples | Random State - 2

From the animation above, we can see different family of
functions of mean zero across 20 points. Notice that nearby
points are more correlated (making the curve smooth) than
the points farther away.
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Multivariate (20D) Distribution Samples | Random State - 3

From the animation above, we can see different family of
functions of mean zero across 20 points. Notice that nearby
points are more correlated (making the curve smooth) than
the points farther away.
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Multivariate (20D) Distribution Samples | Random State - 4

From the animation above, we can see different family of
functions of mean zero across 20 points. Notice that nearby
points are more correlated (making the curve smooth) than
the points farther away.
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Multivariate (20D) Distribution Samples | Random State - 5

From the animation above, we can see different family of
functions of mean zero across 20 points. Notice that nearby
points are more correlated (making the curve smooth) than
the points farther away.
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Learning from Data



Adding new Data Points

Now we want to update the model with new data. We find the
functional value at the points X1, X2, X6, X11.

We will be using the equations at the start of section
Conditional multivariate distribution, to update or Guassian
Process, in the wake of new data points.
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Updated Covariance Matrix

Notice that the variance of the points near the newly added
data points seem to have reduced.
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Conditional Multivariate (20D) Distribution Samples | Random
State - 1

From the animation above, we can see points near the added
data points (red) seem to have a much lower variance
compared to points far off.
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Conditional Multivariate (20D) Distribution Samples | Random
State - 2

From the animation above, we can see points near the added
data points (red) seem to have a much lower variance
compared to points far off.
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Conditional Multivariate (20D) Distribution Samples | Random
State - 3

From the animation above, we can see points near the added
data points (red) seem to have a much lower variance
compared to points far off.
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Conditional Multivariate (20D) Distribution Samples | Random
State - 4

From the animation above, we can see points near the added
data points (red) seem to have a much lower variance
compared to points far off.
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Conditional Multivariate (20D) Distribution Samples | Random
State - 5

From the animation above, we can see points near the added
data points (red) seem to have a much lower variance
compared to points far off.
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Multivariate (20D) Posterior

We can easily see the reduced variance in this plot.
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Kernels!



Defining Squared Exponential Kernel

We will now dive a bit into kernels. These are functions that
are used to generate the covariance matrix.

Below we have defined, what is known as the Squared
Exponential Kernel2.
We have 2 parameters the define this kernel.

• σ is the scale of variance.
• l is the influence of the point to the neighbouring points

k(x1, x2) = σ2 exp

(
−
(xi − xj)2

2l2

)
2http://evelinag.com/Ariadne/covarianceFunctions.html

57

http://evelinag.com/Ariadne/covarianceFunctions.html


Varying l with σ = 1

As it can be seen with the plots above, using a smaller l means
the function is much more smoother. Using a larger l, as in the
case when l = 1, we see the covariance between two points

that are far off, falls to zero.
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Varying σ with l = 0.1

As it can be seen with the plots above, a small s keeps the
variance and covariance values small. Whereas, a bigger s

leads to higher values of variance and covariance. One thing to
notice is that we are talking about covariance, not correlation,
s doesn’t affect the correlation between random variables.
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Varying kernel parameters on 20D Guassian with conditioning

The big dark circles in the above plot denote the fixed points
on which the GP is conditioned. Furthermore, notice the

translucent areas, denoting the variance and the smoothness
of the function denoting the correlation between random

variables.
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Varying kernel parameters on 20D Guassian with conditioning

We can notice the increase in the variance of each of the
random variables by increasing the value of s parameter of the

kernel.

61



Varying kernel parameters on 20D Guassian with conditioning

Increasing the value of l reduces the correlation between
nearby points. We, therefore, see that the resulting curve is

rougher.
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Varying kernel parameters on 20D Guassian with conditioning

Keeping a huge value of l results in the conditioned random
variables to be highly uncorrelated with the fixed points, as
can be seen above. Further, the conditioned points just move

around the mean, which is set to zero in this example.
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Formalization of Gaussian Processes



Gaussian Processes

A Gaussian process is fully specified by a mean function m(x)
and covariance function K(x, x′)

f (x) ∼ GP(m(x), K(x, x′))

where x is a vector and f is a real-valued function, i.e.
f : IRn → IR.
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Noiseless GPs

We will first consider the case of noiseless GPs. This case
assumes that for a particular x, we would always receive a
single functional value f (x), i.e., there is no inherent noise in
our function.
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Noiseless GPs

Given train data:

D = (xi, yi), i = 1 : N
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Noiseless GPs

Given a test set X∗ of size N∗ × d containing N∗ points in Rd, we
want to predict function outputs y∗.

We can write:

(
y
y∗

)
∼ N

((
µ

µ∗

)
,

(
K K∗
KT∗ K∗∗

))
where:

K = Ker(X, X) ∈ IRN×N

K∗ = Ker(X, X∗) ∈ IRN×N∗

K∗∗ = Ker(X∗, X∗) ∈ IRN∗×N∗
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Noiseless GPs

Conditioning Gaussian results into another Gaussian. We get
the following mean and covariance matrix postconditioning.

p(y∗|X∗, X, y) ∼ N (µ′,Σ′)

where:

µ′ = µ∗ + KT∗K−1(x− µ)

Σ′ = K∗∗ − KT∗K−1K∗
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Bayesian Perspective

• Prior: Prior Mean, Prior Covariance: define all possible
functions given the mean and the covariance

• Data: Observations
• Posterior: Mean, Covariance: define the possible functions
that comply with the data

Animation from Distill.Pub article
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Bayesian Perspective

• Prior: Prior Mean, Prior Covariance: define all possible
functions given the mean and the covariance

• Data: Observations

• Posterior: Mean, Covariance: define the possible functions
that comply with the data

Animation from Distill.Pub article
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Bayesian Perspective

• Prior: Prior Mean, Prior Covariance: define all possible
functions given the mean and the covariance

• Data: Observations
• Posterior: Mean, Covariance: define the possible functions
that comply with the data

Animation from Distill.Pub article
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GP Updates - Cholesky Decomposition

If we notice the last slide, we used a matrix inversion while
trying to find the updated covariance matrix. In practical
settings, matrix inversions are usually avoided due to multiple
reasons. Some of them being:

1. Numerically unstable
2. Computationally heavy

In some cases where we can avoid matrix inversion, therefore
it is preferred to do so.
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GP Updates - Cholesky Decomposition

K is a semi positive definite matrix. Such matrices can be
decomposed using cholesky decomposition. Which can be
written as:

A = LLT

where: L is a lower triangular matrix with real and positive
diagonal entries.

We can thus re-write the posterior mean and covariance as:

p(y∗|X∗, X, y) ∼ N (µ′,Σ′)

K = LLT
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GP Updates - Cholesky Decomposition

We are now going to use the \ as follows: if Aω = B, then
ω = A\B. We now have:

α = K−1(x− µ)

or, α = (LLT)−1(x− µ)

or, α = L−TL−1(x− µ)

Let, L−1(x− µ) = γ

Thus, Lγ = x− µ

Thus, γ = L \ (x− µ)

Thus, α = L−Tγ
Thus, α = LT \ (L \ (x− µ))

We avoided matrix inversion by instead solving a system of eq.
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GP Updates - Cholesky Decomposition

Thus, we can find the posterior mean as:

µ′ = µ∗ + KT∗α

We also know that

Σ′ = K∗∗ − KT∗K−1K∗

Let us now define

v = L \ K∗
or, v = L−1K∗

Thus, vT = KT∗L−T

Thus, vTv = KT∗L−TL−1K∗
Thus, vTv = KT∗K−1K∗ = K∗∗ −Σ′

Σ′ = K∗∗ − vTv 73



Noiseless GPs

Initially, we had assumed that the functional evaluations were
free of noise. That is.

yi = f (xi)

But there can be cases where we have noise in the observed
data as well.

yi = f (xi) + ε

ε ∼ N (0, σ2y)

This adds uncertainty to the training points as well. We can
counter this issue by updating the covariance matrix K in the
following way.

Ky = σ2y In + K
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GPs

One can see the differences between the two in the above
plots. The left one is of a noisy GP, where even after adding the
data points, the uncertainty doesn’t go to zero, whereas the
uncertainty reaches zero for the noiseless GP.
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