| have a Dream!

That one day, we will

Backpropagate
Easily!

ES654: Machine Learning

Varun Gohil

HDWALLWIDE.COM

Remember Autograd?

Autograd

Autograd can automatically differentiate native Python and Numpy code. It can handle a large subset of Python's features,
including loops, ifs, recursion and closures, and it can even take derivatives of derivatives of derivatives. It supports reverse-
mode differentiation (a.k.a. backpropagation), which means it can efficiently take gradients of scalar-valued functions with
respect to array-valued arguments, as well as forward-mode differentiation, and the two can be composed arbitrarily. The
main intended application of Autograd is gradient-based optimization. For more information, check out the tutorial and the
examples directory.

Example use:

>>> import autograd.numpy as np # Thinly-wrapped numpy

>>> from autograd import grad # The only autograd function you may ever need
>>>
>>> def tanh(x): # Define a function

y = np.exp(-2.0 * x)
return (1.0 - y) / (1.0 + y)

>>> grad_tanh = grad(tanh) # Obtain its gradient function

>>> grad_tanh(1.0) # Evaluate the gradient at x = 1.0
0.41997434161402603

>>> (tanh(1.0001) - tanh(0.9999)) / ©.0002 # Compare to finite differences
0.41997434264973155

Remember Autograd?

Autograd cmE=z

Autograd can automatically differentiate native Python and Numpy code. It can handle a large subse
including loops, ifs, recursion and closures, and it can even take derivatives of derivativ
mode differentiation (a.k.a. backpropagation), which means it can efficiently tg}
respect to array-valued arguments, as well as forward-mode differenig nposed arbitrarily. The

main intended application of Autograd is gradients ' Pation, check out the tutorial and the

tanh(x):
y np.exp(-2.0 X)

(1.0 N o
(1.0 y) (1.0

grad_tanh = grad(tanh)
grad_tanh(1.0)
0.41997 61402603
(tanh(1
0.419974342

After this lecture

e You will have an idea of how Autograd works!

e You will know how backpropagation is implemented in popular ML
frameworks like TensorFlow, PyTorch etc.

e You won’t bang your head against the wall while implementing
backprop. ~°

Computational Graphs

e Nodes

operations

e Edges variables/tensors

Edges also represent data dependencies between operations.

Computational Graphs

e Nodes

operations

e Edges tensors/variables.

Edges also represent data dependencies between operations.

Example: (x *y) + z

Computational Graphs

e Nodes

operations

e Edges tensors/variables.

Edges also represent data dependencies between operations.

Example: (x *y) + z

®» ®

Computational Graphs

e Nodes

operations

e Edges tensors/variables.

Edges also represent data dependencies between operations.

Example: (x *y) + z

X

IR

Computational Graphs

e Nodes

operations

e Edges tensors/variables.

Edges also represent data dependencies between operations.

Example: (x *y) + z

Backprop through a node in Computational graph

Z = f(xy)

/

Backprop through a node in Computational graph

Z = f(xy)

>

<

dJ

/ -

y Upstream Gradient

Backprop through a node in Computational graph

X
0J_d) gz 2
dx dz dx z = f(x,y) .
.
dJ
dz

Backprop through a node in Computational graph

Backprop through a node in Computational graph

OlO OlO
< |1« X J1GC

y Local Gradients

Backprop through a node in Computational graph

a_
dx z=flxy)
=< d
C az —_—
P *

Y Downstream Gradient = Upstream Gradient * Local Gradient

An Examplel = -

1 4+ e~ (Wotwixg+wrxz)

CS231n: Convolutional Neural Networks for Visual Recognition, Stanford

An Examplel = -

1 4+ e~ (Wotwixg+wrxz)

=0
X1

CS231n: Convolutional Neural Networks for Visual Recognition, Stanford

An Examplel = -

1 4+ e~ (Wotwixg+wrxz)

CS231n: Convolutional Neural Networks for Visual Recognition, Stanford

An Examplel = -

1 4+ e~ (Wotwixg+wrxz)

CS231n: Convolutional Neural Networks for Visual Recognition, Stanford

An Examplel = -

1 4+ e~ (Wotwixg+wrxz)

s
OO
&

CS231n: Convolutional Neural Networks for Visual Recognition, Stanford

An Examplel = -

1 4+ e~ (Wotwixg+wrxz)

& §

CS231n: Convolutional Neural Networks for Visual Recognition, Stanford

An Examplel = -

1 4+ e~ (Wotwixg+wrxz)

s
OO
&)

CS231n: Convolutional Neural Networks for Visual Recognition, Stanford

An Examplel = -

1 4+ e~ (Wotwixg+wrxz)

) ()

=0
% (D= —l—()

CS231n: Convolutional Neural Networks for Visual Recognition, Stanford

An Examplel = -

1 4+ e~ (Wotwixg+wrxz)

) ()

=0
% (D= —e—()—)

CS231n: Convolutional Neural Networks for Visual Recognition, Stanford

An Example! = .

1 4+ e~ (Wotwixg+wrxz)

CS231n: Convolutional Neural Networks for Visual Recognition, Stanford

An Example! = .

1 4+ e~ (Wotwixg+wrxz)

CS231n: Convolutional Neural Networks for Visual Recognition, Stanford

An Example! =

1

1 4+ e~ (Wotwixi+wax))

Upstream Local

Wy gradient gradient
S 7 1
1.00 = —0.53
X1 ()(1.372)
Wa
X2
Wo

flx)=1/x =D a—i = —1/x?

CS231n: Convolutional Neural Networks for Visual Recognition, Stanford

An Example! =

1

1 4+ e~ (Wotwixi+wax))

Upstream Local

gradient gradient
e /

(~0.53)(1) = —0.53

CS231n: Convolutional Neural Networks for Visual Recognition, Stanford

An Example! = .

1 4+ e~ (Wotwixi+wax))

Upstream Local

gradient gradient
N /

(—0.53)(e~!) = —0.20

CS231n: Convolutional Neural Networks for Visual Recognition, Stanford

An Example! =

1

1 4+ e~ (Wotwixi+wax))

Upstream Local

gradient gradient
~ /

(—0.20)(~1) = 0.20

CS231n: Convolutional Neural Networks for Visual Recognition, Stanford

An Example! F= .

1 4+ e~ (Wotwixg+waxz)

[upstream gradient] x [local gradient]
[0.2] x [1] = 0.2
[0.2] x [1] = 0.2 (both inputs!)

CS231n: Convolutional Neural Networks for Visual Recognition, Stanford

An Example! = .

1 4+ e~ (Wotwixi+wax))

[upstream gradient] x [local gradient]

2 >< N [0.2] x[1]=0.2
4 ox 20 [0.2] x [1]= 0.2 (both inputs!)

CS231n: Convolutional Neural Networks for Visual Recognition, Stanford

An Example! = .

1 4+ e~ (Wotwixi+wax))

[upstream gradient] x [local gradient]
X :[0.2]x[2]=0.4
w :[0.2] x[-1]=-0.2

CS231n: Convolutional Neural Networks for Visual Recognition, Stanford

An Examplel = -

1 4+ e~ (Wotwixg+wrxz)

There might be multiple computational graphs for the same expression.

Choose one where local gradients of each node can be easily expressed!

CS231n: Convolutional Neural Networks for Visual Recognition, Stanford

1

| =
An Example. f 1 +e—(WO+W1X1+W2x2)
2wy 02 Sigmoid 3
1 x function)=

There might be multiple computational graphs for the same expression.

Choose one where local gradients of each node can be easily expressed!

CS231n: Convolutional Neural Networks for Visual Recognition, Stanford

An Examplel = -

1 4+ e~ (Wotwixg+wrxz)

There might be multiple computational graphs for the same expression.

Choose one where local gradients of each node can be easily expressed!

CS231n: Convolutional Neural Networks for Visual Recognition, Stanford

An Example! #= L

1 4+ e~ (Wotwixg+waxz)

Sigmoid local do(z) e (l1+e " -1 L)= (1-o(@)o(=)
gradlent dx - (1 X e—;l‘)2 o 1+e% 1+e 2 e

CS231n: Convolutional Neural Networks for Visual Recognition, Stanford

1
| =
An Examplel F)
2 wy 0o [upstream gradient] x [local gradient]
e [1.00] x [(1 - 0.73) (0.73)] = 0.2
1
3wy

Sigmoid local do(z) e * (1+e -1 1 _ 1 —o{aiiofe)
gradlent dw o (1 X e—'J:)2 . 1 - e T 1 4. e = .

CS231n: Convolutional Neural Networks for Visual Recognition, Stanford

Does this work for vector-valued functions?

Does this work for vector-valued functions?

YES!

Use vector derivatives / Jacobians !

Implementation

Implementation

e Create a class for all unique operations in the nodes of
computational graph.

Implementation

e Create a class for all unique operations in the nodes of
computational graph.

e Define the following methods for each operation class:
o Forward: Computes result of operation. Saves any data needed
for gradient calculation.
o Backward: Computes local gradient and multiplies it with the
upstream gradient.

Example Implementation of Node/Gate

class RelU:
def init_(self):
self.type = "relu”
self.input = None

def forward(self, inputs):
self.input = inputs
return np.clip(inputs, a_ min = @, a_max = np.inf)

def backward(self, upstream grad):
return (self.input>@).astype(int)*upstream_grad

Example Implementation of Node/Gate

class RelU:

(def init_ (self): A
self.type = "relu”

3 T =
L} self.inpu None)

def forward(self, inputs):
self.input = inputs
return np.clip(inputs, a_ min = @, a_max = np.inf)

def backward(self, upstream grad):
return (self.input>@).astype(int)*upstream_grad

Example Implementation of Node/Gate

class RelU: RelLU
def __init_ (self): max (0, x)
self.type = "relu”

self.input = None

(def forward(self, inputs):
self.input = inputs
return np.clip(inputs, a_ min = @, a max = np.inf))

.

def backward(self, upstream grad):
return (self.input>@).astype(int)*upstream_grad

Example Implementation of Node/Gate

class RelU: RelLU
def __init_ (self): max (0, x)
self.type = "relu”

self.input = None

def forward(self, inputs):
self.input = inputs
return np.clip(inputs, a_ min = @, a_max = np.inf)
4 N
def backward(self, upstream grad):
return (self.input>@).astype(int)*upstream_grad
_ J

Tensorflow/PyTorch have

Forward

// Functor used by ReluOp to do the computations.
template <typename Device, typename T>
struct Relu {
// Computes Relu activation.
//
// features: any shape.
// activations: same shape as "features".
void operator()(const Device& d, typename TTypes<T>::ConstTensor features,
typename TTypes<T>::Tensor activations) {

activations.device(d) = features.cwiseMax(static_cast<T>(9));

3

Tensorflow Source Code File :

Si

milar implementations

Backward

// Functor used by ReluGradOp to do the computations.

template <typename Device, typename T>
struct ReluGrad {

}s

// Computes ReluGrad backprops.
//
// gradients: gradients backpropagated to the Relu op.
// features: either the inputs that were passed to the Relu or, or its
// outputs (using either one yields the same result here).
// backprops: gradients to backpropagate to the Relu inputs.
void operator()(const Device& d, typename TTypes<T>::ConstTensor gradients,
typename TTypes<T>::ConstTensor features,
typename TTypes<T>::Tensor backprops) {
// NOTE: When the activation is exactly zero, we do not propagate the
// associated gradient value. This allows the output of the Relu to be used,
// as well as its input.
backprops.device(d) =

gradients * (features > static_cast<T>(09)).template cast<T>();

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/relu_op_functor.h

Tensorflow/PyTorch have similar implementations

Forward

// Functor used by ReluOp to do the computations.
template <typename Device, typename T>
struct Relu {
// Computes Relu activation.
//
// features: any shape.
// activations: same shape as "features".
void operator()(const Device& d, typename TTypes<T>::ConstTensor features,
typename Tuiia S PV eV TEVEE TV -ra W
activations.device(d) =jfeatures.cwiseMax(static_cast<T>(0));

features.cwiseMax(0) compares each
element of features with 0 and takes
the max value.

Tensorflow Source Code File :

Backward

// Functor used by ReluGradOp to do the computations.

template <typename Device, typename T>
struct ReluGrad {

}s

// Computes ReluGrad backprops.
//
// gradients: gradients backpropagated to the Relu op.
// features: either the inputs that were passed to the Relu or, or its
// outputs (using either one yields the same result here).
// backprops: gradients to backpropagate to the Relu inputs.
void operator()(const Device& d, typename TTypes<T>::ConstTensor gradients,
typename TTypes<T>::ConstTensor features,
typename TTypes<T>::Tensor backprops) {
// NOTE: When the activation is exactly zero, we do not propagate the
// associated gradient value. This allows the output of the Relu to be used,
// as well as its input.
backprops.device(d) =

gradients * (features > static_cast<T>(09)).template cast<T>();

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/relu_op_functor.h

Tensorflow/PyTorch have similar implementations

Forward Backward

// Functor used by ReluOp to do the computations. // Functor used by ReluGradOp to do the computations.
template <typename Device, typename T> template <typename Device, typename T>
struct Relu { struct ReluGrad {

// Computes Relu activation. // Computes ReluGrad backprops.

1/ //

// features: any shape. // gradients: gradients backpropagated to the Relu op.

A aptivations: ssite shape @s “featlies". // features: either the inputs that were passed to the Relu or, or its

void operator()(const Device& d, typename TTypes<T>::ConstTensor features, // outputs (using either one yields the same result here).

typename TTypes<T>::Tensor activations
#y P) 1 // backprops: gradients to backpropagate to the Relu inputs.
activations.device(d) = features.cwiseMax(static_cast<T>(9));
void operator()(const Device& d, typename TTypes<T>::ConstTensor gradients,
e typename TTypes<T>::ConstTensor features,
typename TTypes<T>::Tensor backprops) {
// NOTE: When the activation is exactly zero, we do not propagate the

// associated gradient value. This allows the output of the Relu to be used,

Local Gradient s its input.
back ice =
Upstream Gradient —» lgradients r‘ (features > static_cast<T>(0)).template cast<T>();
}
b3

Tensorflow Source Code File :

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/relu_op_functor.h

Implementation of Graph (Pseudocode)

class ComputationalGraph(object):
&iaia
def forward(inputs):
1. [pass inputs to input gates...]
2. forward the computational graph:
for gate in self.graph.nodes topologically sorted():
gate.forward()
return loss # the final gate in the graph outputs the loss
def backward():
for gate in reversed(self.graph.nodes topologically sorted()):
gate.backward() # little piece of backprop (chain rule applied)

return inputs gradients

Implementation of Graph (Pseudocode)

class ComputationalGraph(object):
&iaia
def forward(inputs):
1. [pass inputs to input gates...]

2. forward the computational graph:

for gate 1n| self.graph.nodes topologically sorted():

gate.forward()
return loss # the final gate in the graph outputs the loss
def backward():
for gate in reversed(self.graph.nodes topologically sorted()):
gate.backward() # little piece of backprop (chain rule applied)

return inputs gradients

Implementation of Graph (Pseudocode)

Topological Sort gives is a linear ordering of nodes such that for
every directed edge uv (edge starting from node u pointing to node
v), node u comes before v in the ordering.

Topologically
sorted graph

Unsorted graph

Topological Sort, Codepath :

https://guides.codepath.com/compsci/Topological-Sort

Implementation of Graph (Pseudocode)

class ComputationalGraph(object):
&iaia
def forward(inputs):
1. [pass inputs to input gates...]
2. forward the computational graph:
for gate in self.graph.nodes topologically sorted():
gate.forward()
return loss # the final gate in the graph outputs the loss
def backward():
for gate in reversed(self.graph.nodes topologically sorted()):
gate.backward() # little piece of backprop (chain rule applied)

return inputs gradients

YEAH, IF.YOU,COULD JUST SHOW ME
SOME CODE

THAT:D BE/GREA

cnecyator.net

@
@/

<——— Gradient Flow

1o mean cross_en
g tropy

Any Problem with this?
Can we do better?

CSE 599W: Systems for ML, University of Washington

Problems with backpropagation through graph

e Always need to keep intermediate data in memory for computing
local gradients.

CSE 599W: Systems for ML, University of Washington

Problems with backpropagation through graph

e Always need to keep intermediate data in memory for computing
local gradients.

e Lack of flexibility i.e.compute gradient of gradient?

CSE 599W: Systems for ML, University of Washington

Automatic Differentiation

tropy

A 5 Gt O i o RIS N i i a5 o e e R . e AR, S S R R) AT K DR SN T ORR G fii —__-_-_7
i ﬂﬂ{ matmult- H ftmax-gr d}*«{ log-grad J‘__ mul ‘i: h .
| transpose sottmax-gra g-8 u 11/ batch_size

__

e Augment computation graph with nodes for gradient computation.

e Better for memory use and schedule optimization

CSE 599W: Systems for ML, University of Washington

The technique we saw till now is a
gift from the vast field of
Automatic Differentiation

It is called Reverse-Mode Differentiation

Want to know more?

Automatic Differentiation
in Machine Learning: a Survey

Atilim Giines Baydin GUNES@ROBOTS.OX.AC.UK
Department of Engineering Science

University of Oxford

Ozford OX1 3PJ, United Kingdom

Barak A. Pearlmutter BARAKQPEARLMUTTER.NET
Department of Computer Science

National University of Ireland Maynooth
Maynooth, Co. Kildare, Ireland

Alexey Andreyevich Radul AXCHQMIT.EDU
Department of Brain and Cognitive Sciences

Massachusetts Institute of Technology
Cambridge, MA 02139, United States

Jeffrey Mark Siskind QOBIQPURDUE.EDU
School of Electrical and Computer Engineering
Purdue University

West Lafayette, IN 47907, United States

https://arxiv.org/pdf/1502.05767.pdf

