Unsupervised Learning

Nipun Batra
July 12, 2020

IIT Gandhinagar
Lecture heavily adapted from Kevin Murphy’s book



Unsupervised Learning

- Unsupervised learning: we are just given output data,
without any inputs



Unsupervised Learning

- Unsupervised learning: we are just given output data,
without any inputs

- The goal is to discover “interesting structure” in the data;
this is sometimes called knowledge discovery.



Unsupervised Learning

- Unsupervised learning: we are just given output data,
without any inputs

- The goal is to discover “interesting structure” in the data;
this is sometimes called knowledge discovery.

- Unlike supervised learning, we are not told what the
desired output is for each input.



Unsupervised Learning

- Unsupervised learning: we are just given output data,
without any inputs

- The goal is to discover “interesting structure” in the data;
this is sometimes called knowledge discovery.

- Unlike supervised learning, we are not told what the
desired output is for each input.

- Instead, we will formalize our task as one of density
estimation, that is, we want to build models of the form
p(xi|8).
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Differences between supervised and unsupervised learning

- We have written p (x; | 8) instead of p (y; | x;, @) ; that is,
supervised learning is conditional density estimation,
whereas unsupervised learning is unconditional density
estimation.

- X; Is a vector of features, so we need to create multivariate
probability models. By contrast, in supervised learning, y;
is usually just a single variable that we are trying to
predict. This means that for most supervised learning
problems, we can use univariate probability models (with
input-dependent parameters), which significantly
simplifies the problem.
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- Divide data into groups or clusters
- Assuming K clusters, we have two goals:
1. estimate the distribution over the number of clusters,
p(K|D)



Some categories of unsupervised algorithms: Clustering

- Divide data into groups or clusters
- Assuming K clusters, we have two goals:
1. estimate the distribution over the number of clusters,
p(K|D)
2. estimate which cluster each point belongs to. Let
zi € {1,...,K} represent the cluster to which data point i is
assigned.
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Some categories of unsupervised algorithms: Dimensionality re-
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Some categories of unsupervised algorithms: Dimensionality re-

duction
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- Definition: reduce the dimensionality by projecting the
data to a lower dimensional subspace which captures the
“essence” of the data.



Some categories of unsupervised algorithms: Dimensionality re-

duction
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- Definition: reduce the dimensionality by projecting the
data to a lower dimensional subspace which captures the
“essence” of the data.

- Motivation: although the data may appear high
dimensional, there may only be a small number of
degrees of variability, corresponding to latent factors.
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Some categories of unsupervised algorithms: Matrix comple-
tion
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Some categories of unsupervised algorithms: Matrix comple-
tion




Some categories of unsupervised algorithms: Discovering Graph

Structure
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Demographics

1: Gender

14: Type of Housing

16: No of unfinished Educations
28: Age

Psychological

2:1Q

4: Openness about Diagnosis
5: Success selfrating

6: Well being

18: No of Interests

20: Good Characteristics due to Autism
21: No of Transition Problems
Social environment

7: Integration in Society

16: Type of work

17: Workinghours

18: No of Social Contacts

26: Satisfaction: Work

27: Satisfaction: Social Contacts
Medical

3: Age diagnosis

8: No of family members with autism
9: No of Comorbidities

10: No of Physical Problems
11: No of Treatments

12: No of Medications.

13: No of Care Units

22: Satisfaction: Treatment

23: Satisfaction: Medication

24: Satisfaction: Care

25: Satisfaction: Education

n



The need for Unsupervised Learning

- Aids the search of patterns in data.
- Find features for categorization.

- Easier to collect unlabeled data.
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The need for Unsupervised Learning

- Aids the search of patterns in data.
- Find features for categorization.

- Easier to collect unlabeled data.

Places where you will see unsupervised learning

- It can be used to segment the market based on customer
preferences.

- A data science team reduces the number of dimensions in
a large data set to simplify modeling and reduce file size.
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Clustering




- AIM: To find groups/subgroups in a data set.
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- AIM: To find groups/subgroups in a data set.
- REQUIREMENTS: A predefined notion of
similarity/dissimilarity.

- Examples: Market Segmentation: Customers with similar
preferences in the same groups. This would aid in
targeted marketing.

13



Ground Truth
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K-Means Clustering

- N points in a R? space.

- Ci: set of points in the it

cluster. o
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Dataset with 5 clusters
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K-Means Intuition

- Good Clustering: Within the cluster the variation (WCV) is
small.
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K-Means Intuition

- Good Clustering: Within the cluster the variation (WCV) is
small.

- Objective:

min (Z wev (¢ )

'\7 7k

Minimize the WCV as much as possible



K-Means Intuition

Objective:



K-Means Intuition

Objective:
<ZV\/CV )
WCV (G) = |2| (Distance between all points)
1
wev (€ TZZHXG—XDHZ

aeC beC;

where |G| is the number of points in C;



K-Means Algorithm

1. Randomly assign a cluster number i to every point
(whereie{1,...n})
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K-Means Algorithm

1. Randomly assign a cluster number i to every point
(whereie{1,...n})
2. Iterate until convergence:

21 For each cluster C; compute the centroid (mean of all
points in C; over d dimensions)
2.2 Assign each observation to the cluster which is the closest.
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Working of K-Means Algorithm
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Why does K-Means work?

Let, x; € RY = Centroid fori"cluster
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Why does K-Means work?

Let, x; € RY = Centroid fori"cluster
1
=— ) x
|Gil g;‘l !
Then,
1
Wev (G) = il >N lixa = xl13
1
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Why does K-Means work?

Let, x; € RY = Centroid fori"cluster

1
- T

aeg;

Then,

1
Wev (@) = 17 D03 e =l
|

aeC; be(;

= 22 [1Xa — xil15

aeC;
K-Means gives the local minima.
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Hierarchal Clustering

Gives a clustering of all the clusters
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Algorithm for Hierarchal Clustering

1. Start with all points in a single cluster
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Example Dataset
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Algorithm for Hierarchal Clustering

1. Start with all points in a single cluster

21 ldentify the 2 closest points
2.2 Merge them
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Algorithm for Hierarchal Clustering

1. Start with all points in a single cluster

2. Repeat until all points are in a single cluster
21 ldentify the 2 closest points
2.2 Merge them

i} 0 EY ) EY @ E] & 5 1 a 2 3 9 6 10 7 8

Example Dataset Final Clustering
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Joining Clusters/Linkages

Complete Single Centroid

Max inter-cluster Min inter-cluster Dissimilarity

similarity similarity between cluster
centroids

2%



Google Colab Link
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https://colab.research.google.com/drive/1HMPn0mpMAe4XFe5Zvh4oExgi5evkgjTi
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