
I have a Dream!

That one day, we will

Backpropagate
 Easily!
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Remember Autograd?



Remember Autograd?

How does Autograd work?



After this lecture

● You will have an idea of how Autograd works!

● You will know how backpropagation is implemented in popular ML 
frameworks like TensorFlow, PyTorch etc.

● You won’t bang your head against the wall while implementing 
backprop.
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Downstream Gradient = Upstream Gradient * Local Gradient 
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Does this work for vector-valued functions?

YES!

Use vector derivatives / Jacobians !
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Implementation
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Implementation

● Create a class for all unique operations in the nodes of 
computational graph.

● Define the following methods for each operation class:
○ Forward: Computes result of operation. Saves any data needed 

for gradient calculation.
○  Backward: Computes local gradient and multiplies it with the 

upstream gradient. 
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Tensorflow/PyTorch have similar implementations

Forward Backward

Tensorflow Source Code  File : https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/relu_op_functor.h
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Tensorflow/PyTorch have similar implementations

Forward Backward

Tensorflow Source Code  File : https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/relu_op_functor.h

features.cwiseMax(0) compares each 
element of features with 0 and takes 
the max value.

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/relu_op_functor.h


Tensorflow/PyTorch have similar implementations

Forward Backward

Local Gradient

Upstream Gradient

Tensorflow Source Code  File : https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/relu_op_functor.h

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/relu_op_functor.h
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Implementation of Graph (Pseudocode)

Topological Sort gives is a linear ordering of nodes such that for 
every directed edge uv (edge starting from node u pointing to node 
v), node u comes before v in the ordering.

Topological Sort, Codepath : https://guides.codepath.com/compsci/Topological-Sort

https://guides.codepath.com/compsci/Topological-Sort


Implementation of Graph (Pseudocode)





Gradient Flow

Any Problem with this?
Can we do better?

CSE 599W: Systems for ML, University of Washington
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● Always need to keep intermediate data in memory for computing 
local gradients.
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Problems with backpropagation through  graph

● Always need to keep intermediate data in memory for computing 
local gradients.

● Lack of flexibility i.e.compute gradient of gradient?

CSE 599W: Systems for ML, University of Washington



Automatic Differentiation

● Augment computation graph with nodes for gradient computation.

● Better for memory use and schedule optimization
CSE 599W: Systems for ML, University of Washington



The technique we saw till now is a 
gift from the vast field of 

Automatic Differentiation

It is called Reverse-Mode Differentiation



Want to know more?

https://arxiv.org/pdf/1502.05767.pdf

