
I have a Dream!

That one day, we will

Backpropagate
 Easily!

ES654: Machine Learning

Varun Gohil

Remember Autograd?

Remember Autograd?

How does Autograd work?

After this lecture

● You will have an idea of how Autograd works!

● You will know how backpropagation is implemented in popular ML
frameworks like TensorFlow, PyTorch etc.

● You won’t bang your head against the wall while implementing
backprop.

Computational Graphs

● Nodes operations
● Edges variables/tensors

Edges also represent data dependencies between operations.

Computational Graphs

● Nodes operations
● Edges tensors/variables.

Edges also represent data dependencies between operations.

Example: (x * y) + z

Computational Graphs

● Nodes operations
● Edges tensors/variables.

Edges also represent data dependencies between operations.

Example: (x * y) + z

* +

Computational Graphs

● Nodes operations
● Edges tensors/variables.

Edges also represent data dependencies between operations.

Example: (x * y) + z

* +
x

y

Computational Graphs

● Nodes operations
● Edges tensors/variables.

Edges also represent data dependencies between operations.

Example: (x * y) + z

* +
x

y

z

Output

Backprop through a node in Computational graph

f

x

y

z = f(x,y)

Backprop through a node in Computational graph

f

x

y

z = f(x,y)

dJ
dzー

Upstream Gradient

Backprop through a node in Computational graph

f

x

y

z = f(x,y)

dJ
dzー

dJ
dxー

dJ
dzー

dz
dxー=

Backprop through a node in Computational graph

f

x

y

z = f(x,y)

dJ
dzー

dJ
dxー

dJ
dzー

dz
dxー=

dJ
dyー

dJ
dzー

dz
dyー=

Backprop through a node in Computational graph

f

x

y

z = f(x,y)

dJ
dzー

dJ
dxー

dJ
dzー

dz
dxー=

dJ
dyー

dJ
dzー

dz
dyー=

Local Gradients

Backprop through a node in Computational graph

f

x

y

z = f(x,y)

dJ
dzー

dJ
dxー

dJ
dzー

dz
dxー=

dJ
dyー

dJ
dzー

dz
dyー=

Downstream Gradient = Upstream Gradient * Local Gradient

An Example!

CS231n: Convolutional Neural Networks for Visual Recognition, Stanford

An Example!

CS231n: Convolutional Neural Networks for Visual Recognition, Stanford

An Example!

CS231n: Convolutional Neural Networks for Visual Recognition, Stanford

An Example!

CS231n: Convolutional Neural Networks for Visual Recognition, Stanford

An Example!

CS231n: Convolutional Neural Networks for Visual Recognition, Stanford

An Example!

CS231n: Convolutional Neural Networks for Visual Recognition, Stanford

An Example!

CS231n: Convolutional Neural Networks for Visual Recognition, Stanford

An Example!

CS231n: Convolutional Neural Networks for Visual Recognition, Stanford

An Example!

CS231n: Convolutional Neural Networks for Visual Recognition, Stanford

An Example!

CS231n: Convolutional Neural Networks for Visual Recognition, Stanford

-3

-3

-2

-1

2

-2

6 4
1 -1 0.37 1.37 0.73

An Example!

CS231n: Convolutional Neural Networks for Visual Recognition, Stanford

-3

-3

-2

-1

2

-2

6 4
1 -1 0.37 1.37 0.73

1

df
dfー= 1

An Example!

CS231n: Convolutional Neural Networks for Visual Recognition, Stanford

-3

-3

-2

-1

2

-2

6 4
1 -1 0.37 1.37 0.73

1-0.53

An Example!

CS231n: Convolutional Neural Networks for Visual Recognition, Stanford

-3

-3

-2

-1

2

-2

6 4
1 -1 0.37 1.37 0.73

1-0.53-0.53

An Example!

CS231n: Convolutional Neural Networks for Visual Recognition, Stanford

-3

-3

-2

-1

2

-2

6 4
1 -1 0.37 1.37 0.73

1-0.53-0.53-0.20

An Example!

CS231n: Convolutional Neural Networks for Visual Recognition, Stanford

-3

-3

-2

-1

2

-2

6 4
1 -1 0.37 1.37 0.73

1-0.53-0.53-0.20 0.20

An Example!

CS231n: Convolutional Neural Networks for Visual Recognition, Stanford

-3

-3

-2

-1

2

-2

6 4
1 -1 0.37 1.37 0.73

1-0.53-0.53-0.20 0.20

 0.20

 0.20

An Example!

CS231n: Convolutional Neural Networks for Visual Recognition, Stanford

-3

-3

-2

-1

2

-2

6 4
1 -1 0.37 1.37 0.73

1-0.53-0.53-0.20 0.20

 0.20

 0.20

 0.20

 0.
20

An Example!

CS231n: Convolutional Neural Networks for Visual Recognition, Stanford

-3

-3

-2

-1

2

-2

6 4
1 -1 0.37 1.37 0.73

1-0.53-0.53-0.2 0.2

 0.2

 0.2

 0.2

 0.
2

 -0.2

 0.4

An Example!

CS231n: Convolutional Neural Networks for Visual Recognition, Stanford

-3

-3

-2

-1

2

-2

6 4
1 -1 0.37 1.37 0.73

1-0.53-0.53-0.2 0.2

 0.2

 0.2

 0.2

 0.
2

 -0.2

 0.4

There might be multiple computational graphs for the same expression.

Choose one where local gradients of each node can be easily expressed!

An Example!

CS231n: Convolutional Neural Networks for Visual Recognition, Stanford

-3

-3

-2

-1

2

-2

6 4
1 -1 0.37 1.37 0.73

1-0.53-0.53-0.2 0.2

 0.2

 0.2

 0.2

 0.
2

 -0.2

 0.4

There might be multiple computational graphs for the same expression.

Choose one where local gradients of each node can be easily expressed!

An Example!

CS231n: Convolutional Neural Networks for Visual Recognition, Stanford

-3

-3

-2

-1

2

-2

6 4
1 0.37 1.37 0.73

1-0.53-0.531 0.2

 0.2

 0.2

 0.2

 0.
2

 -0.2

 0.4

There might be multiple computational graphs for the same expression.

Choose one where local gradients of each node can be easily expressed!

sig 0.73

An Example!

CS231n: Convolutional Neural Networks for Visual Recognition, Stanford

-3

-3

-2

-1

2

-2

6 4
1 0.37 1.37 0.73

1-0.53-0.531 0.2

 0.2

 0.2

 0.2

 0.
2

 -0.2

 0.4

sig 0.73

An Example!

CS231n: Convolutional Neural Networks for Visual Recognition, Stanford

-3

-3

-2

-1

2

-2

6 4
1 0.37 1.37 0.73

1-0.53-0.531 0.2

 0.2

 0.2

 0.2

 0.
2

 -0.2

 0.4

sig 0.73

Does this work for vector-valued functions?

Does this work for vector-valued functions?

YES!

Use vector derivatives / Jacobians !

Implementation

Implementation

● Create a class for all unique operations in the nodes of
computational graph.

Implementation

● Create a class for all unique operations in the nodes of
computational graph.

● Define the following methods for each operation class:
○ Forward: Computes result of operation. Saves any data needed

for gradient calculation.
○ Backward: Computes local gradient and multiplies it with the

upstream gradient.

Example Implementation of Node/Gate

Example Implementation of Node/Gate

Example Implementation of Node/Gate

Example Implementation of Node/Gate

Tensorflow/PyTorch have similar implementations

Forward Backward

Tensorflow Source Code File : https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/relu_op_functor.h

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/relu_op_functor.h

Tensorflow/PyTorch have similar implementations

Forward Backward

Tensorflow Source Code File : https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/relu_op_functor.h

features.cwiseMax(0) compares each
element of features with 0 and takes
the max value.

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/relu_op_functor.h

Tensorflow/PyTorch have similar implementations

Forward Backward

Local Gradient

Upstream Gradient

Tensorflow Source Code File : https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/relu_op_functor.h

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/relu_op_functor.h

Implementation of Graph (Pseudocode)

Implementation of Graph (Pseudocode)

Implementation of Graph (Pseudocode)

Topological Sort gives is a linear ordering of nodes such that for
every directed edge uv (edge starting from node u pointing to node
v), node u comes before v in the ordering.

Topological Sort, Codepath : https://guides.codepath.com/compsci/Topological-Sort

https://guides.codepath.com/compsci/Topological-Sort

Implementation of Graph (Pseudocode)

Gradient Flow

Any Problem with this?
Can we do better?

CSE 599W: Systems for ML, University of Washington

Problems with backpropagation through graph

● Always need to keep intermediate data in memory for computing
local gradients.

CSE 599W: Systems for ML, University of Washington

Problems with backpropagation through graph

● Always need to keep intermediate data in memory for computing
local gradients.

● Lack of flexibility i.e.compute gradient of gradient?

CSE 599W: Systems for ML, University of Washington

Automatic Differentiation

● Augment computation graph with nodes for gradient computation.

● Better for memory use and schedule optimization
CSE 599W: Systems for ML, University of Washington

The technique we saw till now is a
gift from the vast field of

Automatic Differentiation

It is called Reverse-Mode Differentiation

Want to know more?

https://arxiv.org/pdf/1502.05767.pdf

